| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We used to put OtherCon unfoldings on lambda binders of workers
and sometimes also join points/specializations with with the
assumption that since the wrapper would force these arguments
once we execute the RHS they would indeed be in WHNF.
This was wrong for reasons detailed in #21472. So now we purge
evaluated unfoldings from *all* lambda binders.
This fixes #21472, but at the cost of sometimes not using as efficient a
calling convention. It can also change inlining behaviour as some
occurances will no longer look like value arguments when they did
before.
As consequence we also change how we compute CBV information for
arguments slightly. We now *always* determine the CBV convention
for arguments during tidy. Earlier in the pipeline we merely mark
functions as candidates for having their arguments treated as CBV.
As before the process is described in the relevant notes:
Note [CBV Function Ids]
Note [Attaching CBV Marks to ids]
Note [Never put `OtherCon` unfoldigns on lambda binders]
-------------------------
Metric Decrease:
T12425
T13035
T18223
T18223
T18923
MultiLayerModulesTH_OneShot
Metric Increase:
WWRec
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this change, `Backend` becomes an abstract type
(there are no more exposed value constructors).
Decisions that were formerly made by asking "is the
current back end equal to (or different from) this named value
constructor?" are now made by interrogating the back end about
its properties, which are functions exported by `GHC.Driver.Backend`.
There is a description of how to migrate code using `Backend` in the
user guide.
Clients using the GHC API can find a backdoor to access the Backend
datatype in GHC.Driver.Backend.Internal.
Bumps haddock submodule.
Fixes #20927
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We were using defaultSDocContext for pprTrace, which suppresses
lots of useful infomation. This small MR adds
GHC.Utils.Outputable.traceSDocContext
and uses it for pprTrace and pprTraceUserWarning.
traceSDocContext is a global, and hence not influenced by flags,
but that seems unavoidable. But I made the sdocPprDebug bit
controlled by unsafeHasPprDebug, since we have the latter for
exactly this purpose.
Fixes #21569
|
|
|
|
|
|
|
|
|
| |
Change mulArrow to allow for printing of correct application precedence
where necessary and update callers of mulArrow to reflect this.
As part of this, move mulArrow from GHC/Utils/Outputtable to GHC/Iface/Type.
Fixes #20315
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Here we deprecate the eventlogging RTS ways and instead enable eventlog
support in the remaining ways. This simplifies packaging and reduces GHC
compilation times (as we can eliminate two whole compilations of the RTS)
while simplifying the end-user story. The trade-off is a small increase
in binary sizes in the case that the user does not want eventlogging
support, but we think that this is a fine trade-off.
This also revealed a latent RTS bug: some files which included `Cmm.h`
also assumed that it defined various macros which were in fact defined
by `Config.h`, which `Cmm.h` did not include. Fixing this in turn
revealed that `StgMiscClosures.cmm` failed to import various spinlock
statistics counters, as evidenced by the failed unregisterised build.
Closes #18948.
|
|
|
|
|
|
| |
This can be disabled by `-fno-dump-with-ways` if not desired.
Finally we will be able to look at both profiled and non-profiled dumps
when compiling with dump flags and we compile in both ways.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements a small part of GHC Proposal #475.
The key change is in GHC.Types:
- data [] a = [] | a : [a]
+ data List a = [] | a : List a
And the rest of the patch makes sure that List is pretty-printed as []
in various contexts.
Updates the haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GHC merge request !963 improved warnings in the presence of
COMPLETE annotations. This allows the removal of the Fun pattern
from the complete set.
Doing so expectedly causes some redundant pattern match warnings,
in particular in GHC.Utils.Binary.Typeable and Data.Binary.Class
from the binary library; this commit addresses that.
Updates binary submodule
Fixes #20230
|
|
|
|
|
|
|
|
|
|
|
| |
- Remove unused functions exprToCoercion_maybe, applyTypeToArg,
typeMonoPrimRep_maybe, runtimeRepMonoPrimRep_maybe.
- Replace orValid with a simpler check
- Use splitAtList in applyTysX
- Remove calls to extra_clean in the testsuite; it does not do anything.
Metric Decrease:
T18223
|
|
|
|
| |
filter has fusion rules that filterOut lacks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Names appearing in Haddock docstrings are lexed and renamed like any other names
appearing in the AST. We currently rename names irrespective of the namespace,
so both type and constructor names corresponding to an identifier will appear in
the docstring. Haddock will select a given name as the link destination based on
its own heuristics.
This patch also restricts the limitation of `-haddock` being incompatible with
`Opt_KeepRawTokenStream`.
The export and documenation structure is now computed in GHC and serialised in
.hi files. This can be used by haddock to directly generate doc pages without
reparsing or renaming the source. At the moment the operation of haddock
is not modified, that's left to a future patch.
Updates the haddock submodule with the minimum changes needed.
|
|
|
|
| |
Converts all uses of 'TcRnUnknownMessage' to proper diagnostics.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As `Note [Demand analysis for recursive data constructors]` describes, we now
refrain from unboxing recursive data type arguments, for two reasons:
1. Relating to run/alloc perf: Similar to
`Note [CPR for recursive data constructors]`, it seldomly improves run/alloc
performance if we just unbox a finite number of layers of a potentially huge
data structure.
2. Relating to ghc/alloc perf: Inductive definitions on single-product
recursive data types like the one in T11545 will (diverge, and) have very
deep demand signatures before any other abortion mechanism in Demand
analysis is triggered. That leads to great and unnecessary churn on Demand
analysis when ultimately we will never make use of any nested strictness
information anyway.
Conclusion: Discard nested demand and boxity information on such recursive types
with the help of `Note [Detecting recursive data constructors]`.
I also implemented `GHC.Types.Unique.MemoFun.memoiseUniqueFun` in order to avoid
the overhead of repeated calls to `GHC.Core.Opt.WorkWrap.Utils.isRecDataCon`.
It's nice and simple and guards against some smaller regressions in T9233 and
T16577.
ghc/alloc performance-wise, this patch is a very clear win:
Test Metric value New value Change
---------------------------------------------------------------------------------------
LargeRecord(normal) ghc/alloc 6,141,071,720 6,099,871,216 -0.7%
MultiLayerModulesTH_OneShot(normal) ghc/alloc 2,740,973,040 2,705,146,640 -1.3%
T11545(normal) ghc/alloc 945,475,492 85,768,928 -90.9% GOOD
T13056(optasm) ghc/alloc 370,245,880 326,980,632 -11.7% GOOD
T18304(normal) ghc/alloc 90,933,944 76,998,064 -15.3% GOOD
T9872a(normal) ghc/alloc 1,800,576,840 1,792,348,760 -0.5%
T9872b(normal) ghc/alloc 2,086,492,432 2,073,991,848 -0.6%
T9872c(normal) ghc/alloc 1,750,491,240 1,737,797,832 -0.7%
TcPlugin_RewritePerf(normal) ghc/alloc 2,286,813,400 2,270,957,896 -0.7%
geo. mean -2.9%
No noteworthy change in run/alloc either.
NoFib results show slight wins, too:
--------------------------------------------------------------------------------
Program Allocs Instrs
--------------------------------------------------------------------------------
constraints -1.9% -1.4%
fasta -3.6% -2.7%
reverse-complem -0.3% -0.9%
treejoin -0.0% -0.3%
--------------------------------------------------------------------------------
Min -3.6% -2.7%
Max +0.1% +0.1%
Geometric Mean -0.1% -0.1%
Metric Decrease:
T11545
T13056
T18304
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As #20837 pointed out, `isLiftedType_maybe` returned `Just False` in
many situations where it should return `Nothing`, because it didn't
take into account type families or type variables.
In this patch, we fix this issue. We rename `isLiftedType_maybe` to
`typeLevity_maybe`, which now returns a `Levity` instead of a boolean.
We now return `Nothing` for types with kinds of the form
`TYPE (F a1 ... an)` for a type family `F`, as well as
`TYPE (BoxedRep l)` where `l` is a type variable.
This fix caused several other problems, as other parts of the compiler
were relying on `isLiftedType_maybe` returning a `Just` value, and were
now panicking after the above fix. There were two main situations in
which panics occurred:
1. Issues involving the let/app invariant. To uphold that invariant,
we need to know whether something is lifted or not. If we get an
answer of `Nothing` from `isLiftedType_maybe`, then we don't know
what to do. As this invariant isn't particularly invariant, we
can change the affected functions to not panic, e.g. by behaving
the same in the `Just False` case and in the `Nothing` case
(meaning: no observable change in behaviour compared to before).
2. Typechecking of data (/newtype) constructor patterns. Some programs
involving patterns with unknown representations were accepted, such
as T20363. Now that we are stricter, this caused further issues,
culminating in Core Lint errors. However, the behaviour was
incorrect the whole time; the incorrectness only being revealed by
this change, not triggered by it.
This patch fixes this by overhauling where the representation
polymorphism involving pattern matching are done. Instead of doing
it in `tcMatches`, we instead ensure that the `matchExpected`
functions such as `matchExpectedFunTys`, `matchActualFunTySigma`,
`matchActualFunTysRho` allow return argument pattern types which
have a fixed RuntimeRep (as defined in Note [Fixed RuntimeRep]).
This ensures that the pattern matching code only ever handles types
with a known runtime representation. One exception was that
patterns with an unknown representation type could sneak in via
`tcConPat`, which points to a missing representation-polymorphism
check, which this patch now adds.
This means that we now reject the program in #20363, at least until
we implement PHASE 2 of FixedRuntimeRep (allowing type families in
RuntimeRep positions). The aforementioned refactoring, in which
checks have been moved to `matchExpected` functions, is a first
step in implementing PHASE 2 for patterns.
Fixes #20837
|
|
|
|
|
|
| |
As the `hlint` executable is only available in the linters image.
Fixes #21146.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a number of changes to ticky-ticky profiling.
When an executable is profiled with IPE profiling it's now possible to
associate id-related ticky counters to their source location.
This works by emitting the info table address as part of the counter
which can be looked up in the IPE table.
Add a `-ticky-ap-thunk` flag. This flag prevents the use of some standard thunks
which are precompiled into the RTS. This means reduced cache locality
and increased code size. But it allows better attribution of execution
cost to specific source locations instead of simple attributing it to
the standard thunk.
ticky-ticky now uses the `arg` field to emit additional information
about counters in json format. When ticky-ticky is used in combination
with the eventlog eventlog2html can be used to generate a html table
from the eventlog similar to the old text output for ticky-ticky.
|
|
|
|
|
| |
It turns out this job hasn't been running for quite a while (perhaps
ever) so there are quite a few failures when running the linter locally.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Co-authored by: Sam Derbyshire
Previously, GHC had three flavours of constraint:
Wanted, Given, and Derived. This removes Derived constraints.
Though serving a number of purposes, the most important role
of Derived constraints was to enable better error messages.
This job has been taken over by the new RewriterSets, as explained
in Note [Wanteds rewrite wanteds] in GHC.Tc.Types.Constraint.
Other knock-on effects:
- Various new Notes as I learned about under-described bits of GHC
- A reshuffling around the AST for implicit-parameter bindings,
with better integration with TTG.
- Various improvements around fundeps. These were caused by the
fact that, previously, fundep constraints were all Derived,
and Derived constraints would get dropped. Thus, an unsolved
Derived didn't stop compilation. Without Derived, this is no
longer possible, and so we have to be considerably more careful
around fundeps.
- A nice little refactoring in GHC.Tc.Errors to center the work
on a new datatype called ErrorItem. Constraints are converted
into ErrorItems at the start of processing, and this allows for
a little preprocessing before the main classification.
- This commit also cleans up the behavior in generalisation around
functional dependencies. Now, if a variable is determined by
functional dependencies, it will not be quantified. This change
is user facing, but it should trim down GHC's strange behavior
around fundeps.
- Previously, reportWanteds did quite a bit of work, even on an empty
WantedConstraints. This commit adds a fast path.
- Now, GHC will unconditionally re-simplify constraints during
quantification. See Note [Unconditionally resimplify constraints when
quantifying], in GHC.Tc.Solver.
Close #18398.
Close #18406.
Solve the fundep-related non-confluence in #18851.
Close #19131.
Close #19137.
Close #20922.
Close #20668.
Close #19665.
-------------------------
Metric Decrease:
LargeRecord
T9872b
T9872b_defer
T9872d
TcPlugin_RewritePerf
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This does three major things:
* Enforce the invariant that all strict fields must contain tagged
pointers.
* Try to predict the tag on bindings in order to omit tag checks.
* Allows functions to pass arguments unlifted (call-by-value).
The former is "simply" achieved by wrapping any constructor allocations with
a case which will evaluate the respective strict bindings.
The prediction is done by a new data flow analysis based on the STG
representation of a program. This also helps us to avoid generating
redudant cases for the above invariant.
StrictWorkers are created by W/W directly and SpecConstr indirectly.
See the Note [Strict Worker Ids]
Other minor changes:
* Add StgUtil module containing a few functions needed by, but
not specific to the tag analysis.
-------------------------
Metric Decrease:
T12545
T18698b
T18140
T18923
LargeRecord
Metric Increase:
LargeRecord
ManyAlternatives
ManyConstructors
T10421
T12425
T12707
T13035
T13056
T13253
T13253-spj
T13379
T15164
T18282
T18304
T18698a
T1969
T20049
T3294
T4801
T5321FD
T5321Fun
T783
T9233
T9675
T9961
T19695
WWRec
-------------------------
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Here we introduce a new data structure, RoughMap, inspired by the
previous `RoughTc` matching mechanism for checking instance matches.
This allows [Fam]InstEnv to be implemented as a trie indexed by these
RoughTc signatures, reducing the complexity of instance lookup and
FamInstEnv merging (done during the family instance conflict test)
from O(n) to O(log n).
The critical performance improvement currently realised by this patch is
in instance matching. In particular the RoughMap mechanism allows us to
discount many potential instances which will never match for constraints
involving type variables (see Note [Matching a RoughMap]). In realistic
code bases matchInstEnv was accounting for 50% of typechecker time due
to redundant work checking instances when simplifying instance contexts
when deriving instances. With this patch the cost is significantly
reduced.
The larger constants in InstEnv creation do mean that a few small
tests regress in allocations slightly. However, the runtime of T19703 is
reduced by a factor of 4. Moreover, the compilation time of the Cabal
library is slightly improved.
A couple of test cases are included which demonstrate significant
improvements in compile time with this patch.
This unfortunately does not fix the testcase provided in #19703 but does
fix #20933
-------------------------
Metric Decrease:
T12425
Metric Increase:
T13719
T9872a
T9872d
hard_hole_fits
-------------------------
Co-authored-by: Matthew Pickering <matthewtpickering@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
StgToCmm: add Config, remove CgInfoDownwards
StgToCmm: runC api change to take StgToCmmConfig
StgToCmm: CgInfoDownad -> StgToCmmConfig
StgToCmm.Monad: update getters/setters/withers
StgToCmm: remove CallOpts in StgToCmm.Closure
StgToCmm: remove dynflag references
StgToCmm: PtrOpts removed
StgToCmm: add TMap to config, Prof - dynflags
StgToCmm: add omit yields to config
StgToCmm.ExtCode: remove redundant import
StgToCmm.Heap: remove references to dynflags
StgToCmm: codeGen api change, DynFlags -> Config
StgToCmm: remove dynflags in Env and StgToCmm
StgToCmm.DataCon: remove dynflags references
StgToCmm: remove dynflag references in DataCon
StgToCmm: add backend avx flags to config
StgToCmm.Prim: remove dynflag references
StgToCmm.Expr: remove dynflag references
StgToCmm.Bind: remove references to dynflags
StgToCmm: move DoAlignSanitisation to Cmm.Type
StgToCmm: remove PtrOpts in Cmm.Parser.y
DynFlags: update ipInitCode api
StgToCmm: Config Module is single source of truth
StgToCmm: Lazy config breaks IORef deadlock
testsuite: bump countdeps threshold
StgToCmm.Config: strictify fields except UpdFrame
Strictifying UpdFrameOffset causes the RTS build with stage1 to
deadlock. Additionally, before the deadlock performance of the RTS
is noticeably slower.
StgToCmm.Config: add field descriptions
StgToCmm: revert strictify on Module in config
testsuite: update CountDeps tests
StgToCmm: update comment, fix exports
Specifically update comment about loopification passed into dynflags
then stored into stgToCmmConfig. And remove getDynFlags from
Monad.hs exports
Types.Name: add pprFullName function
StgToCmm.Ticky: use pprFullname, fixup ExtCode imports
Cmm.Info: revert cmmGetClosureType removal
StgToCmm.Bind: use pprFullName, Config update comments
StgToCmm: update closureDescription api
StgToCmm: SAT altHeapCheck
StgToCmm: default render for Info table, ticky
Use default rendering contexts for info table and ticky ticky, which should be independent of command line input.
testsuite: bump count deps
pprFullName: flag for ticky vs normal style output
convertInfoProvMap: remove unused parameter
StgToCmm.Config: add backend flags to config
StgToCmm.Config: remove Backend from Config
StgToCmm.Prim: refactor Backend call sites
StgToCmm.Prim: remove redundant imports
StgToCmm.Config: refactor vec compatibility check
StgToCmm.Config: add allowQuotRem2 flag
StgToCmm.Ticky: print internal names with parens
StgToCmm.Bind: dispatch ppr based on externality
StgToCmm: Add pprTickyname, Fix ticky naming
Accidently removed the ctx for ticky SDoc output. The only relevant flag
is sdocPprDebug which was accidental set to False due to using
defaultSDocContext without altering the flag.
StgToCmm: remove stateful fields in config
fixup: config: remove redundant imports
StgToCmm: move Sequel type to its own module
StgToCmm: proliferate getCallMethod updated api
StgToCmm.Monad: add FCodeState to Monad Api
StgToCmm: add second reader monad to FCode
fixup: Prim.hs: missed a merge conflict
fixup: Match countDeps tests to HEAD
StgToCmm.Monad: withState -> withCgState
To disambiguate it from mtl withState. This withState shouldn't be
returning the new state as a value. However, fixing this means tackling
the knot tying in CgState and so is very difficult since it changes when
the thunk of the knot is forced which either leads to deadlock or to
compiler panic.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main purpose of this patch is to attach a SkolemInfo directly to
each SkolemTv. This fixes the large number of bugs which have
accumulated over the years where we failed to report errors due to
having "no skolem info" for particular type variables. Now the origin of
each type varible is stored on the type variable we can always report
accurately where it cames from.
Fixes #20969 #20732 #20680 #19482 #20232 #19752 #10946
#19760 #20063 #13499 #14040
The main changes of this patch are:
* SkolemTv now contains a SkolemInfo field which tells us how the
SkolemTv was created. Used when reporting errors.
* Enforce invariants relating the SkolemInfoAnon and level of an implication (ic_info, ic_tclvl)
to the SkolemInfo and level of the type variables in ic_skols.
* All ic_skols are TcTyVars -- Check is currently disabled
* All ic_skols are SkolemTv
* The tv_lvl of the ic_skols agrees with the ic_tclvl
* The ic_info agrees with the SkolInfo of the implication.
These invariants are checked by a debug compiler by
checkImplicationInvariants.
* Completely refactor kcCheckDeclHeader_sig which kept
doing my head in. Plus, it wasn't right because it wasn't skolemising
the binders as it decomposed the kind signature.
The new story is described in Note [kcCheckDeclHeader_sig]. The code
is considerably shorter than before (roughly 240 lines turns into 150
lines).
It still has the same awkward complexity around computing arity as
before, but that is a language design issue.
See Note [Arity inference in kcCheckDeclHeader_sig]
* I added new type synonyms MonoTcTyCon and PolyTcTyCon, and used
them to be clear which TcTyCons have "finished" kinds etc, and
which are monomorphic. See Note [TcTyCon, MonoTcTyCon, and PolyTcTyCon]
* I renamed etaExpandAlgTyCon to splitTyConKind, becuase that's a
better name, and it is very useful in kcCheckDeclHeader_sig, where
eta-expansion isn't an issue.
* Kill off the nasty `ClassScopedTvEnv` entirely.
Co-authored-by: Simon Peyton Jones <simon.peytonjones@gmail.com>
|
|
|
|
|
|
|
|
| |
As requested by Simon after review of !7342.
I also took liberty to define the `Functor` instance by hand, as the derived one
subverts the invariants maintained by the pattern synonym (as already stated in
`Note [The one-shot state monad trick]`).
|
|
|
|
|
|
| |
I found it weird that most of the combinators weren't actually strict. Making
`pure` strict in the state should hopefully give Nested CPR an easier time to
unbox the nested state.
|
|
|
|
| |
This makes it more similar to pprTrace, pprPanic etc.
|
|
|
|
|
|
|
| |
With this patch, withBinBuffer will construct a ByteString that
properly captures the reference to the BinHandle internal
MutableByteArray#, making it safe to convert a BinHandle to ByteString
and use that ByteString outside the continuation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
isUnliftedTyCon was used in three places: Ticky, Template Haskell
and FFI checks.
It was straightforward to remove it from Ticky and Template Haskell.
It is now used in FFI only and renamed to marshalablePrimTyCon.
Previously, it was fetching information from a field
in PrimTyCon called is_unlifted. Instead, I've changed the code
to compute liftedness based on the kind.
isFFITy and legalFFITyCon are removed. They were only referred from
an old comment that I removed.
There were three functions to define a PrimTyCon, but the only difference
was that they were setting is_unlifted to True or False.
Everything is now done in mkPrimTyCon.
I also added missing integer types in Ticky.hs, I think it was an oversight.
Fixes #20401
|
|
|
|
|
|
|
| |
This function expects a singleton list as argument but only checks this
in debug builds. I've added a docstring saying so.
Fixes #20797
|
|
|
|
|
|
|
|
|
| |
- Change the dumpPrefix to FilePath, and default to non-module
- Add dot to seperate dump-file-prefix and suffix
- Modify user guide to introduce how dump files are named
- This commit does not affect Ghci dump file naming.
See also #17500
|
|
|
|
|
|
|
|
|
| |
We should strive to make our includes in terms of the RTS as much as
possible. One place there that is not possible, the llvm version, we
make a new tiny header
Stage numbers are somewhat arbitrary, if we simple need a newer RTS, we
should say so.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes some abundant reboxing of `DynFlags` in
`GHC.HsToCore.Match.Literal.warnAboutOverflowedLit` (which was the topic
of #19407) by introducing a Boxity analysis to GHC, done as part of demand
analysis. This allows to accurately capture ad-hoc unboxing decisions previously
made in worker/wrapper in demand analysis now, where the boxity info can
propagate through demand signatures.
See the new `Note [Boxity analysis]`. The actual fix for #19407 is described in
`Note [No lazy, Unboxed demand in demand signature]`, but
`Note [Finalising boxity for demand signature]` is probably a better entry-point.
To support the fix for #19407, I had to change (what was)
`Note [Add demands for strict constructors]` a bit
(now `Note [Unboxing evaluated arguments]`). In particular, we now take care of
it in `finaliseBoxity` (which is only called from demand analaysis) instead of
`wantToUnboxArg`.
I also had to resurrect `Note [Product demands for function body]` and rename
it to `Note [Unboxed demand on function bodies returning small products]` to
avoid huge regressions in `join004` and `join007`, thereby fixing #4267 again.
See the updated Note for details.
A nice side-effect is that the worker/wrapper transformation no longer needs to
look at strictness info and other bits such as `InsideInlineableFun` flags
(needed for `Note [Do not unbox class dictionaries]`) at all. It simply collects
boxity info from argument demands and interprets them with a severely simplified
`wantToUnboxArg`. All the smartness is in `finaliseBoxity`, which could be moved
to DmdAnal completely, if it wasn't for the call to `dubiousDataConInstArgTys`
which would be awkward to export.
I spent some time figuring out the reason for why `T16197` failed prior to my
amendments to `Note [Unboxing evaluated arguments]`. After having it figured
out, I minimised it a bit and added `T16197b`, which simply compares computed
strictness signatures and thus should be far simpler to eyeball.
The 12% ghc/alloc regression in T11545 is because of the additional `Boxity`
field in `Poly` and `Prod` that results in more allocation during `lubSubDmd`
and `plusSubDmd`. I made sure in the ticky profiles that the number of calls
to those functions stayed the same. We can bear such an increase here, as we
recently improved it by -68% (in b760c1f).
T18698* regress slightly because there is more unboxing of dictionaries
happening and that causes Lint (mostly) to allocate more.
Fixes #19871, #19407, #4267, #16859, #18907 and #13331.
Metric Increase:
T11545
T18698a
T18698b
Metric Decrease:
T12425
T16577
T18223
T18282
T4267
T9961
|
|
|
|
|
|
| |
else the output may depend on the input order, which seems it may depend
on the concrete Uniques, which is causing headaches when including test
cases about that.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit makes the `Validity` type polymorphic:
```
data Validity' a
= IsValid -- ^ Everything is fine
| NotValid a -- ^ A problem, and some indication of why
-- | Monomorphic version of @Validity'@ specialised for 'SDoc's.
type Validity = Validity' SDoc
```
The type has been (provisionally) renamed to Validity' to not break
existing code, as the monomorphic `Validity` type is quite pervasive
in a lot of signatures in GHC.
Why having a polymorphic Validity? Because it carries the evidence of
"what went wrong", but the old type carried an `SDoc`, which clashed
with the new GHC diagnostic infrastructure (#18516). Having it
polymorphic it means we can carry an arbitrary, richer diagnostic type,
and this is very important for things like the
`checkOriginativeSideConditions` function, which needs to report the
actual diagnostic error back to `GHC.Tc.Deriv`.
It also generalises Validity-related functions to be polymorphic in @a@.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes a small mistake in 4dc681c7c0345ee8ae268749d98b419dabf6a3bc
which forced the dump rather than user style for error messages.
In particular, this change replaced `defaultUserStyle` with
`log_default_dump_context` rather than `log_default_user_context` which
meant the PprStyle was PprDump rather than PprUser for error messages.
https://gitlab.haskell.org/ghc/ghc/-/commit/4dc681c7c0345ee8ae268749d98b419dabf6a3bc?expanded=1&page=4#b62120081f64009b94c12d04ded5c68870d8c647_285_405
Fixes #20276
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We detect insoluble Givens by making getInertInsols
take into account TypeError constraints, on top of insoluble equalities
such as Int ~ Bool (which it already took into account).
This allows pattern matches with insoluble contexts to be reported
as redundant (tyOracle calls tcCheckGivens which calls getInertInsols).
As a bonus, we get to remove a workaround in Data.Typeable.Internal:
we can directly use a NotApplication type family, as opposed to
needing to cook up an insoluble equality constraint.
Fixes #11503 #14141 #16377 #20180
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Make mkDependencies pure
* Use Sets instead of sorted lists
Notable perf changes:
MultiLayerModules(normal) ghc/alloc 4130851520.0 2981473072.0 -27.8%
T13719(normal) ghc/alloc 4313296052.0 4151647512.0 -3.7%
Metric Decrease:
MultiLayerModules
T13719
|
|
|
|
| |
Remove trailing spaces
|
|
|
|
|
|
|
|
|
|
|
|
| |
When eyeballing calls of GHC.Core.Opt.Simplify.Monad.traceSmpl,
I saw that lots of cold-path logging code was getting inlined
into the main Simplifier module.
So in GHC.Utils.Logger I added a NOINLINE on logDumpFile'.
For logging, the "hot" path, up to and including the conditional,
should be inlined, but after that we should inline as little as
possible, to reduce code size in the caller.
|
|
|
|
|
|
|
|
|
| |
This is small step towards #19877. We want to make the Loader/Linker
interface more abstract to be easily reused (i.e. don't pass it
DynFlags) but the system linker uses TmpFs which required a DynFlags
value to get its temp directory. We explicitly pass the temp directory
now. Similarly TmpFs was consulting the DynFlags to decide whether to
clean or: this is now done by the caller in the driver code.
|
| |
|
|
|
|
|
|
|
|
| |
getProgName was used to append the name of the program (e.g. "ghc") to
printed error messages in the Show instance of GhcException. It doesn't
belong here as GHCi and GHC API users may want to override this behavior
by setting a different error handler. So we now call it in the
defaultErrorHandler instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I discovered that GHC.Core.Unify.bindTv was getting arity 2,
rather than 3, in one of my builds. In HEAD it does get the right
arity, but only because CallArity (just) manages to spot it. In my
situation it (just) failed to discover this.
Best to make it robust, which this patch does. See
Note [INLINE pragmas and (>>)] in GHC.Utils.Monad.
There a bunch of other modules that probably should have the same
treatment:
GHC.CmmToAsm.Reg.Linear.State
GHC.Tc.Solver.Monad
GHC.Tc.Solver.Rewrite
GHC.Utils.Monad.State.Lazy
GHC.Utils.Monad.State.Strict
but doing so is not part of this patch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use DiagOpts for diagnostic options instead of directly querying
DynFlags (#17957).
Surprising performance improvements on CI:
T4801(normal) ghc/alloc 313236344.0 306515216.0 -2.1% GOOD
T9961(normal) ghc/alloc 384502736.0 380584384.0 -1.0% GOOD
ManyAlternatives(normal) ghc/alloc 797356128.0 786644928.0 -1.3%
ManyConstructors(normal) ghc/alloc 4389732432.0 4317740880.0 -1.6%
T783(normal) ghc/alloc 408142680.0 402812176.0 -1.3%
Metric Decrease:
T4801
T9961
T783
ManyAlternatives
ManyConstructors
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Remove fstName, sndName, fstIdKey, sndIdKey - no longer used,
removed from basicKnownKeyNames
- Remove breakpointId, breakpointCondId, opaqueTyCon, unknownTyCon -
they were used in the old implementation of the GHCi debugger
- Fix typos in comments
- Remove outdated comment in Lint.hs
- Use 'LitRubbish' instead of 'RubbishLit' for consistency
- Remove comment about subkinding - superseded by
Note [Kind Constraint and kind Type]
- Mention ticket ID in a linear types error message
- Fix formatting in using-warnings.rst and linear-types.rst
- Remove comment about 'Any' in Dynamic.hs - Dynamic
now uses Typeable + existential instead of Any
- Remove codeGen/should_compile/T13233.hs
This was added by accident, it is not used and T13233 is already in
should_fail
|
|
|
|
|
|
|
|
| |
Now that Outputable is independent of DynFlags, we can put tracing
functions using SDocs into their own module that doesn't transitively
depend on any GHC.Driver.* module.
A few modules needed to be moved to avoid loops in DEBUG mode.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce LogFlags as a independent subset of DynFlags used for logging.
As a consequence in many places we don't have to pass both Logger and
DynFlags anymore.
The main reason for this refactoring is that I want to refactor the
systools interfaces: for now many systools functions use DynFlags both
to use the Logger and to fetch their parameters (e.g. ldInputs for the
linker). I'm interested in refactoring the way they fetch their
parameters (i.e. use dedicated XxxOpts data types instead of DynFlags)
for #19877. But if I did this refactoring before refactoring the Logger,
we would have duplicate parameters (e.g. ldInputs from DynFlags and
linkerInputs from LinkerOpts). Hence this patch first.
Some flags don't really belong to LogFlags because they are subsystem
specific (e.g. most DumpFlags). For example -ddump-asm should better be
passed in NCGConfig somehow. This patch doesn't fix this tight coupling:
the dump flags are part of the UI but they are passed all the way down
for example to infer the file name for the dumps.
Because LogFlags are a subset of the DynFlags, we must update the former
when the latter changes (not so often). As a consequence we now use
accessors to read/write DynFlags in HscEnv instead of using `hsc_dflags`
directly.
In the process I've also made some subsystems less dependent on DynFlags:
- CmmToAsm: by passing some missing flags via NCGConfig (see new fields
in GHC.CmmToAsm.Config)
- Core.Opt.*:
- by passing -dinline-check value into UnfoldingOpts
- by fixing some Core passes interfaces (e.g. CallArity, FloatIn)
that took DynFlags argument for no good reason.
- as a side-effect GHC.Core.Opt.Pipeline.doCorePass is much less
convoluted.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch comprises of four different but closely related ideas. The
net result is fixing a large number of open issues with the driver
whilst making it simpler to understand.
1. Use the hash of the source file to determine whether the source file
has changed or not. This makes the recompilation checking more robust to
modern build systems which are liable to copy files around changing
their modification times.
2. Remove the concept of a "stable module", a stable module was one
where the object file was older than the source file, and all transitive
dependencies were also stable. Now we don't rely on the modification
time of the source file, the notion of stability is moot.
3. Fix TH/plugin recompilation after the removal of stable modules. The
TH recompilation check used to rely on stable modules. Now there is a
uniform and simple way, we directly track the linkables which were
loaded into the interpreter whilst compiling a module. This is an
over-approximation but more robust wrt package dependencies changing.
4. Fix recompilation checking for dynamic object files. Now we actually
check if the dynamic object file exists when compiling with -dynamic-too
Fixes #19774 #19771 #19758 #17434 #11556 #9121 #8211 #16495 #7277 #16093
|