| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
| |
Reviewers: bgamari, austin
Reviewed By: austin
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1438
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Amazingly, there were zero changes to the byte code generator and very
few changes to the interpreter - mainly because we've used good
abstractions that hide the differences between profiling and
non-profiling. So that bit was pleasantly straightforward, but there
were a pile of other wibbles to get the whole test suite through.
Note that a compiler built with -prof is now like one built with
-dynamic, in that to use TH you have to build the code the same way.
For dynamic, we automatically enable -dynamic-too when TH is required,
but we don't have anything equivalent for profiling, so you have to
explicitly use -prof when building code that uses TH with a profiled
compiler. For this reason Cabal won't work with TH. We don't expect
to ship a profiled compiler, so I think that's OK.
Test Plan: validate with GhcProfiled=YES in validate.mk
Reviewers: goldfire, bgamari, rwbarton, austin, hvr, erikd, ezyang
Reviewed By: ezyang
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1407
GHC Trac Issues: #4837, #545
|
| |
|
|
|
|
|
|
|
|
| |
We will need to use these to setup proper unwinding information for the
stg_stop_thread closure. This pokes a hole in the STG abstraction,
exposing the machine's stack pointer register so that we can accomplish
this. We also expose a dummy return address register, which corresponds
to the register used to hold the DWARF return address.
Differential Revision: https://phabricator.haskell.org/D1225
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a subWordC# primop which implements subtraction with overflow
reporting.
Reviewers: tibbe, goldfire, rwbarton, bgamari, austin, hvr
Reviewed By: bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1334
GHC Trac Issues: #10962
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch refactors pure/(*>) and return/(>>) in MRP-friendly way, i.e.
such that the explicit definitions for `return` and `(>>)` match the
MRP-style default-implementation, i.e.
return = pure
and
(>>) = (*>)
This way, e.g. all `return = pure` definitions can easily be grepped and
removed in GHC 8.1;
Test Plan: Harbormaster
Reviewers: goldfire, alanz, bgamari, quchen, austin
Reviewed By: quchen, austin
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1312
|
| |
|
|
|
|
| |
Comes with Haddock submodule update.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This allows the code generator to give hints to later code generation
steps about which branch is most likely to be taken. Right now it
is only taken into account in one place: a special case in
CmmContFlowOpt that swapped branches over to maximise the chance of
fallthrough, which is now disabled when there is a likelihood setting.
Test Plan: validate
Reviewers: austin, simonpj, bgamari, ezyang, tibbe
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1273
|
| |
|
|
|
|
|
|
|
|
| |
Rename StgArrWords to StgArrBytes (see Trac #8552)
Reviewed By: austin
Differential Revision: https://phabricator.haskell.org/D1233
GHC Trac Issues: #8552
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Test Plan: Validate.
Reviewers: austin, tibbe, bgamari
Reviewed By: tibbe, bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1194
GHC Trac Issues: #10413
|
| |
|
|
|
|
|
| |
This should at least help alleviate the annoyance of #4505. This
reintroduces a compile-time check originally added in
a278f3f02d09bc32b0a75d4a04d710090cde250f but dropped with the new code
generator.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverses some of the work done in Trac #1405, and assumes GHC is
smart enough to do its own unboxing of booleans now.
I would like to do some more performance measurements, but the code
changes can be reviewed already.
Test Plan:
With a perf build:
./inplace/bin/ghc-stage2 nofib/spectral/simple/Main.hs -fforce-recomp
+RTS -t --machine-readable
before:
```
[("bytes allocated", "1300744864")
,("num_GCs", "302")
,("average_bytes_used", "8811118")
,("max_bytes_used", "24477464")
,("num_byte_usage_samples", "9")
,("peak_megabytes_allocated", "64")
,("init_cpu_seconds", "0.001")
,("init_wall_seconds", "0.001")
,("mutator_cpu_seconds", "2.833")
,("mutator_wall_seconds", "4.283")
,("GC_cpu_seconds", "0.960")
,("GC_wall_seconds", "0.961")
]
```
after:
```
[("bytes allocated", "1301088064")
,("num_GCs", "310")
,("average_bytes_used", "8820253")
,("max_bytes_used", "24539904")
,("num_byte_usage_samples", "9")
,("peak_megabytes_allocated", "64")
,("init_cpu_seconds", "0.001")
,("init_wall_seconds", "0.001")
,("mutator_cpu_seconds", "2.876")
,("mutator_wall_seconds", "4.474")
,("GC_cpu_seconds", "0.965")
,("GC_wall_seconds", "0.979")
]
```
CPU time seems to be up a bit, but I'm not sure. Unfortunately CPU time
measurements are rather noisy.
Reviewers: austin, bgamari, rwbarton
Subscribers: nomeata
Differential Revision: https://phabricator.haskell.org/D1143
GHC Trac Issues: #1405
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now since ByteArrays are mutable we need to be more explicit about when
the size is queried.
Test Plan: Add testcase and validate
Reviewers: goldfire, hvr, austin
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1139
GHC Trac Issues: #9447
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for MO_U_QuotRem2 in LLVM backend. Similarly to
MO_U_Mul2 we use the standard LLVM instructions (in this case 'udiv'
and 'urem') but do the computation on double the word width (e.g., for
64-bit we will do them on 128 registers).
Test Plan: validate
Reviewers: rwbarton, austin, bgamari
Reviewed By: bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1100
GHC Trac Issues: #9430
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
[Revised version of D1076 that was committed and then backed out]
In a workload with a large amount of code, zero_static_objects_list()
takes a significant amount of time, and furthermore it is in the
single-threaded part of the GC.
This patch uses a slightly fiddly scheme for marking objects on the
static object lists, using a flag in the low 2 bits that flips between
two states to indicate whether an object has been visited during this
GC or not. We also have to take into account objects that have not
been visited yet, which might appear at any time due to runtime linking.
Test Plan: validate
Reviewers: austin, ezyang, rwbarton, bgamari, thomie
Reviewed By: bgamari, thomie
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1106
|
| |
|
|
| |
This reverts commit b949c96b4960168a3b399fe14485b24a2167b982.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In a workload with a large amount of code, zero_static_objects_list()
takes a significant amount of time, and furthermore it is in the
single-threaded part of the GC.
This patch uses a slightly fiddly scheme for marking objects on the
static object lists, using a flag in the low 2 bits that flips between
two states to indicate whether an object has been visited during this
GC or not. We also have to take into account objects that have not
been visited yet, which might appear at any time due to runtime linking.
Test Plan: validate
Reviewers: austin, bgamari, ezyang, rwbarton
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1076
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support MO_U_Mul2 to the LLVM backend by simply using 'mul'
instruction but operating at twice the bit width (e.g., for 64 bit
words we will generate mul that operates on 128 bits and then extract
the two 64 bit values for the result of the CallishMachOp).
Test Plan: validate
Reviewers: rwbarton, austin, bgamari
Reviewed By: bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1068
GHC Trac Issues: #9430
|
| |
|
|
|
|
| |
Also remove 't' and 's' from ALL_WAYS; they don't exist.
Differential Revision: https://phabricator.haskell.org/D1055
|
| | |
|
| | |
|
| |
|
|
| |
Signed-off-by: Ben Gamari <ben@smart-cactus.org>
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
In a parallel program they can actually be entered more than once,
leading to deadlock.
Reviewers: austin, simonmar
Subscribers: michaelt, thomie, bgamari
Differential Revision: https://phabricator.haskell.org/D1040
GHC Trac Issues: #10414
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This includes:
- Adding new LlvmType called LMStructP that represents an unpacked
struct (this is necessary since LLVM's instructions the
llvm.sadd.with.overflow.* return an unpacked struct).
- Modifications to LlvmCodeGen.CodeGen to generate the LLVM
instructions for the primops.
- Modifications to StgCmmPrim to actually use those three instructions
if we use the LLVM backend (so far they were only used for NCG).
Test Plan: validate
Reviewers: austin, rwbarton, bgamari
Reviewed By: bgamari
Subscribers: thomie, bgamari
Differential Revision: https://phabricator.haskell.org/D991
GHC Trac Issues: #9430
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extend the PowerPC 32-bit native code generator for "64-bit
PowerPC ELF Application Binary Interface Supplement 1.9" by
Ian Lance Taylor and "Power Architecture 64-Bit ELF V2 ABI Specification --
OpenPOWER ABI for Linux Supplement" by IBM.
The latter ABI is mainly used on POWER7/7+ and POWER8
Linux systems running in little-endian mode. The code generator
supports both static and dynamic linking. PowerPC 64-bit
code for ELF ABI 1.9 and 2 is mostly position independent
anyway, and thus so is all the code emitted by the code
generator. In other words, -fPIC does not make a difference.
rts/stg/SMP.h support is implemented.
Following the spirit of the introductory comment in
PPC/CodeGen.hs, the rest of the code is a straightforward
extension of the 32-bit implementation.
Limitations:
* Code is generated only in the medium code model, which
is also gcc's default
* Local symbols are not accessed directly, which seems to
also be the case for 32-bit
* LLVM does not work, but this does not work on 32-bit either
* Must use the system runtime linker in GHCi, because the
GHC linker for "static" object files (rts/Linker.c) for
PPC 64-bit is not implemented. The system runtime
(dynamic) linker works.
* The handling of the system stack (register 1) is not ELF-
compliant so stack traces break. Instead of allocating a new
stack frame, spill code should use the "official" spill area
in the current stack frame and deallocation code should restore
the back chain
* DWARF support is missing
Fixes #9863
Test Plan: validate (on powerpc, too)
Reviewers: simonmar, trofi, erikd, austin
Reviewed By: trofi
Subscribers: bgamari, arnons1, kgardas, thomie
Differential Revision: https://phabricator.haskell.org/D629
GHC Trac Issues: #9863
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
On x86_64, commit e2f6bbd3a27685bc667655fdb093734cb565b4cf assigned
the STG registers F1 and D1 the same hardware register (xmm1), and
the same for the registers F2 and D2, etc. When mixing calls to
functions involving Float#s and Double#s, this can cause wrong Cmm
optimizations that assume the F1 and D1 registers are independent.
Reviewers: simonpj, austin
Reviewed By: austin
Subscribers: simonpj, thomie, bgamari
Differential Revision: https://phabricator.haskell.org/D993
GHC Trac Issues: #10521
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Alignment needs to be a compile-time constant. Previously the code
generators had to jump through hoops to ensure this was the case as the
alignment was passed as a CmmExpr in the arguments list. Now we take
care of this up front.
This fixes #8131.
Authored-by: Reid Barton <rwbarton@gmail.com>
Dusted-off-by: Ben Gamari <ben@smart-cactus.org>
Tests for T8131
Test Plan: Validate
Reviewers: rwbarton, austin
Reviewed By: rwbarton, austin
Subscribers: bgamari, carter, thomie
Differential Revision: https://phabricator.haskell.org/D624
GHC Trac Issues: #8131
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The strings used in a WARNING pragma are captured via
strings :: { Located ([AddAnn],[Located FastString]) }
: STRING { sL1 $1 ([],[L (gl $1) (getSTRING $1)]) }
..
The STRING token has a method getSTRINGs that returns the original
source text for a string.
A warning of the form
{-# WARNING Logic
, mkSolver
, mkSimpleSolver
, mkSolverForLogic
, solverSetParams
, solverPush
, solverPop
, solverReset
, solverGetNumScopes
, solverAssertCnstr
, solverAssertAndTrack
, solverCheck
, solverCheckAndGetModel
, solverGetReasonUnknown
"New Z3 API support is still incomplete and fragile: \
\you may experience segmentation faults!"
#-}
returns the concatenated warning string rather than the original source.
This patch now deals with all remaining instances of getSTRING to bring
in a SourceText for each.
This updates the haddock submodule as well, for the AST change.
Test Plan: ./validate
Reviewers: hvr, austin, goldfire
Reviewed By: austin
Subscribers: bgamari, thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D907
GHC Trac Issues: #10313
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This re-implements the code generation for case expressions at the Stg →
Cmm level, both for data type cases as well as for integral literal
cases. (Cases on float are still treated as before).
The goal is to allow for fancier strategies in implementing them, for a
cleaner separation of the strategy from the gritty details of Cmm, and
to run this later than the Common Block Optimization, allowing for one
way to attack #10124. The new module CmmSwitch contains a number of
notes explaining this changes. For example, it creates larger
consecutive jump tables than the previous code, if possible.
nofib shows little significant overall improvement of runtime. The
rather large wobbling comes from changes in the code block order
(see #8082, not much we can do about it). But the decrease in code size
alone makes this worthwhile.
```
Program Size Allocs Runtime Elapsed TotalMem
Min -1.8% 0.0% -6.1% -6.1% -2.9%
Max -0.7% +0.0% +5.6% +5.7% +7.8%
Geometric Mean -1.4% -0.0% -0.3% -0.3% +0.0%
```
Compilation time increases slightly:
```
-1 s.d. ----- -2.0%
+1 s.d. ----- +2.5%
Average ----- +0.3%
```
The test case T783 regresses a lot, but it is the only one exhibiting
any regression. The cause is the changed order of branches in an
if-then-else tree, which makes the hoople data flow analysis traverse
the blocks in a suboptimal order. Reverting that gets rid of this
regression, but has a consistent, if only very small (+0.2%), negative
effect on runtime. So I conclude that this test is an extreme outlier
and no reason to change the code.
Differential Revision: https://phabricator.haskell.org/D720
|
| |
|
|
|
|
|
|
|
| |
The GranSim code was removed in dd56e9ab and 297b05a9 in 2009, and perhaps
other commits I couldn't find.
Reviewed By: austin
Differential Revision: https://phabricator.haskell.org/D737
|
| |
|
|
|
| |
both use the same logic to divide, so put it in
divideBranches :: Ord a => [(a,b)] -> ([(a,b)], a, [(a,b)])
|
| |
|
|
|
|
|
|
|
| |
Previously, in the branch of the if-then-else tree, it would emit a
final check if the scrut matches the alternative, even if earlier
comparisons alread imply this equality. By keeping track of the bounds
we can skip this check. Of course this is only sound for integer types.
This closes #10129.
Differential Revision: https://phabricator.haskell.org/D693
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
| |
David Feuer managed to tickle a corner case in the
code generator. See Note [Scrutinising VoidRep]
in StgCmmExpr.
I rejigged the comments in that area of the code generator
Note [Dodgy unsafeCoerce 1]
Note [Dodgy unsafeCoerce 2]
but I can't say I fully understand them, alas.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: It looks like during .lhs -> .hs switch the comments were not updated. So doing exactly that.
Reviewers: austin, jstolarek, hvr, goldfire
Reviewed By: austin, jstolarek
Subscribers: thomie, goldfire
Differential Revision: https://phabricator.haskell.org/D621
GHC Trac Issues: #9986
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unwind information allows the debugger to discover more information
about a program state, by allowing it to "reconstruct" other states of
the program. In practice, this means that we explain to the debugger
how to unravel stack frames, which comes down mostly to explaining how
to find their Sp and Ip register values.
* We declare yet another new constructor for CmmNode - and this time
there's actually little choice, as unwind information can and will
change mid-block. We don't actually make use of these capabilities,
and back-end support would be tricky (generate new labels?), but it
feels like the right way to do it.
* Even though we only use it for Sp so far, we allow CmmUnwind to specify
unwind information for any register. This is pretty cheap and could
come in useful in future.
* We allow full CmmExpr expressions for specifying unwind values. The
advantage here is that we don't have to make up new syntax, and can e.g.
use the WDS macro directly. On the other hand, the back-end will now
have to simplify the expression until it can sensibly be converted
into DWARF byte code - a process which might fail, yielding NCG panics.
On the other hand, when you're writing Cmm by hand you really ought to
know what you're doing.
(From Phabricator D169)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch solves the scoping problem of CmmTick nodes: If we just put
CmmTicks into blocks we have no idea what exactly they are meant to
cover. Here we introduce tick scopes, which allow us to create
sub-scopes and merged scopes easily.
Notes:
* Given that the code often passes Cmm around "head-less", we have to
make sure that its intended scope does not get lost. To keep the amount
of passing-around to a minimum we define a CmmAGraphScoped type synonym
here that just bundles the scope with a portion of Cmm to be assembled
later.
* We introduce new scopes at somewhat random places, aligning with
getCode calls. This works surprisingly well, but we might have to
add new scopes into the mix later on if we find things too be too
coarse-grained.
(From Phabricator D169)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds CmmTick nodes to Cmm code. This is relatively
straight-forward, but also not very useful, as many blocks will simply
end up with no annotations whatosever.
Notes:
* We use this design over, say, putting ticks into the entry node of all
blocks, as it seems to work better alongside existing optimisations.
Now granted, the reason for this is that currently GHC's main Cmm
optimisations seem to mainly reorganize and merge code, so this might
change in the future.
* We have the Cmm parser generate a few source notes as well. This is
relatively easy to do - worst part is that it complicates the CmmParse
implementation a bit.
(From Phabricator D169)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is basically just about continuing maintaining source notes after
the Core stage. Unfortunately, this is more involved as it might seem,
as there are more restrictions on where ticks are allowed to show up.
Notes:
* We replace the StgTick / StgSCC constructors with a unified StgTick
that can carry any tickish.
* For handling constructor or lambda applications, we generally float
ticks out.
* Note that thanks to the NonLam placement, we know that source notes
can never appear on lambdas. This means that as long as we are
careful to always use mkTick, we will never violate CorePrep
invariants.
* This is however not automatically true for eta expansion, which
needs to somewhat awkwardly strip, then re-tick the expression in
question.
* Where CorePrep floats out lets, we make sure to wrap them in the
same spirit as FloatOut.
* Detecting selector thunks becomes a bit more involved, as we can run
into ticks at multiple points.
(From Phabricator D169)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The current primops for prefetching do not properly work in pure code;
namely, the primops are not 'hoisted' into the correct call sites based
on when arguments are evaluated. Instead, they should use a `seq`-like
interface, which will cause it to be evaluated when the needed term is.
See #9353 for the full discussion.
Test Plan: updated tests for pure prefetch in T8256 to reflect the design changes in #9353
Reviewers: simonmar, hvr, ekmett, austin
Reviewed By: ekmett, austin
Subscribers: merijn, thomie, carter, simonmar
Differential Revision: https://phabricator.haskell.org/D350
GHC Trac Issues: #9353
|
| |
|
|
| |
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
| |
|
|
|
|
|
|
| |
This reverts commit f0fcc41d755876a1b02d1c7c79f57515059f6417.
New changes: now works on 32-bit platforms too. I added some basic
support for 64-bit subtraction and comparison operations to the x86
NCG.
|
| |
|
|
|
|
|
|
|
|
| |
This reverts commit b23ba2a7d612c6b466521399b33fe9aacf5c4f75.
Conflicts:
compiler/cmm/PprCmmDecl.hs
compiler/nativeGen/PPC/Ppr.hs
compiler/nativeGen/SPARC/Ppr.hs
compiler/nativeGen/X86/Ppr.hs
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The primary reason for doing this is assisting debuggability:
if static closures are all in the same section, they are
guaranteed to be adjacent to one another. This will help
later when we add some code that takes section start/end and
uses this to sanity-check the sections.
Part of remove HEAP_ALLOCED patch set (#8199)
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
Test Plan: validate
Reviewers: simonmar, austin
Subscribers: simonmar, ezyang, carter, thomie
Differential Revision: https://phabricator.haskell.org/D263
GHC Trac Issues: #8199
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This includes pretty much all the changes needed to make `Applicative`
a superclass of `Monad` finally. There's mostly reshuffling in the
interests of avoid orphans and boot files, but luckily we can resolve
all of them, pretty much. The only catch was that
Alternative/MonadPlus also had to go into Prelude to avoid this.
As a result, we must update the hsc2hs and haddock submodules.
Signed-off-by: Austin Seipp <austin@well-typed.com>
Test Plan: Build things, they might not explode horribly.
Reviewers: hvr, simonmar
Subscribers: simonmar
Differential Revision: https://phabricator.haskell.org/D13
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
These MachOps are used by addIntC# and subIntC#, which in turn are
used in integer-gmp when adding or subtracting small Integers. The
following benchmark shows a ~6% speedup after this commit on x86_64
(building GHC with BuildFlavour=perf).
{-# LANGUAGE MagicHash #-}
import GHC.Exts
import Criterion.Main
count :: Int -> Integer
count (I# n#) = go n# 0
where go :: Int# -> Integer -> Integer
go 0# acc = acc
go n# acc = go (n# -# 1#) $! acc + 1
main = defaultMain [bgroup "count"
[bench "100" $ whnf count 100]]
Differential Revision: https://phabricator.haskell.org/D140
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the new primops
clz#, clz32#, clz64#,
ctz#, ctz32#, ctz64#
which provide efficient implementations of the popular
count-leading-zero and count-trailing-zero respectively
(see testcase for a pure Haskell reference implementation).
On x86, NCG as well as LLVM generates code based on the BSF/BSR
instructions (which need extra logic to make the 0-case well-defined).
Test Plan: validate and succesful tests on i686 and amd64
Reviewers: rwbarton, simonmar, ezyang, austin
Subscribers: simonmar, relrod, ezyang, carter
Differential Revision: https://phabricator.haskell.org/D144
GHC Trac Issues: #9340
|
| |
|
|
|
| |
We use fixed size signed types to e.g. represent array sizes. This
means that the size can overflow.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There were two overflow issues in shouldInlinePrimOp. The first one is
due to a negative CmmInt literal being created if the array size was
given as larger than 2^63-1 (on a 64-bit platform.) This meant that
large array sizes could compare as being smaller than
maxInlineAllocSize.
The second issue is that we casted the Integer to an Int in the
comparison, which again meant that large array sizes could compare as
being smaller than maxInlineAllocSize.
The attempt to allocate a large array inline then caused a segfault.
Fixes #9416.
|