| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
| |
This is done by a 'unarisation' pre-pass at the STG level which
translates away all (live) binders binding something of unboxed
tuple type.
This has the following knock-on effects:
* The subkind hierarchy is vastly simplified (no UbxTupleKind or ArgKind)
* Various relaxed type checks in typechecker, 'foreign import prim' etc
* All case binders may be live at the Core level
|
|
|
|
|
|
| |
This allows us to import values (i.e. non-functions) with the CAPI.
This means we can access values even if (on some or all platforms)
they are simple #defines.
|
|
|
|
|
|
| |
pseudo-register
Needed by #5357
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This means that both time and heap profiling work for parallel
programs. Main internal changes:
- CCCS is no longer a global variable; it is now another
pseudo-register in the StgRegTable struct. Thus every
Capability has its own CCCS.
- There is a new built-in CCS called "IDLE", which records ticks for
Capabilities in the idle state. If you profile a single-threaded
program with +RTS -N2, you'll see about 50% of time in "IDLE".
- There is appropriate locking in rts/Profiling.c to protect the
shared cost-centre-stack data structures.
This patch does enough to get it working, I have cut one big corner:
the cost-centre-stack data structure is still shared amongst all
Capabilities, which means that multiple Capabilities will race when
updating the "allocations" and "entries" fields of a CCS. Not only
does this give unpredictable results, but it runs very slowly due to
cache line bouncing.
It is strongly recommended that you use -fno-prof-count-entries to
disable the "entries" count when profiling parallel programs. (I shall
add a note to this effect to the docs).
|
| |
|
|
|
|
|
| |
We only use it for "compiler" sources, i.e. not for libraries.
Many modules have a -fno-warn-tabs kludge for now.
|
| |
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes the new code generator to make use of the Hoopl package
for dataflow analysis. Hoopl is a new boot package, and is maintained
in a separate upstream git repository (as usual, GHC has its own
lagging darcs mirror in http://darcs.haskell.org/packages/hoopl).
During this merge I squashed recent history into one patch. I tried
to rebase, but the history had some internal conflicts of its own
which made rebase extremely confusing, so I gave up. The history I
squashed was:
- Update new codegen to work with latest Hoopl
- Add some notes on new code gen to cmm-notes
- Enable Hoopl lag package.
- Add SPJ note to cmm-notes
- Improve GC calls on new code generator.
Work in this branch was done by:
- Milan Straka <fox@ucw.cz>
- John Dias <dias@cs.tufts.edu>
- David Terei <davidterei@gmail.com>
Edward Z. Yang <ezyang@mit.edu> merged in further changes from GHC HEAD
and fixed a few bugs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch makes two changes to the way stacks are managed:
1. The stack is now stored in a separate object from the TSO.
This means that it is easier to replace the stack object for a thread
when the stack overflows or underflows; we don't have to leave behind
the old TSO as an indirection any more. Consequently, we can remove
ThreadRelocated and deRefTSO(), which were a pain.
This is obviously the right thing, but the last time I tried to do it
it made performance worse. This time I seem to have cracked it.
2. Stacks are now represented as a chain of chunks, rather than
a single monolithic object.
The big advantage here is that individual chunks are marked clean or
dirty according to whether they contain pointers to the young
generation, and the GC can avoid traversing clean stack chunks during
a young-generation collection. This means that programs with deep
stacks will see a big saving in GC overhead when using the default GC
settings.
A secondary advantage is that there is much less copying involved as
the stack grows. Programs that quickly grow a deep stack will see big
improvements.
In some ways the implementation is simpler, as nothing special needs
to be done to reclaim stack as the stack shrinks (the GC just recovers
the dead stack chunks). On the other hand, we have to manage stack
underflow between chunks, so there's a new stack frame
(UNDERFLOW_FRAME), and we now have separate TSO and STACK objects.
The total amount of code is probably about the same as before.
There are new RTS flags:
-ki<size> Sets the initial thread stack size (default 1k) Egs: -ki4k -ki2m
-kc<size> Sets the stack chunk size (default 32k)
-kb<size> Sets the stack chunk buffer size (default 1k)
-ki was previously called just -k, and the old name is still accepted
for backwards compatibility. These new options are documented.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is patch that adds support for interruptible FFI calls in the form
of a new foreign import keyword 'interruptible', which can be used
instead of 'safe' or 'unsafe'. Interruptible FFI calls act like safe
FFI calls, except that the worker thread they run on may be interrupted.
Internally, it replaces BlockedOnCCall_NoUnblockEx with
BlockedOnCCall_Interruptible, and changes the behavior of the RTS
to not modify the TSO_ flags on the event of an FFI call from
a thread that was interruptible. It also modifies the bytecode
format for foreign call, adding an extra Word16 to indicate
interruptibility.
The semantics of interruption vary from platform to platform, but the
intent is that any blocking system calls are aborted with an error code.
This is most useful for making function calls to system library
functions that support interrupting. There is no support for pre-Vista
Windows.
There is a partner testsuite patch which adds several tests for this
functionality.
|
| |
|
| |
|
|
|
|
|
|
|
| |
When we used derived pointers into the middle of an object,
we need to keep the pointer to the start of the object live.
We use a "fat machine instruction" with the primitive MO_Touch
to propagate this information through the back end.
|
|
|
|
| |
It still lives in darcs, if anyone wants to revive it sometime.
|
|
|
|
|
| |
- yet another wrong calling convention; this one was a special case for returning one
value.
|
|
|
|
|
| |
- The function argument was stripped from the argument list but not from the type.
Now they're both stripped.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We used to generated things like:
extern StgWordArray (newCAF) __attribute__((aligned (8)));
((void (*)(void *))(W_)&newCAF)((void *)R1.w);
(which is to say, pretend that newCAF is some data, then cast it to a
function and call it).
This goes wrong on at least IA64, where:
A function pointer on the ia64 does not point to the first byte of
code. Intsead, it points to a structure that describes the function.
The first quadword in the structure is the address of the first byte
of code
so we end up dereferencing function pointers one time too many, and
segfaulting.
|
| |
|
|
|
|
|
| |
The interesting examples talk about our story with heap checks in
case alternatives and our story with the case scrutinee as a Boolean.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
o Fixed bug that emitted the copy-in code for closure entry
in the wrong place -- at the initialization of the closure.
o Refactored some of the closure entry code.
o Added code to check that no LocalRegs are live-in to a procedure
-- trip up some buggy programs earlier
o Fixed environment bindings for thunks
-- we weren't (re)binding the free variables in a thunk
o Fixed a bug in proc-point splitting that dropped some updates
to the entry block in a procedure.
o Fixed improper calls to code that generates CmmLit's for strings
o New invariant on cg_loc in CgIdInfo: the expression is always tagged
o Code to load free vars on entry to a thunk was (wrongly) placed before
the heap check.
o Some of the StgCmm code was redundantly passing around Id's
along with CgIdInfo's; no more.
o Initialize the LocalReg's that point to a closure before allocating and
initializing the closure itself -- otherwise, we have problems with
recursive closure bindings
o BlockEnv and BlockSet types are now abstract.
o Update frames:
- push arguments in Old call area
- keep track of the return sp in the FCode monad
- keep the return sp in every call, tail call, and return
(because it might be different at different call sites,
e.g. tail calls to the gc after a heap check are performed
before pushing the update frame)
- set the sp appropriately on returns and tail calls
o Reduce call, tail call, and return to a single LastCall node
o Added slow entry code, using different calling conventions on entry and tail call
o More fixes to the calling convention code.
The tricky stuff is all about the closure environment: it must be passed in R1,
but in non-closures, there is no such argument, so we can't treat all arguments
the same way: the closure environment is special. Maybe the right step forward
would be to define a different calling convention for closure arguments.
o Let-no-escapes need to be emitted out-of-line -- otherwise, we drop code.
o Respect RTS requirement of word alignment for pointers
My stack allocation can pack sub-word values into a single word on the stack,
but it wasn't requiring word-alignment for pointers. It does now,
by word-aligning both pointer registers and call areas.
o CmmLint was over-aggresively ruling out non-word-aligned memory references,
which may be kosher now that we can spill small values into a single word.
o Wrong label order on a conditional branch when compiling switches.
o void args weren't dropped in many cases.
To help prevent this kind of mistake, I defined a NonVoid wrapper,
which I'm applying only to Id's for now, although there are probably
other good candidates.
o A little code refactoring: separate modules for procpoint analysis splitting,
stack layout, and building infotables.
o Stack limit check: insert along with the heap limit check, using a symbolic
constant (a special CmmLit), then replace it when the stack layout is known.
o Removed last node: MidAddToContext
o Adding block id as a literal: means that the lowering of the calling conventions
no longer has to produce labels early, which was inhibiting common-block elimination.
Will also make it easier for the non-procpoint-splitting path.
o Info tables: don't try to describe the update frame!
o Over aggressive use of NonVoid!!!!
Don't drop the non-void args before setting the type of the closure!!!
o Sanity checking:
Added a pass to stub dead dead slots on the stack
(only ~10 lines with the dataflow framework)
o More sanity checking:
Check that incoming pointer arguments are non-stubbed.
Note: these checks are still subject to dead-code removal, but they should
still be quite helpful.
o Better sanity checking: why stop at function arguments?
Instead, in mkAssign, check that _any_ assignment to a pointer type is non-null
-- the sooner the crash, the easier it is to debug.
Still need to add the debugging flag to turn these checks on explicitly.
o Fixed yet another calling convention bug.
This time, the calls to the GC were wrong. I've added a new convention
for GC calls and invoked it where appropriate.
We should really straighten out the calling convention stuff:
some of the code (and documentation) is spread across the compiler,
and there's some magical use of the node register that should really
be handled (not avoided) by calling conventions.
o Switch bug: the arms in mkCmmLitSwitch weren't returning to a single join point.
o Environment shadowing problem in Stg->Cmm:
When a closure f is bound at the top-level, we should not bind f to the
node register on entry to the closure.
Why? Because if the body of f contains a let-bound closure g that refers
to f, we want to make sure that it refers to the static closure for f.
Normally, this would all be fine, because when we compile a closure,
we rebind free variables in the environment. But f doesn't look like
a free variable because it's a static value. So, the binding for f
remains in the environment when we compile g, inconveniently referring
to the wrong thing.
Now, I bind the variable in the local environment only if the closure is not
bound at the top level. It's still okay to make assumptions about the
node holding the closure environment; we just won't find the binding
in the environment, so code that names the closure will now directly
get the label of the static closure, not the node register holding a
pointer to the static closure.
o Don't generate bogus Cmm code containing SRTs during the STG -> Cmm pass!
The tables made reference to some labels that don't exist when we compute and
generate the tables in the back end.
o Safe foreign calls need some special treatment (at least until we have the integrated
codegen). In particular:
o they need info tables
o they are not procpoints -- the successor had better be in the same procedure
o we cannot (yet) implement the calling conventions early, which means we have
to carry the calling-conv info all the way to the end
o We weren't following the old convention when registering a module.
Now, we use update frames to push any new modules that have to be registered
and enter the youngest one on the stack.
We also use the update frame machinery to specify that the return should pop
the return address off the stack.
o At each safe foreign call, an infotable must be at the bottom of the stack,
and the TSO->sp must point to it.
o More problems with void args in a direct call to a function:
We were checking the args (minus voids) to check whether the call was saturated,
which caused problems when the function really wasn't saturated because it
took an extra void argument.
o Forgot to distinguish integer != from floating != during Stg->Cmm
o Updating slotEnv and areaMap to include safe foreign calls
The dataflow analyses that produce the slotEnv and areaMap give
results for each basic block, but we also need the results for
a safe foreign call, which is a middle node.
After running the dataflow analysis, we have another pass that
updates the results to includ any safe foreign calls.
o Added a static flag for the debugging technique that inserts
instructions to stub dead slots on the stack and crashes when
a stubbed value is loaded into a pointer-typed LocalReg.
o C back end expects to see return continuations before their call sites.
Sorted the flowgraphs appropriately after splitting.
o PrimOp calling conventions are special -- unlimited registers, no stack
Yet another calling convention...
o More void value problems: if the RHS of a case arm is a void-typed variable,
don't try to return it.
o When calling some primOp, they may allocate memory; if so, we need to
do a heap check when we return from the call.
|
|
This merge does not turn on the new codegen (which only compiles
a select few programs at this point),
but it does introduce some changes to the old code generator.
The high bits:
1. The Rep Swamp patch is finally here.
The highlight is that the representation of types at the
machine level has changed.
Consequently, this patch contains updates across several back ends.
2. The new Stg -> Cmm path is here, although it appears to have a
fair number of bugs lurking.
3. Many improvements along the CmmCPSZ path, including:
o stack layout
o some code for infotables, half of which is right and half wrong
o proc-point splitting
|