| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The GHC.Prim module is quite special as there is no interface file,
therefore it doesn't appear in ms_textual_imports, but the ghc-prim
package does appear in the direct package dependencies. This confused
the recompilation checking which couldn't find any modules from ghc-prim
and concluded that the package was no longer a dependency.
The fix is to keep track of whether GHC.Prim is imported separately in
the relevant places.
Fixes #20084
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are some obscure situations where the RHS of a rule can contain a
tick which is not mentioned anywhere else in the program. If this
happens you end up with an obscure linker error. The solution is quite
simple, traverse the RHS of rules to also look for ticks. It turned out
to be easier to implement if the traversal was moved into CoreTidy
rather than at the start of code generation because there we still had
easy access to the rules.
./StreamD.o(.text+0x1b9f2): error: undefined reference to 'StreamK_mkStreamFromStream_HPC_cc'
./MArray.o(.text+0xbe83): error: undefined reference to 'StreamK_mkStreamFromStream_HPC_cc'
Main.o(.text+0x6fdb): error: undefined reference to 'StreamK_mkStreamFromStream_HPC_cc'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch comprises of four different but closely related ideas. The
net result is fixing a large number of open issues with the driver
whilst making it simpler to understand.
1. Use the hash of the source file to determine whether the source file
has changed or not. This makes the recompilation checking more robust to
modern build systems which are liable to copy files around changing
their modification times.
2. Remove the concept of a "stable module", a stable module was one
where the object file was older than the source file, and all transitive
dependencies were also stable. Now we don't rely on the modification
time of the source file, the notion of stability is moot.
3. Fix TH/plugin recompilation after the removal of stable modules. The
TH recompilation check used to rely on stable modules. Now there is a
uniform and simple way, we directly track the linkables which were
loaded into the interpreter whilst compiling a module. This is an
over-approximation but more robust wrt package dependencies changing.
4. Fix recompilation checking for dynamic object files. Now we actually
check if the dynamic object file exists when compiling with -dynamic-too
Fixes #19774 #19771 #19758 #17434 #11556 #9121 #8211 #16495 #7277 #16093
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit does some de-duplication of logic between the one-shot and --make
modes, and splitting of some of the APIs so that its easier to do the
fine-grained parallelism implementation. This is the first part of the
implementation plan as described in #14095
* compileOne now uses the runPhase pipeline for most of the work.
The Interpreter backend handling has been moved to the runPhase.
* hscIncrementalCompile has been broken down into multiple APIs.
* haddock submodule bump: Rename of variables in html-test ref:
This is caused by a change in ModDetails in case of NoBackend.
Now the initModDetails is used to recreate the ModDetails from interface and
in-memory ModDetails is not used.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit modifies interface files so that *only* direct information
about modules and packages is stored in the interface file.
* Only direct module and direct package dependencies are stored in the
interface files.
* Trusted packages are now stored separately as they need to be checked
transitively.
* hs-boot files below the compiled module in the home module are stored
so that eps_is_boot can be calculated in one-shot mode without loading
all interface files in the home package.
* The transitive closure of signatures is stored separately
This is important for two reasons
* Less recompilation is needed, as motivated by #16885, a lot of
redundant compilation was triggered when adding new imports deep in the
module tree as all the parent interface files had to be redundantly
updated.
* Checking an interface file is cheaper because you don't have to
perform a transitive traversal to check the dependencies are up-to-date.
In the code, places where we would have used the transitive closure, we
instead compute the necessary transitive closure. The closure is not
computed very often, was already happening in checkDependencies, and
was already happening in getLinkDeps.
Fixes #16885
-------------------------
Metric Decrease:
MultiLayerModules
T13701
T13719
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This vastly reduces memory usage when compiling with `--make` mode, from
about 900M when compiling Cabal to about 300M.
As a matter of uniformity, it also ensures that reading from an
interface performs the same as using the in-memory cache. We can also
delete all the horrible knot-tying in updateIdInfos.
Goes some way to fixing #13586
Accept new output of tests fixing some bugs along the way
-------------------------
Metric Decrease:
T12545
-------------------------
|
|
|
|
|
|
|
|
|
|
| |
In the future, we want `HscEnv` to support multiple home units
at the same time. This means, that there will be 'Target's that do
not belong to the current 'HomeUnit'.
This is an API change without changing behaviour.
Update haddock submodule to incorporate API changes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This new flag embeds a lookup table from the address of an info table
to information about that info table.
The main interface for consulting the map is the `lookupIPE` C function
> InfoProvEnt * lookupIPE(StgInfoTable *info)
The `InfoProvEnt` has the following structure:
> typedef struct InfoProv_{
> char * table_name;
> char * closure_desc;
> char * ty_desc;
> char * label;
> char * module;
> char * srcloc;
> } InfoProv;
>
> typedef struct InfoProvEnt_ {
> StgInfoTable * info;
> InfoProv prov;
> struct InfoProvEnt_ *link;
> } InfoProvEnt;
The source positions are approximated in a similar way to the source
positions for DWARF debugging information. They are only approximate but
in our experience provide a good enough hint about where the problem
might be. It is therefore recommended to use this flag in conjunction
with `-g<n>` for more accurate locations.
The lookup table is also emitted into the eventlog when it is available
as it is intended to be used with the `-hi` profiling mode.
Using this flag will significantly increase the size of the resulting
object file but only by a factor of 2-3x in our experience.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mode backpack edges
Backpack instantiations need to be typechecked to make sure that the
arguments fit the parameters. `tcRnInstantiateSignature` checks
instantiations with concrete modules, while `tcRnCheckUnit` checks
instantiations with free holes (signatures in the current modules).
Before this change, it worked that `tcRnInstantiateSignature` was called
after typechecking the argument module, see `HscMain.hsc_typecheck`,
while `tcRnCheckUnit` was called in `unsweep'` where-bound in
`GhcMake.upsweep`. `tcRnCheckUnit` was called once per each
instantiation once all the argument sigs were processed. This was done
with simple "to do" and "already done" accumulators in the fold.
`parUpsweep` did not implement the change.
With this change, `tcRnCheckUnit` instead is associated with its own
node in the `ModuleGraph`. Nodes are now:
```haskell
data ModuleGraphNode
-- | Instantiation nodes track the instantiation of other units
-- (backpack dependencies) with the holes (signatures) of the current package.
= InstantiationNode InstantiatedUnit
-- | There is a module summary node for each module, signature, and boot module being built.
| ModuleNode ExtendedModSummary
```
instead of just `ModSummary`; the `InstantiationNode` case is the
instantiation of a unit to be checked. The dependencies of such nodes
are the same "free holes" as was checked with the accumulator before.
Both versions of upsweep on such a node call `tcRnCheckUnit`.
There previously was an `implicitRequirements` function which would
crawl through every non-current-unit module dep to look for all free
holes (signatures) to add as dependencies in `GHC.Driver.Make`. But this
is no good: we shouldn't be looking for transitive anything when
building the graph: the graph should only have immediate edges and the
scheduler takes care that all transitive requirements are met.
So `GHC.Driver.Make` stopped using `implicitRequirements`, and instead
uses a new `implicitRequirementsShallow`, which just returns the
outermost instantiation node (or module name if the immediate dependency
is itself a signature). The signature dependencies are just treated like
any other imported module, but the module ones then go in a list stored
in the `ModuleNode` next to the `ModSummary` as the "extra backpack
dependencies". When `downsweep` creates the mod summaries, it adds this
information too.
------
There is one code quality, and possible correctness thing left: In
addition to `implicitRequirements` there is `findExtraSigImports`, which
says something like "if you are an instantiation argument (you are
substituted or a signature), you need to import its things too". This
is a little non-local so I am not quite sure how to get rid of it in
`GHC.Driver.Make`, but we probably should eventually.
First though, let's try to make a test case that observes that we don't
do this, lest it actually be unneeded. Until then, I'm happy to leave it
as is.
------
Beside the ability to use `-j`, the other major user-visibile side
effect of this change is that that the --make progress log now includes
"Instantiating" messages for these new nodes. Those also are numbered
like module nodes and count towards the total.
------
Fixes #17188
Updates hackage submomdule
Metric Increase:
T12425
T13035
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1) Don't modify DynFlags (too much) for -dynamic-too: now when we
generate dynamic outputs for "-dynamic-too", we only set "dynamicNow"
boolean field in DynFlags instead of modifying several other fields.
These fields now have accessors that take dynamicNow into account.
2) Use DynamicTooState ADT to represent -dynamic-too state. It's much
clearer than the undocumented "DynamicTooConditional" that was used
before.
As a result, we can finally remove the hscs_iface_dflags field in
HscRecomp. There was a comment on this field saying:
"FIXME (osa): I don't understand why this is necessary, but I spent
almost two days trying to figure this out and I couldn't .. perhaps
someone who understands this code better will remove this later."
I don't fully understand the details, but it was needed because of the
changes made to the DynFlags for -dynamic-too.
There is still something very dubious in GHC.Iface.Recomp: we have to
disable the "dynamicNow" flag at some point for some Backpack's "heinous
hack" to continue to work. It may be because interfaces for indefinite
units are always non-dynamic, or because we mix and match dynamic and
non-dynamic interfaces (#9176), or something else, who knows?
|
|
|
|
|
|
|
| |
Move linker related code into GHC.Linker. Previously it was scattered
into GHC.Unit.State, GHC.Driver.Pipeline, GHC.Runtime.Linker, etc.
Add documentation in GHC.Linker
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was working on making DynFlags stateless (#17957), especially by
storing loaded plugins into HscEnv instead of DynFlags. It turned out to
be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin
isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I
didn't feel like introducing yet another hs-boot file to break the loop.
Additionally I remember that while we introduced the module hierarchy
(#13009) we talked about splitting GHC.Driver.Types because it contained
various unrelated types and functions, but we never executed. I didn't
feel like making GHC.Driver.Types bigger with more unrelated Plugins
related types, so finally I bit the bullet and split GHC.Driver.Types.
As a consequence this patch moves a lot of things. I've tried to put
them into appropriate modules but nothing is set in stone.
Several other things moved to avoid loops.
* Removed Binary instances from GHC.Utils.Binary for random compiler
things
* Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they
import a lot of things that users of GHC.Utils.Binary don't want to
depend on.
* put everything related to Units/Modules under GHC.Unit:
GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.}
* Created several modules under GHC.Types: GHC.Types.Fixity, SourceText,
etc.
* Split GHC.Utils.Error (into GHC.Types.Error)
* Finally removed GHC.Driver.Types
Note that this patch doesn't put loaded plugins into HscEnv. It's left
for another patch.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FastStrings can be compared in 2 ways: by Unique or lexically. We don't
want to bless one particular way with an "Ord" instance because it leads
to bugs (#18562) or to suboptimal code (e.g. using lexical comparison
while a Unique comparison would suffice).
UTF-8 encoding has the advantage that sorting strings by their encoded
bytes also sorts them by their Unicode code points, without having to
decode the actual code points. BUT GHC uses Modified UTF-8 which
diverges from UTF-8 by encoding \0 as 0xC080 instead of 0x00 (to avoid
null bytes in the middle of a String so that the string can still be
null-terminated). This patch adds a new `utf8CompareShortByteString`
function that performs sorting by bytes but that also takes Modified
UTF-8 into account. It is much more performant than decoding the strings
into [Char] to perform comparisons (which we did in the previous patch).
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes #17667 and should help to avoid such issues going forward.
The changes are mostly mechanical in nature. With two notable
exceptions.
* The register allocator.
The register allocator references registers by distinct uniques.
However they come from the types of VirtualReg, Reg or Unique in
various places. As a result we sometimes cast the key type of the
map and use functions which operate on the now typed map but take
a raw Unique as actual key. The logic itself has not changed it
just becomes obvious where we do so now.
* <Type>Env Modules.
As an example a ClassEnv is currently queried using the types `Class`,
`Name`, and `TyCon`. This is safe since for a distinct class value all
these expressions give the same unique.
getUnique cls
getUnique (classTyCon cls)
getUnique (className cls)
getUnique (tcName $ classTyCon cls)
This is for the most part contained within the modules defining the
interface. However it requires us to play dirty when we are given a
`Name` to lookup in a `UniqFM Class a` map. But again the logic did
not change and it's for the most part hidden behind the Env Module.
Some of these cases could be avoided by refactoring but this is left
for future work.
We also bump the haddock submodule as it uses UniqFM.
|
|
|
|
|
|
|
| |
* rename PackageState into UnitState
* rename findWiredInPackages into findWiredInUnits
* rename lookupModuleInAll[Packages,Units]
* etc.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We often have (ModuleName, Bool) or (Module, Bool) pairs for "extended"
module names (without or with a unit id) disambiguating boot and normal
modules. We think this is important enough across the compiler that it
deserves a new nominal product type. We do this with synnoyms and a
functor named with a `Gen` prefix, matching other newly created
definitions.
It was also requested that we keep custom `IsBoot` / `NotBoot` sum type.
So we have it too. This means changing many the many bools to use that
instead.
Updates `haddock` submodule.
|
| |
|
|
Introduce GHC.Unit.* hierarchy for everything concerning units, packages
and modules.
Update Haddock submodule
|