| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes the OldCmm data type and the CmmCvt pass that converts
new Cmm to OldCmm. The backends (NCGs, LLVM and C) have all been
converted to consume new Cmm.
The main difference between the two data types is that conditional
branches in new Cmm have both true/false successors, whereas in OldCmm
the false case was a fallthrough. To generate slightly better code we
occasionally need to invert a conditional to ensure that the
branch-not-taken becomes a fallthrough; this was previously done in
CmmCvt, and it is now done in CmmContFlowOpt.
We could go further and use the Hoopl Block representation for native
code, which would mean that we could use Hoopl's postorderDfs and
analyses for native code, but for now I've left it as is, using the
old ListGraph representation for native code.
|
| |
|
|
|
|
|
| |
All Cmm procedures now include the set of global registers that are live on
procedure entry, i.e., the global registers used to pass arguments to the
procedure. Only global registers that are use to pass arguments are included in
this list.
|
| |
|
|
|
|
| |
We would like to calculate register liveness for global registers as well as
local registers, so this patch generalizes the existing infrastructure to set
the stage.
|
| |
|
|
| |
Jumps now always have live register information attached, so drop Maybes.
|
| |
|
|
|
| |
Except for CgUtils.fixStgRegisters that is used in the NCG and LLVM
backends, and should probably be moved somewhere else.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main change here is that the Cmm parser now allows high-level cmm
code with argument-passing and function calls. For example:
foo ( gcptr a, bits32 b )
{
if (b > 0) {
// we can make tail calls passing arguments:
jump stg_ap_0_fast(a);
}
return (x,y);
}
More details on the new cmm syntax are in Note [Syntax of .cmm files]
in CmmParse.y.
The old syntax is still more-or-less supported for those occasional
code fragments that really need to explicitly manipulate the stack.
However there are a couple of differences: it is now obligatory to
give a list of live GlobalRegs on every jump, e.g.
jump %ENTRY_CODE(Sp(0)) [R1];
Again, more details in Note [Syntax of .cmm files].
I have rewritten most of the .cmm files in the RTS into the new
syntax, except for AutoApply.cmm which is generated by the genapply
program: this file could be generated in the new syntax instead and
would probably be better off for it, but I ran out of enthusiasm.
Some other changes in this batch:
- The PrimOp calling convention is gone, primops now use the ordinary
NativeNodeCall convention. This means that primops and "foreign
import prim" code must be written in high-level cmm, but they can
now take more than 10 arguments.
- CmmSink now does constant-folding (should fix #7219)
- .cmm files now go through the cmmPipeline, and as a result we
generate better code in many cases. All the object files generated
for the RTS .cmm files are now smaller. Performance should be
better too, but I haven't measured it yet.
- RET_DYN frames are removed from the RTS, lots of code goes away
- we now have some more canned GC points to cover unboxed-tuples with
2-4 pointers, which will reduce code size a little.
|
| |
|
|
|
|
|
|
|
| |
Proc-point splitting is only required by backends that do not support
having proc-points within a code block (that is, everything except the
native backend, i.e. LLVM and C).
Not doing proc-point splitting saves some compilation time, and might
produce slightly better code in some cases.
|
| | |
|
| |\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* origin/master: (756 commits)
don't crash if argv[0] == NULL (#7037)
-package P was loading all versions of P in GHCi (#7030)
Add a Note, copying text from #2437
improve the --help docs a bit (#7008)
Copy Data.HashTable's hashString into our Util module
Build fix
Build fixes
Parse error: suggest brackets and indentation.
Don't build the ghc DLL on Windows; works around trac #5987
On Windows, detect if DLLs have too many symbols; trac #5987
Add some more Integer rules; fixes #6111
Fix PA dfun construction with silent superclass args
Add silent superclass parameters to the vectoriser
Add silent superclass parameters (again)
Mention Generic1 in the user's guide
Make the GHC API a little more powerful.
tweak llvm version warning message
New version of the patch for #5461.
Fix Word64ToInteger conversion rule.
Implemented feature request on reconfigurable pretty-printing in GHCi (#5461)
...
Conflicts:
compiler/basicTypes/UniqSupply.lhs
compiler/cmm/CmmBuildInfoTables.hs
compiler/cmm/CmmLint.hs
compiler/cmm/CmmOpt.hs
compiler/cmm/CmmPipeline.hs
compiler/cmm/CmmStackLayout.hs
compiler/cmm/MkGraph.hs
compiler/cmm/OldPprCmm.hs
compiler/codeGen/CodeGen.lhs
compiler/codeGen/StgCmm.hs
compiler/codeGen/StgCmmBind.hs
compiler/codeGen/StgCmmLayout.hs
compiler/codeGen/StgCmmUtils.hs
compiler/main/CodeOutput.lhs
compiler/main/HscMain.hs
compiler/nativeGen/AsmCodeGen.lhs
compiler/simplStg/SimplStg.lhs
|
| | | |
|
| | |
| |
| |
| | |
No special-casing in any NCGs yet
|
| | | |
|
| |\ \
| |/
| |
| |
| |
| |
| |
| | |
Conflicts:
compiler/cmm/CmmLint.hs
compiler/cmm/OldCmm.hs
compiler/codeGen/CgMonad.lhs
compiler/main/CodeOutput.lhs
|
| | |
| |
| |
| |
| |
| |
| |
| |
| | |
We now carry around with CmmJump statements a list of
the STG registers that are live at that jump site.
This is used by the LLVM backend so it can avoid
unnesecarily passing around dead registers, improving
perfromance. This gives us the framework to finally
fix trac #4308.
|
| | | |
|
| | | |
|
| | | |
|
| | | |
|
| | | |
|
| |/
|
|
|
|
|
|
|
|
|
|
|
| |
Also:
- improvements to code generation: push slow-call continuations
on the stack instead of generating explicit continuations
- remove unused CmmInfo wrapper type (replace with CmmInfoTable)
- squash Area and AreaId together, remove now-unused RegSlot
- comment out old unused stack-allocation code that no longer
compiles after removal of RegSlot
|
| |
|
|
|
| |
This field was doing nothing. I think it originally appeared in a
very old incarnation of the new code generator.
|
| |
|
|
|
| |
We only use it for "compiler" sources, i.e. not for libraries.
Many modules have a -fno-warn-tabs kludge for now.
|
| |
|
|
| |
And some knock-on changes
|
| |
|
|
|
| |
CmmTop -> CmmDecl
CmmPgm -> CmmGroup
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
I introduced this to support explicitly recording the info table label
in RawCmm for another patch I am working on, but it turned out to lead
to significant simplification in those parts of the compiler that
consume RawCmm.
Now, instead of lots of tests for null [CmmStatic] we have a simple
test of a Maybe, and have reduced the number of guys that need to know
how to convert entry->info labels by a TON. There are only 3 callers
of that function now!
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I observed that the [CmmStatics] within CmmData uses the list in a very stylised way.
The first item in the list is almost invariably a CmmDataLabel. Many parts of the
compiler pattern match on this list and fail if this is not true.
This patch makes the invariant explicit by introducing a structured type CmmStatics
that holds the label and the list of remaining [CmmStatic].
There is one wrinkle: the x86 backend sometimes wants to output an alignment directive just
before the label. However, this can be easily fixed up by parameterising the native codegen
over the type of CmmStatics (though the GenCmmTop parameterisation) and using a pair
(Alignment, CmmStatics) there instead.
As a result, I think we will be able to remove CmmAlign and CmmDataLabel from the CmmStatic
data type, thus nuking a lot of code and failing pattern matches. This change will come as part
of my next patch.
|
| |
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
| |
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
|
|
This changes the new code generator to make use of the Hoopl package
for dataflow analysis. Hoopl is a new boot package, and is maintained
in a separate upstream git repository (as usual, GHC has its own
lagging darcs mirror in http://darcs.haskell.org/packages/hoopl).
During this merge I squashed recent history into one patch. I tried
to rebase, but the history had some internal conflicts of its own
which made rebase extremely confusing, so I gave up. The history I
squashed was:
- Update new codegen to work with latest Hoopl
- Add some notes on new code gen to cmm-notes
- Enable Hoopl lag package.
- Add SPJ note to cmm-notes
- Improve GC calls on new code generator.
Work in this branch was done by:
- Milan Straka <fox@ucw.cz>
- John Dias <dias@cs.tufts.edu>
- David Terei <davidterei@gmail.com>
Edward Z. Yang <ezyang@mit.edu> merged in further changes from GHC HEAD
and fixed a few bugs.
|