| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
This reverts commit f0fcc41d755876a1b02d1c7c79f57515059f6417.
New changes: now works on 32-bit platforms too. I added some basic
support for 64-bit subtraction and comparison operations to the x86
NCG.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This includes pretty much all the changes needed to make `Applicative`
a superclass of `Monad` finally. There's mostly reshuffling in the
interests of avoid orphans and boot files, but luckily we can resolve
all of them, pretty much. The only catch was that
Alternative/MonadPlus also had to go into Prelude to avoid this.
As a result, we must update the hsc2hs and haddock submodules.
Signed-off-by: Austin Seipp <austin@well-typed.com>
Test Plan: Build things, they might not explode horribly.
Reviewers: hvr, simonmar
Subscribers: simonmar
Differential Revision: https://phabricator.haskell.org/D13
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
reorganized, while following the convention, to
- place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
any `{-# OPTIONS_GHC #-}`-lines.
- Moreover, if the list of language extensions fit into a single
`{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
individual language extension. In both cases, try to keep the
enumeration alphabetically ordered.
(The latter layout is preferable as it's more diff-friendly)
While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
|
|
|
|
|
|
|
|
| |
Problems were found on 32-bit platforms, I'll commit again when I have a fix.
This reverts the following commits:
54b31f744848da872c7c6366dea840748e01b5cf
b0534f78a73f972e279eed4447a5687bd6a8308e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This tracks the amount of memory allocation by each thread in a
counter stored in the TSO. Optionally, when the counter drops below
zero (it counts down), the thread can be sent an asynchronous
exception: AllocationLimitExceeded. When this happens, given a small
additional limit so that it can handle the exception. See
documentation in GHC.Conc for more details.
Allocation limits are similar to timeouts, but
- timeouts use real time, not CPU time. Allocation limits do not
count anything while the thread is blocked or in foreign code.
- timeouts don't re-trigger if the thread catches the exception,
allocation limits do.
- timeouts can catch non-allocating loops, if you use
-fno-omit-yields. This doesn't work for allocation limits.
I couldn't measure any impact on benchmarks with these changes, even
for nofib/smp.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These array types are smaller than Array# and MutableArray# and are
faster when the array size is small, as they don't have the overhead
of a card table. Having no card table reduces the closure size with 2
words in the typical small array case and leads to less work when
updating or GC:ing the array.
Reduces both the runtime and memory allocation by 8.8% on my insert
benchmark for the HashMap type in the unordered-containers package,
which makes use of lots of small arrays. With tuned GC settings
(i.e. `+RTS -A6M`) the runtime reduction is 15%.
Fixes #8923.
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
|
|
|
|
|
|
| |
We weren't properly tracking the number of stack arguments in the
continuation of a foreign call. It happened to work when the
continuation was not a join point, but when it was a join point we
were using the wrong amount of stack fixup.
|
|
|
|
|
|
|
| |
There was potentially a bug here, but no actual failures were
identified in the wild.
See Note [Register Parameter Passing]
|
| |
|
|
|
|
|
|
|
| |
All Cmm procedures now include the set of global registers that are live on
procedure entry, i.e., the global registers used to pass arguments to the
procedure. Only global registers that are use to pass arguments are included in
this list.
|
|
|
|
|
| |
Mostly d -> g (matching DynFlag -> GeneralFlag).
Also renamed if* to when*, matching the Haskell if/when names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main change here is that the Cmm parser now allows high-level cmm
code with argument-passing and function calls. For example:
foo ( gcptr a, bits32 b )
{
if (b > 0) {
// we can make tail calls passing arguments:
jump stg_ap_0_fast(a);
}
return (x,y);
}
More details on the new cmm syntax are in Note [Syntax of .cmm files]
in CmmParse.y.
The old syntax is still more-or-less supported for those occasional
code fragments that really need to explicitly manipulate the stack.
However there are a couple of differences: it is now obligatory to
give a list of live GlobalRegs on every jump, e.g.
jump %ENTRY_CODE(Sp(0)) [R1];
Again, more details in Note [Syntax of .cmm files].
I have rewritten most of the .cmm files in the RTS into the new
syntax, except for AutoApply.cmm which is generated by the genapply
program: this file could be generated in the new syntax instead and
would probably be better off for it, but I ran out of enthusiasm.
Some other changes in this batch:
- The PrimOp calling convention is gone, primops now use the ordinary
NativeNodeCall convention. This means that primops and "foreign
import prim" code must be written in high-level cmm, but they can
now take more than 10 arguments.
- CmmSink now does constant-folding (should fix #7219)
- .cmm files now go through the cmmPipeline, and as a result we
generate better code in many cases. All the object files generated
for the RTS .cmm files are now smaller. Performance should be
better too, but I haven't measured it yet.
- RET_DYN frames are removed from the RTS, lots of code goes away
- we now have some more canned GC points to cover unboxed-tuples with
2-4 pointers, which will reduce code size a little.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
I've switched to passing DynFlags rather than Platform, as (a) it's
simpler to not have to extract targetPlatform in so many places, and
(b) it may be useful to have DynFlags around in future.
|
| |
|
|
|
|
|
|
|
|
| |
This means that we now generate the same code whatever platform we are
on, which should help avoid changes on one platform breaking the build
on another.
It's also another step towards full cross-compilation.
|
|
|
|
|
|
| |
To explicitly choose whether you want an unregisterised build you now
need to use the "--enable-unregisterised"/"--disable-unregisterised"
configure flags.
|
| |
|
|
|
|
|
|
|
| |
Instead of relying on common-block-elimination to share return
continuations in the common case (case-alternative heap checks) we do
it explicitly. This isn't hard to do, is more robust, and saves some
compilation time. Full commentary in Note [sharing continuations].
|
|
|
|
| |
All the flags that 'ways' imply are now dynamic
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* origin/master: (756 commits)
don't crash if argv[0] == NULL (#7037)
-package P was loading all versions of P in GHCi (#7030)
Add a Note, copying text from #2437
improve the --help docs a bit (#7008)
Copy Data.HashTable's hashString into our Util module
Build fix
Build fixes
Parse error: suggest brackets and indentation.
Don't build the ghc DLL on Windows; works around trac #5987
On Windows, detect if DLLs have too many symbols; trac #5987
Add some more Integer rules; fixes #6111
Fix PA dfun construction with silent superclass args
Add silent superclass parameters to the vectoriser
Add silent superclass parameters (again)
Mention Generic1 in the user's guide
Make the GHC API a little more powerful.
tweak llvm version warning message
New version of the patch for #5461.
Fix Word64ToInteger conversion rule.
Implemented feature request on reconfigurable pretty-printing in GHCi (#5461)
...
Conflicts:
compiler/basicTypes/UniqSupply.lhs
compiler/cmm/CmmBuildInfoTables.hs
compiler/cmm/CmmLint.hs
compiler/cmm/CmmOpt.hs
compiler/cmm/CmmPipeline.hs
compiler/cmm/CmmStackLayout.hs
compiler/cmm/MkGraph.hs
compiler/cmm/OldPprCmm.hs
compiler/codeGen/CodeGen.lhs
compiler/codeGen/StgCmm.hs
compiler/codeGen/StgCmmBind.hs
compiler/codeGen/StgCmmLayout.hs
compiler/codeGen/StgCmmUtils.hs
compiler/main/CodeOutput.lhs
compiler/main/HscMain.hs
compiler/nativeGen/AsmCodeGen.lhs
compiler/simplStg/SimplStg.lhs
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This is done by a 'unarisation' pre-pass at the STG level which
translates away all (live) binders binding something of unboxed
tuple type.
This has the following knock-on effects:
* The subkind hierarchy is vastly simplified (no UbxTupleKind or ArgKind)
* Various relaxed type checks in typechecker, 'foreign import prim' etc
* All case binders may be live at the Core level
|
| |
| |
| |
| |
| |
| | |
This allows us to import values (i.e. non-functions) with the CAPI.
This means we can access values even if (on some or all platforms)
they are simple #defines.
|
| |
| |
| |
| |
| |
| |
| |
| | |
We also generate much better code for safe foreign calls (and maybe
also unsafe foreign calls) than previously. See the two new Notes:
Note [lower safe foreign calls]
Note [safe foreign call convention]
|
|\ \ |
|
| |\ \
| | |/
| | |
| | |
| | |
| | |
| | |
| | | |
Conflicts:
compiler/cmm/CmmLint.hs
compiler/cmm/OldCmm.hs
compiler/codeGen/CgMonad.lhs
compiler/main/CodeOutput.lhs
|
| | |
| | |
| | |
| | |
| | |
| | | |
pseudo-register
Needed by #5357
|
|/ /
| |
| |
| |
| |
| |
| |
| | |
We were using the SRT information generated by the computeSRTs pass to
decide whether to add a static link field to a constructor or not, and
this broke when I disabled computeSRTs for the new code generator. So
I've hacked it for now to only rely on the SRT information generated
by CoreToStg.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Also:
- improvements to code generation: push slow-call continuations
on the stack instead of generating explicit continuations
- remove unused CmmInfo wrapper type (replace with CmmInfoTable)
- squash Area and AreaId together, remove now-unused RegSlot
- comment out old unused stack-allocation code that no longer
compiles after removal of RegSlot
|
|/ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This means that both time and heap profiling work for parallel
programs. Main internal changes:
- CCCS is no longer a global variable; it is now another
pseudo-register in the StgRegTable struct. Thus every
Capability has its own CCCS.
- There is a new built-in CCS called "IDLE", which records ticks for
Capabilities in the idle state. If you profile a single-threaded
program with +RTS -N2, you'll see about 50% of time in "IDLE".
- There is appropriate locking in rts/Profiling.c to protect the
shared cost-centre-stack data structures.
This patch does enough to get it working, I have cut one big corner:
the cost-centre-stack data structure is still shared amongst all
Capabilities, which means that multiple Capabilities will race when
updating the "allocations" and "entries" fields of a CCS. Not only
does this give unpredictable results, but it runs very slowly due to
cache line bouncing.
It is strongly recommended that you use -fno-prof-count-entries to
disable the "entries" count when profiling parallel programs. (I shall
add a note to this effect to the docs).
|
| |
|
|
|
|
|
| |
We only use it for "compiler" sources, i.e. not for libraries.
Many modules have a -fno-warn-tabs kludge for now.
|
| |
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes the new code generator to make use of the Hoopl package
for dataflow analysis. Hoopl is a new boot package, and is maintained
in a separate upstream git repository (as usual, GHC has its own
lagging darcs mirror in http://darcs.haskell.org/packages/hoopl).
During this merge I squashed recent history into one patch. I tried
to rebase, but the history had some internal conflicts of its own
which made rebase extremely confusing, so I gave up. The history I
squashed was:
- Update new codegen to work with latest Hoopl
- Add some notes on new code gen to cmm-notes
- Enable Hoopl lag package.
- Add SPJ note to cmm-notes
- Improve GC calls on new code generator.
Work in this branch was done by:
- Milan Straka <fox@ucw.cz>
- John Dias <dias@cs.tufts.edu>
- David Terei <davidterei@gmail.com>
Edward Z. Yang <ezyang@mit.edu> merged in further changes from GHC HEAD
and fixed a few bugs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch makes two changes to the way stacks are managed:
1. The stack is now stored in a separate object from the TSO.
This means that it is easier to replace the stack object for a thread
when the stack overflows or underflows; we don't have to leave behind
the old TSO as an indirection any more. Consequently, we can remove
ThreadRelocated and deRefTSO(), which were a pain.
This is obviously the right thing, but the last time I tried to do it
it made performance worse. This time I seem to have cracked it.
2. Stacks are now represented as a chain of chunks, rather than
a single monolithic object.
The big advantage here is that individual chunks are marked clean or
dirty according to whether they contain pointers to the young
generation, and the GC can avoid traversing clean stack chunks during
a young-generation collection. This means that programs with deep
stacks will see a big saving in GC overhead when using the default GC
settings.
A secondary advantage is that there is much less copying involved as
the stack grows. Programs that quickly grow a deep stack will see big
improvements.
In some ways the implementation is simpler, as nothing special needs
to be done to reclaim stack as the stack shrinks (the GC just recovers
the dead stack chunks). On the other hand, we have to manage stack
underflow between chunks, so there's a new stack frame
(UNDERFLOW_FRAME), and we now have separate TSO and STACK objects.
The total amount of code is probably about the same as before.
There are new RTS flags:
-ki<size> Sets the initial thread stack size (default 1k) Egs: -ki4k -ki2m
-kc<size> Sets the stack chunk size (default 32k)
-kb<size> Sets the stack chunk buffer size (default 1k)
-ki was previously called just -k, and the old name is still accepted
for backwards compatibility. These new options are documented.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is patch that adds support for interruptible FFI calls in the form
of a new foreign import keyword 'interruptible', which can be used
instead of 'safe' or 'unsafe'. Interruptible FFI calls act like safe
FFI calls, except that the worker thread they run on may be interrupted.
Internally, it replaces BlockedOnCCall_NoUnblockEx with
BlockedOnCCall_Interruptible, and changes the behavior of the RTS
to not modify the TSO_ flags on the event of an FFI call from
a thread that was interruptible. It also modifies the bytecode
format for foreign call, adding an extra Word16 to indicate
interruptibility.
The semantics of interruption vary from platform to platform, but the
intent is that any blocking system calls are aborted with an error code.
This is most useful for making function calls to system library
functions that support interrupting. There is no support for pre-Vista
Windows.
There is a partner testsuite patch which adds several tests for this
functionality.
|
| |
|
| |
|
|
|
|
|
|
|
| |
When we used derived pointers into the middle of an object,
we need to keep the pointer to the start of the object live.
We use a "fat machine instruction" with the primitive MO_Touch
to propagate this information through the back end.
|
|
|
|
| |
It still lives in darcs, if anyone wants to revive it sometime.
|
|
|
|
|
| |
- yet another wrong calling convention; this one was a special case for returning one
value.
|
|
|
|
|
| |
- The function argument was stripped from the argument list but not from the type.
Now they're both stripped.
|