| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
reorganized, while following the convention, to
- place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
any `{-# OPTIONS_GHC #-}`-lines.
- Moreover, if the list of language extensions fit into a single
`{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
individual language extension. In both cases, try to keep the
enumeration alphabetically ordered.
(The latter layout is preferable as it's more diff-friendly)
While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
|
|
|
|
|
|
|
|
|
| |
End of Cmm pipeline used to be split into two alternative flows,
depending on whether we did proc-point splitting or not. There
was a lot of code duplication between these two branches. But it
wasn't really necessary as the differences can be easily enclosed
within an if-then-else. I observed no impact of this change on
compilation performance.
|
| |
|
| |
|
| |
|
|
|
|
| |
This makes it consistent with the corresponding -cmm-sink flag
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit does two things:
* Allows duplicating of global registers and literals by inlining
them. Previously we would only inline global register or literal
if it was used only once.
* Changes method of determining conflicts between a node and an
assignment. New method has two advantages. It relies on
DefinerOfRegs and UserOfRegs typeclasses, so if a set of registers
defined or used by a node should ever change, `conflicts` function
will use the changed definition. This definition also catches
more cases than the previous one (namely CmmCall and CmmForeignCall)
which is a step towards making it possible to run sinking pass
before stack layout (currently this doesn't work).
This patch also adds a lot of comments that are result of about two-week
long investigation of how sinking pass works and why it does what it does.
|
|
|
|
|
|
|
|
| |
On some architectures it might happen that stack layout pass will
invalidate the list of calculated procpoints by dropping some of
them. We fix this by checking whether a proc-point is in a graph
at the beginning of proc-point analysis. This is a speculative
fix for #8205.
|
|
|
|
|
|
|
| |
We weren't properly tracking the number of stack arguments in the
continuation of a foreign call. It happened to work when the
continuation was not a join point, but when it was a join point we
were using the wrong amount of stack fixup.
|
| |
|
|
|
|
| |
No change in functionality intended
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There's only a single compiler backend now, so the 'z' suffix means
nothing. Also, the flags were confusingly named ('cmm-foo' vs
'foo-cmm',) and counter-intuitively, '-ddump-cmm' did not do at all what
you expected since the new backend went live.
Basically, all of the -ddump-cmmz-* flags are now -ddump-cmm-*. Some were
renamed to be more consistent.
This doesn't update the manual; it already mentions '-ddump-cmm' and
that flag implies all the others anyway, which is probably what you
want.
Signed-off-by: Austin Seipp <mad.one@gmail.com>
|
| |
|
|
|
|
| |
The workaround described in note [darwin-x86-pic] applies to Darwin/PPC too.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes the OldCmm data type and the CmmCvt pass that converts
new Cmm to OldCmm. The backends (NCGs, LLVM and C) have all been
converted to consume new Cmm.
The main difference between the two data types is that conditional
branches in new Cmm have both true/false successors, whereas in OldCmm
the false case was a fallthrough. To generate slightly better code we
occasionally need to invert a conditional to ensure that the
branch-not-taken becomes a fallthrough; this was previously done in
CmmCvt, and it is now done in CmmContFlowOpt.
We could go further and use the Hoopl Block representation for native
code, which would mean that we could use Hoopl's postorderDfs and
analyses for native code, but for now I've left it as is, using the
old ListGraph representation for native code.
|
|
|
|
|
|
|
| |
All Cmm procedures now include the set of global registers that are live on
procedure entry, i.e., the global registers used to pass arguments to the
procedure. Only global registers that are use to pass arguments are included in
this list.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We were being inconsistent about how we tested whether dump flags
were enabled; in particular, sometimes we also checked the verbosity,
and sometimes we didn't.
This lead to oddities such as "ghc -v4" printing an "Asm code" section
which didn't contain any code, and "-v4" enabled some parts of
"-ddump-deriv" but not others.
Now all the tests use dopt, which also takes the verbosity into account
as appropriate.
|
|
|
|
|
| |
Mostly d -> g (matching DynFlag -> GeneralFlag).
Also renamed if* to when*, matching the Haskell if/when names
|
|
|
|
|
| |
This avoids confusion due to [DynFlag] and DynFlags being completely
different types.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main change here is that the Cmm parser now allows high-level cmm
code with argument-passing and function calls. For example:
foo ( gcptr a, bits32 b )
{
if (b > 0) {
// we can make tail calls passing arguments:
jump stg_ap_0_fast(a);
}
return (x,y);
}
More details on the new cmm syntax are in Note [Syntax of .cmm files]
in CmmParse.y.
The old syntax is still more-or-less supported for those occasional
code fragments that really need to explicitly manipulate the stack.
However there are a couple of differences: it is now obligatory to
give a list of live GlobalRegs on every jump, e.g.
jump %ENTRY_CODE(Sp(0)) [R1];
Again, more details in Note [Syntax of .cmm files].
I have rewritten most of the .cmm files in the RTS into the new
syntax, except for AutoApply.cmm which is generated by the genapply
program: this file could be generated in the new syntax instead and
would probably be better off for it, but I ran out of enthusiasm.
Some other changes in this batch:
- The PrimOp calling convention is gone, primops now use the ordinary
NativeNodeCall convention. This means that primops and "foreign
import prim" code must be written in high-level cmm, but they can
now take more than 10 arguments.
- CmmSink now does constant-folding (should fix #7219)
- .cmm files now go through the cmmPipeline, and as a result we
generate better code in many cases. All the object files generated
for the RTS .cmm files are now smaller. Performance should be
better too, but I haven't measured it yet.
- RET_DYN frames are removed from the RTS, lots of code goes away
- we now have some more canned GC points to cover unboxed-tuples with
2-4 pointers, which will reduce code size a little.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
I've switched to passing DynFlags rather than Platform, as (a) it's
simpler to not have to extract targetPlatform in so many places, and
(b) it may be useful to have DynFlags around in future.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
This means that we now generate the same code whatever platform we are
on, which should help avoid changes on one platform breaking the build
on another.
It's also another step towards full cross-compilation.
|
|
|
|
|
| |
This is a bit odd by itself, but it's a stepping stone on the way to
putting "target unregisterised" into the settings file.
|
| |
|
| |
|
|
|
|
| |
See Note [shortcut call returns]
|
|
|
|
|
|
|
| |
Instead of relying on common-block-elimination to share return
continuations in the common case (case-alternative heap checks) we do
it explicitly. This isn't hard to do, is more robust, and saves some
compilation time. Full commentary in Note [sharing continuations].
|
| |
|
|
|
|
|
|
|
|
|
| |
Proc-point splitting is only required by backends that do not support
having proc-points within a code block (that is, everything except the
native backend, i.e. LLVM and C).
Not doing proc-point splitting saves some compilation time, and might
produce slightly better code in some cases.
|
|
|
|
| |
All the flags that 'ways' imply are now dynamic
|
| |
|
| |
|
| |
|
| |
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* origin/master: (756 commits)
don't crash if argv[0] == NULL (#7037)
-package P was loading all versions of P in GHCi (#7030)
Add a Note, copying text from #2437
improve the --help docs a bit (#7008)
Copy Data.HashTable's hashString into our Util module
Build fix
Build fixes
Parse error: suggest brackets and indentation.
Don't build the ghc DLL on Windows; works around trac #5987
On Windows, detect if DLLs have too many symbols; trac #5987
Add some more Integer rules; fixes #6111
Fix PA dfun construction with silent superclass args
Add silent superclass parameters to the vectoriser
Add silent superclass parameters (again)
Mention Generic1 in the user's guide
Make the GHC API a little more powerful.
tweak llvm version warning message
New version of the patch for #5461.
Fix Word64ToInteger conversion rule.
Implemented feature request on reconfigurable pretty-printing in GHCi (#5461)
...
Conflicts:
compiler/basicTypes/UniqSupply.lhs
compiler/cmm/CmmBuildInfoTables.hs
compiler/cmm/CmmLint.hs
compiler/cmm/CmmOpt.hs
compiler/cmm/CmmPipeline.hs
compiler/cmm/CmmStackLayout.hs
compiler/cmm/MkGraph.hs
compiler/cmm/OldPprCmm.hs
compiler/codeGen/CodeGen.lhs
compiler/codeGen/StgCmm.hs
compiler/codeGen/StgCmmBind.hs
compiler/codeGen/StgCmmLayout.hs
compiler/codeGen/StgCmmUtils.hs
compiler/main/CodeOutput.lhs
compiler/main/HscMain.hs
compiler/nativeGen/AsmCodeGen.lhs
compiler/simplStg/SimplStg.lhs
|
| | |
|
| |
| |
| |
| |
| | |
We can now get the Platform from the DynFlags inside an SDoc, so we
no longer need to pass the Platform in.
|
| | |
|