| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A few refactorings made after looking at Core/STG
* Use Doc instead of SDoc in pprASCII to avoid passing the SDocContext
that is never used.
* Inline every SDoc wrappers in GHC.Utils.Outputable to expose Doc
constructs
* Add text/[] rule for empty strings (i.e., text "")
* Use a single occurrence of pprGNUSectionHeader
* Use bangs on Platform parameters and some others
Metric Decrease:
ManyAlternatives
ManyConstructors
T12707
T13035
T13379
T18698a
T18698b
T1969
T3294
T4801
T5321FD
T783
|
|
|
|
|
|
|
| |
This allows us to use the unsafe shifts in non-debug builds for performance.
For older versions of base we instead export Data.Bits
See also #19618
|
|
|
|
|
|
| |
It seems that these places were supposed to be forced anyway but the
forcing has no effect because the result was immediately placed in a
lazy box.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit introduces a new `Severity` type constructor called
`SevIgnore`, which can be used to classify diagnostic messages which are
not meant to be displayed to the user, for example suppressed warnings.
This extra constructor allows us to get rid of a bunch of redundant
checks when emitting diagnostics, typically in the form of the pattern:
```
when (optM Opt_XXX) $
addDiagnosticTc (WarningWithFlag Opt_XXX) ...
```
Fair warning! Not all checks should be omitted/skipped, as evaluating some data
structures used to produce a diagnostic might still be expensive (e.g.
zonking, etc). Therefore, a case-by-case analysis must be conducted when
deciding if a check can be removed or not.
Last but not least, we remove the unnecessary `CmdLine.WarnReason` type, which is now
redundant with `DiagnosticReason`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit further expand on the design for #18516 by getting rid of
the `defaultReasonSeverity` in favour of a function called
`diagReasonSeverity` which correctly takes the `DynFlags` as input. The
idea is to compute the `Severity` and the `DiagnosticReason` of each
message "at birth", without doing any later re-classifications, which
are potentially error prone, as the `DynFlags` might evolve during the
course of the program.
In preparation for a proper refactoring, now `pprWarning` from the
Parser.Ppr module has been renamed to `mkParserWarn`, which now takes a
`DynFlags` as input.
We also get rid of the reclassification we were performing inside `printOrThrowWarnings`.
Last but not least, this commit removes the need for reclassify inside GHC.Tc.Errors,
and also simplifies the implementation of `maybeReportError`.
Update Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Other than that:
* Fix T16167,json,json2,T7478,T10637 tests to reflect the introduction of
the `MessageClass` type
* Remove `makeIntoWarning`
* Remove `warningsToMessages`
* Refactor GHC.Tc.Errors
1. Refactors GHC.Tc.Errors so that we use `DiagnosticReason` for "choices"
(defer types errors, holes, etc);
2. We get rid of `reportWarning` and `reportError` in favour of a general
`reportDiagnostic`.
* Introduce `DiagnosticReason`, `Severity` is an enum: This big commit makes
`Severity` a simple enumeration, and introduces the concept of `DiagnosticReason`,
which classifies the /reason/ why we are emitting a particular diagnostic.
It also adds a monomorphic `DiagnosticMessage` type which is used for
generic messages.
* The `Severity` is computed (for now) from the reason, statically.
Later improvement will add a `diagReasonSeverity` function to compute
the `Severity` taking `DynFlags` into account.
* Rename `logWarnings` into `logDiagnostics`
* Add note and expand description of the `mkHoleError` function
|
|
|
|
| |
It also failed to parse with HLint (I wonder how GHC itself handles it?)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch cleans up the complexity around WW's `mk_absent_let` by
broadening the scope of `LitRubbish`. Rubbish literals now store the
`PrimRep` they represent and are ultimately lowered in Cmm.
This in turn allows absent literals of `VecRep` or `VoidRep`. The latter
allows absent literals for unlifted coercions, as requested in #18983.
I took the liberty to rewrite and clean up `Note [Absent fillers]` and
`Note [Rubbish values]` to account for the new implementation and to
make them more orthogonal in their description.
I didn't add a new regression test, as `T18982` already contains the
test in the ticket and its test output changes as expected.
Fixes #18983.
|
|
|
|
|
|
|
|
|
|
|
| |
Implement @alexbiehl suggestion of using a foldGet function to avoid the
creation of an intermediate list while reading the symbol table.
Do something similar for reading the Hie symbol table and the interface
dictionary.
Metric Decrease:
T10421
|
|
|
|
|
|
|
|
| |
Metric Increase:
T10370
parsing001
Updates haddock submodule
|
|
|
|
| |
Updates haddock submodule.
|
|
|
|
|
|
|
| |
Now that GHC 9.0.1 is released, it is time to drop support for bootstrapping
with GHC 8.8, as we only support building with the previous two major GHC
releases. As an added bonus, this allows us to remove several bits of CPP that
are either always true or no longer reachable.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the BoxedRep proposal, refactoring the `RuntimeRep`
hierarchy from:
```haskell
data RuntimeRep = LiftedPtrRep | UnliftedPtrRep | ...
```
to
```haskell
data RuntimeRep = BoxedRep Levity | ...
data Levity = Lifted | Unlifted
```
Updates binary, haddock submodules.
Closes #17526.
Metric Increase:
T12545
|
|
|
|
|
|
|
|
|
| |
When desugaring large overloaded literals we now avoid
computing the `Rational` value. Instead prefering to
store the significant and exponent as given where
reasonable and possible.
See Note [FractionalLit representation] for details.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, the only way to override GHC's default logging
behavior was to set `log_action`, `dump_action` and `trace_action`
fields in DynFlags. This patch introduces a new Logger abstraction and
stores it in HscEnv instead.
This is part of #17957 (avoid storing state in DynFlags). DynFlags are
duplicated and updated per-module (because of OPTIONS_GHC pragma), so
we shouldn't store global state in them.
This patch also fixes a race in parallel "--make" mode which updated
the `generatedDumps` IORef concurrently.
Bump haddock submodule
The increase in MultilayerModules is tracked in #19293.
Metric Increase:
MultiLayerModules
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Co-authored-by: Rinat Stryungis <rinat.stryungis@serokell.io>
Implement GHC Proposal #387
* Parse char literals 'x' at the type level
* New built-in type families CmpChar, ConsSymbol, UnconsSymbol
* New KnownChar class (cf. KnownSymbol and KnownNat)
* New SomeChar type (cf. SomeSymbol and SomeNat)
* CharTyLit support in template-haskell
Updated submodules: binary, haddock.
Metric Decrease:
T5205
haddock.base
Metric Increase:
Naperian
T13035
|
|
|
|
|
|
|
|
|
| |
Also updates the note with the case of multi-argument lambdas.
Seems slightly beneficial based on the Cabal test:
-O0: -1MB allocations (out of 50GB)
-O : -1MB allocations (out of ~200GB)
|
|
|
|
|
| |
This commit introduces a DecoratedSDoc type which replaces the old
ErrDoc, and hopefully better reflects the intent.
|
|
|
|
| |
Updates Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit boldly removes the ErrDoc and the MsgDoc from the codebase.
The former was introduced with the only purpose of classifying errors
according to their importance, but a similar result can be obtained just
by having a simple [SDoc], and placing bullets after each of them.
On top of that I have taken the perhaps controversial decision to also
banish MsgDoc, as it was merely a type alias over an SDoc and as such it wasn't
offering any extra type safety. Granted, it was perhaps making type
signatures slightly more "focused", but at the expense of cognitive
burden: if it's really just an SDoc, let's call it with its proper name.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Related to a future change in Data.List,
https://downloads.haskell.org/ghc/8.10.3/docs/html/users_guide/using-warnings.html?highlight=wcompat#ghc-flag--Wcompat-unqualified-imports
Companion pull&merge requests:
- https://github.com/judah/haskeline/pull/153
- https://github.com/haskell/containers/pull/762
- https://gitlab.haskell.org/ghc/packages/hpc/-/merge_requests/9
After these the actual change in Data.List should be easy to do.
|
|
|
|
|
|
|
|
|
| |
This commit paves the way to a richer and more structured representation
of GHC error messages, as per GHC proposal #306. More specifically
'Messages' from 'GHC.Types.Error' now gains an extra type parameter,
that we instantiate to 'ErrDoc' for now. Later, this will allow us to
replace ErrDoc with something more structure (for example messages
coming from the parser, the typechecker etc).
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This commit removes the errShortString field from the ErrMsg type,
allowing us to cleanup a lot of dynflag-dependent error functions, and
move them in a more specialised 'GHC.Driver.Errors' closer to the
driver, where they are actually used.
Metric Increase:
T4801
T9961
|
|
|
|
|
|
|
|
| |
(Progress towards #11953, #17377, #17375)
Besides being nicer to use, this also will allow for better constant
folding for the fixed-width types, on par with what `Int#` and `Word#`
have today.
|
|
|
|
|
|
| |
This was inadvertently merged.
This reverts commit 6c2eb2232b39ff4720fda0a4a009fb6afbc9dcea.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the BoxedRep proposal, refacoring the `RuntimeRep`
hierarchy from:
```haskell
data RuntimeRep = LiftedPtrRep | UnliftedPtrRep | ...
```
to
```haskell
data RuntimeRep = BoxedRep Levity | ...
data Levity = Lifted | Unlifted
```
Closes #17526.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The naive way of putting out n characters of indent would be something
like `hPutStr hdl (replicate n ' ')`. However this is quite inefficient
as we allocate an absurd number of strings consisting of simply spaces
as we don't cache them.
To improve on this we now track if we can simply write ascii spaces via
hPutBuf instead. This is the case when running with -ddump-to-file where
we force the encoding to be UTF8.
This avoids both the cost of going through encoding as well as avoiding
allocation churn from all the white space. Instead we simply use hPutBuf
on a preallocated unlifted string.
When dumping stg like this:
> nofib/spectral/simple/Main.hs -fforce-recomp -ddump-stg-final -ddump-to-file -c +RTS -s
Allocations went from 1,778 MB to 1,702MB. About a 4% reduction of
allocation! I did not measure the difference in runtime but expect it
to be similar.
Bumps the haddock submodule since the interface of GHC's Pretty
slightly changed.
-------------------------
Metric Decrease:
T12227
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Sinking requires us to track live local regs after each
cmm statement. We used to do this via "Set LocalReg".
However we can replace this with a solution based on IntSet
which is overall more efficient without losing much. The thing
we lose is width of the variables, which isn't used by the sinking
pass anyway.
I also reworked how we keep assignments to regs mentioned in
skipped assignments. I put the details into
Note [Keeping assignemnts mentioned in skipped RHSs].
The gist of it is instead of keeping track of it via the use count
which is a `IntMap Int` we now use the live regs set (IntSet) which
is quite a bit faster.
I think it also matches the semantics a lot better. The skipped
(not discarded) assignment does in fact keep the regs on it's rhs
alive so keeping track of this in the live set seems like the clearer
solution as well.
Improves allocations for T3294 by yet another 1%.
|
|
|
|
|
|
|
|
| |
Now that flattening doesn't produce flattening variables,
it's not really flattening anything: it's rewriting. This
change also means that the rewriter can no longer be confused
the core flattener (in GHC.Core.Unify), which is sometimes used
during type-checking.
|
|
|
|
|
|
|
| |
This will allow us to back out the allocations per compiler pass from
the eventlog. Note that we dump the allocation counter rather than the
difference since this will allow us to determine how much work is done
*between* `withTiming` blocks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This replaces all Word<N> = W<N># Word# and Int<N> = I<N># Int# with
Word<N> = W<N># Word<N># and Int<N> = I<N># Int<N>#, thus providing us
with properly sized primitives in the codegenerator instead of pretending
they are all full machine words.
This came up when implementing darwinpcs for arm64. The darwinpcs reqires
us to pack function argugments in excess of registers on the stack. While
most procedure call standards (pcs) assume arguments are just passed in
8 byte slots; and thus the caller does not know the exact signature to make
the call, darwinpcs requires us to adhere to the prototype, and thus have
the correct sizes. If we specify CInt in the FFI call, it should correspond
to the C int, and not just be Word sized, when it's only half the size.
This does change the expected output of T16402 but the new result is no
less correct as it eliminates the narrowing (instead of the `and` as was
previously done).
Bumps the array, bytestring, text, and binary submodules.
Co-Authored-By: Ben Gamari <ben@well-typed.com>
Metric Increase:
T13701
T14697
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As outlined in #18903, interleaving usage and strictness demands not
only means a more compact demand representation, but also allows us to
express demands that we weren't easily able to express before.
Call demands are *relative* in the sense that a call demand `Cn(cd)`
on `g` says "`g` is called `n` times. *Whenever `g` is called*, the
result is used according to `cd`". Example from #18903:
```hs
h :: Int -> Int
h m =
let g :: Int -> (Int,Int)
g 1 = (m, 0)
g n = (2 * n, 2 `div` n)
{-# NOINLINE g #-}
in case m of
1 -> 0
2 -> snd (g m)
_ -> uncurry (+) (g m)
```
Without the interleaved representation, we would just get `L` for the
strictness demand on `g`. Now we are able to express that whenever
`g` is called, its second component is used strictly in denoting `g`
by `1C1(P(1P(U),SP(U)))`. This would allow Nested CPR to unbox the
division, for example.
Fixes #18903.
While fixing regressions, I also discovered and fixed #18957.
Metric Decrease:
T13253-spj
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This refactors the GHC AST to remove `HsImplicitBndrs` and replace it with
`HsOuterTyVarBndrs`, a type which records whether the outermost quantification
in a type is explicit (i.e., with an outermost, invisible `forall`) or
implicit. As a result of this refactoring, it is now evident in the AST where
the `forall`-or-nothing rule applies: it's all the places that use
`HsOuterTyVarBndrs`. See the revamped `Note [forall-or-nothing rule]` in
`GHC.Hs.Type` (previously in `GHC.Rename.HsType`).
Moreover, the places where `ScopedTypeVariables` brings lexically scoped type
variables into scope are a subset of the places that adhere to the
`forall`-or-nothing rule, so this also makes places that interact with
`ScopedTypeVariables` easier to find. See the revamped
`Note [Lexically scoped type variables]` in `GHC.Hs.Type` (previously in
`GHC.Tc.Gen.Sig`).
`HsOuterTyVarBndrs` are used in type signatures (see `HsOuterSigTyVarBndrs`)
and type family equations (see `HsOuterFamEqnTyVarBndrs`). The main difference
between the former and the latter is that the former cares about specificity
but the latter does not.
There are a number of knock-on consequences:
* There is now a dedicated `HsSigType` type, which is the combination of
`HsOuterSigTyVarBndrs` and `HsType`. `LHsSigType` is now an alias for an
`XRec` of `HsSigType`.
* Working out the details led us to a substantial refactoring of
the handling of explicit (user-written) and implicit type-variable
bindings in `GHC.Tc.Gen.HsType`.
Instead of a confusing family of higher order functions, we now
have a local data type, `SkolemInfo`, that controls how these
binders are kind-checked.
It remains very fiddly, not fully satisfying. But it's better
than it was.
Fixes #16762. Bumps the Haddock submodule.
Co-authored-by: Simon Peyton Jones <simonpj@microsoft.com>
Co-authored-by: Richard Eisenberg <rae@richarde.dev>
Co-authored-by: Zubin Duggal <zubin@cmi.ac.in>
|
| |
|
|
|
|
|
|
|
| |
While, say, alternating "he" and "she" in sequential writing
may be nicer than always using "they", reading code/documentation
is almost never sequential. If this small change makes individuals
feel more welcome in GHC's codebase, that's a good thing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was working on making DynFlags stateless (#17957), especially by
storing loaded plugins into HscEnv instead of DynFlags. It turned out to
be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin
isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I
didn't feel like introducing yet another hs-boot file to break the loop.
Additionally I remember that while we introduced the module hierarchy
(#13009) we talked about splitting GHC.Driver.Types because it contained
various unrelated types and functions, but we never executed. I didn't
feel like making GHC.Driver.Types bigger with more unrelated Plugins
related types, so finally I bit the bullet and split GHC.Driver.Types.
As a consequence this patch moves a lot of things. I've tried to put
them into appropriate modules but nothing is set in stone.
Several other things moved to avoid loops.
* Removed Binary instances from GHC.Utils.Binary for random compiler
things
* Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they
import a lot of things that users of GHC.Utils.Binary don't want to
depend on.
* put everything related to Units/Modules under GHC.Unit:
GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.}
* Created several modules under GHC.Types: GHC.Types.Fixity, SourceText,
etc.
* Split GHC.Utils.Error (into GHC.Types.Error)
* Finally removed GHC.Driver.Types
Note that this patch doesn't put loaded plugins into HscEnv. It's left
for another patch.
Bump haddock submodule
|
|
|
|
|
|
| |
pdocPrec was only used in GHC.Cmm.DebugBlock.pprUnwindExpr, so remove
it. OutputableP becomes a one-function class which might be better for
performance.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are two signficant changes here:
* Ticket #18815 showed that we were missing some opportunities for
preInlineUnconditionally. The one-line fix is in the code for
GHC.Core.Opt.Simplify.Utils.preInlineUnconditionally, which now
switches off only for INLINE pragmas. I expanded
Note [Stable unfoldings and preInlineUnconditionally] to explain.
* When doing this I discovered a way in which preInlineUnconditionally
was occasionally /too/ eager. It's all explained in
Note [Occurrences in stable unfoldings] in GHC.Core.Opt.OccurAnal,
and the one-line change adding markAllMany to occAnalUnfolding.
I also got confused about what NoUserInline meant, so I've renamed
it to NoUserInlinePrag, and changed its pretty-printing slightly.
That led to soem error messate wibbling, and touches quite a few
files, but there is no change in functionality.
I did a nofib run. As expected, no significant changes.
Program Size Allocs
----------------------------------------
sphere -0.0% -0.4%
----------------------------------------
Min -0.0% -0.4%
Max -0.0% +0.0%
Geometric Mean -0.0% -0.0%
I'm allowing a max-residency increase for T10370, which seems
very irreproducible. (See comments on !4241.) There is always
sampling error for max-residency measurements; and in any case
the change shows up on some platforms but not others.
Metric Increase:
T10370
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Metric Decrease:
Naperian
T10421
T10421a
T10547
T12150
T12234
T12425
T13035
T18140
T18304
T5837
T6048
T13253-spj
T18282
T18223
T3064
T9961
Metric Increase
T13701
HFSKJH
|
| |
|
|
|
|
| |
A follow-up to !4020 (5830a12c46e7227c276a8a71213057595ee4fc04)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Haskell and Cmm parsers/lexers now report errors and warnings using ADTs
defined in GHC.Parser.Errors. They can be printed using functions in
GHC.Parser.Errors.Ppr.
Some of the errors provide hints with a separate ADT (e.g. to suggest to
turn on some extension). For now, however, hints are not consistent
across all messages. For example some errors contain the hints in the
main message. I didn't want to change any message with this patch. I
expect these changes to be discussed and implemented later.
Surprisingly, this patch enhances performance. On CI
(x86_64/deb9/hadrian, ghc/alloc):
parsing001 -11.5%
T13719 -2.7%
MultiLayerModules -3.5%
Naperian -3.1%
Bump haddock submodule
Metric Decrease:
MultiLayerModules
Naperian
T13719
parsing001
|
|
|
|
|
| |
There are still global variables but only 3 booleans instead of a single
DynFlags.
|
|
|
|
|
|
| |
Implements GHC Proposal #356
Updates the haddock submodule.
|