|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit implements the proposal in
https://github.com/ghc-proposals/ghc-proposals/pull/29 and
https://github.com/ghc-proposals/ghc-proposals/pull/35.
Here are some of the pieces of that proposal:
* Some of RuntimeRep's constructors have been shortened.
* TupleRep and SumRep are now parameterized over a list of RuntimeReps.
* This
means that two types with the same kind surely have the same
representation.
Previously, all unboxed tuples had the same kind, and thus the fact
above was
false.
* RepType.typePrimRep and friends now return a *list* of PrimReps. These
functions can now work successfully on unboxed tuples. This change is
necessary because we allow abstraction over unboxed tuple types and so
cannot
always handle unboxed tuples specially as we did before.
* We sometimes have to create an Id from a PrimRep. I thus split PtrRep
* into
LiftedRep and UnliftedRep, so that the created Ids have the right
strictness.
* The RepType.RepType type was removed, as it didn't seem to help with
* much.
* The RepType.repType function is also removed, in favor of typePrimRep.
* I have waffled a good deal on whether or not to keep VoidRep in
TyCon.PrimRep. In the end, I decided to keep it there. PrimRep is *not*
represented in RuntimeRep, and typePrimRep will never return a list
including
VoidRep. But it's handy to have in, e.g., ByteCodeGen and friends. I can
imagine another design choice where we have a PrimRepV type that is
PrimRep
with an extra constructor. That seemed to be a heavier design, though,
and I'm
not sure what the benefit would be.
* The last, unused vestiges of # (unliftedTypeKind) have been removed.
* There were several pretty-printing bugs that this change exposed;
* these are fixed.
* We previously checked for levity polymorphism in the types of binders.
* But we
also must exclude levity polymorphism in function arguments. This is
hard to check
for, requiring a good deal of care in the desugarer. See Note [Levity
polymorphism
checking] in DsMonad.
* In order to efficiently check for levity polymorphism in functions, it
* was necessary
to add a new bit of IdInfo. See Note [Levity info] in IdInfo.
* It is now safe for unlifted types to be unsaturated in Core. Core Lint
* is updated
accordingly.
* We can only know strictness after zonking, so several checks around
* strictness
in the type-checker (checkStrictBinds, the check for unlifted variables
under a ~
pattern) have been moved to the desugarer.
* Along the way, I improved the treatment of unlifted vs. banged
* bindings. See
Note [Strict binds checks] in DsBinds and #13075.
* Now that we print type-checked source, we must be careful to print
* ConLikes correctly.
This is facilitated by a new HsConLikeOut constructor to HsExpr.
Particularly troublesome
are unlifted pattern synonyms that get an extra void# argument.
* Includes a submodule update for haddock, getting rid of #.
* New testcases:
typecheck/should_fail/StrictBinds
typecheck/should_fail/T12973
typecheck/should_run/StrictPats
typecheck/should_run/T12809
typecheck/should_fail/T13105
patsyn/should_fail/UnliftedPSBind
typecheck/should_fail/LevPolyBounded
typecheck/should_compile/T12987
typecheck/should_compile/T11736
* Fixed tickets:
#12809
#12973
#11736
#13075
#12987
* This also adds a test case for #13105. This test case is
* "compile_fail" and
succeeds, because I want the testsuite to monitor the error message.
When #13105 is fixed, the test case will compile cleanly.
|
|
* the new StgCmmArgRep module breaks a dependency cycle; I also
untabified it, but made no real changes
* updated the documentation in the wiki and change the user guide to
point there
* moved the allocation enters for ticky and CCS to after the heap check
* I left LDV where it was, which was before the heap check at least
once, since I have no idea what it is
* standardized all (active?) ticky alloc totals to bytes
* in order to avoid double counting StgCmmLayout.adjustHpBackwards
no longer bumps ALLOC_HEAP_ctr
* I resurrected the SLOW_CALL counters
* the new module StgCmmArgRep breaks cyclic dependency between
Layout and Ticky (which the SLOW_CALL counters cause)
* renamed them SLOW_CALL_fast_<pattern> and VERY_SLOW_CALL
* added ALLOC_RTS_ctr and _tot ticky counters
* eg allocation by Storage.c:allocate or a BUILD_PAP in stg_ap_*_info
* resurrected ticky counters for ALLOC_THK, ALLOC_PAP, and
ALLOC_PRIM
* added -ticky and -DTICKY_TICKY in ways.mk for debug ways
* added a ticky counter for total LNE entries
* new flags for ticky: -ticky-allocd -ticky-dyn-thunk -ticky-LNE
* all off by default
* -ticky-allocd: tracks allocation *of* closure in addition to
allocation *by* that closure
* -ticky-dyn-thunk tracks dynamic thunks as if they were functions
* -ticky-LNE tracks LNEs as if they were functions
* updated the ticky report format, including making the argument
categories (more?) accurate again
* the printed name for things in the report include the unique of
their ticky parent as well as if they are not top-level
|