summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc
Commit message (Collapse)AuthorAgeFilesLines
...
* Postpone associated tyfam default checks until after typecheckingRyan Scott2020-09-092-95/+149
| | | | | | | | | | | | Previously, associated type family defaults were validity-checked during typechecking. Unfortunately, the error messages that these checks produce run the risk of printing knot-tied type constructors, which will cause GHC to diverge. In order to preserve the current error message's descriptiveness, this patch postpones these validity checks until after typechecking, which are now located in the new function `GHC.Tc.Validity.checkValidAssocTyFamDeflt`. Fixes #18648.
* Remove "Ord FastString" instanceSylvain Henry2020-09-012-6/+6
| | | | | | | | | | | | | | | | | | | FastStrings can be compared in 2 ways: by Unique or lexically. We don't want to bless one particular way with an "Ord" instance because it leads to bugs (#18562) or to suboptimal code (e.g. using lexical comparison while a Unique comparison would suffice). UTF-8 encoding has the advantage that sorting strings by their encoded bytes also sorts them by their Unicode code points, without having to decode the actual code points. BUT GHC uses Modified UTF-8 which diverges from UTF-8 by encoding \0 as 0xC080 instead of 0x00 (to avoid null bytes in the middle of a String so that the string can still be null-terminated). This patch adds a new `utf8CompareShortByteString` function that performs sorting by bytes but that also takes Modified UTF-8 into account. It is much more performant than decoding the strings into [Char] to perform comparisons (which we did in the previous patch). Bump haddock submodule
* Refactor UnitId pretty-printingSylvain Henry2020-08-264-35/+41
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we pretty-print a UnitId for the user, we try to map it back to its origin package name, version and component to print "package-version:component" instead of some hash. The UnitId type doesn't carry these information, so we have to look into a UnitState to find them. This is why the Outputable instance of UnitId used `sdocWithDynFlags` in order to access the `unitState` field of DynFlags. This is wrong for several reasons: 1. The DynFlags are accessed when the message is printed, not when it is generated. So we could imagine that the unitState may have changed in-between. Especially if we want to allow unit unloading. 2. We want GHC to support several independent sessions at once, hence several UnitState. The current approach supposes there is a unique UnitState as a UnitId doesn't indicate which UnitState to use. See the Note [Pretty-printing UnitId] in GHC.Unit for the new approach implemented by this patch. One step closer to remove `sdocDynFlags` field from `SDocContext` (#10143). Fix #18124. Also fix some Backpack code to use SDoc instead of String.
* Use LIdP rather than (XRec p (IdP p))Simon Peyton Jones2020-08-252-7/+5
| | | | | | | | | | | | | | | This patch mainly just replaces use of XRec p (IdP p) with LIdP p One slightly more significant change is to parameterise HsPatSynDetails over the pass rather than the argument type, so that it's uniform with HsConDeclDetails and HsConPatDetails. I also got rid of the dead code GHC.Hs.type.conDetailsArgs But this is all just minor refactoring. No change in functionality.
* mkUnique refactoring (#18362)Aditya Gupta2020-08-223-2/+3
| | | | | Move uniqFromMask from Unique.Supply to Unique. Move the the functions that call mkUnique from Unique to Builtin.Uniques
* Add right-to-left rule for pattern bindingsSimon Peyton Jones2020-08-194-33/+112
| | | | | | | | | | | | | | | | | | | | | | | Fix #18323 by adding a few lines of code to handle non-recursive pattern bindings. see GHC.Tc.Gen.Bind Note [Special case for non-recursive pattern bindings] Alas, this confused the pattern-match overlap checker; see #18323. Note that this patch only affects pattern bindings like that for (x,y) in this program combine :: (forall a . [a] -> a) -> [forall a. a -> a] -> ((forall a . [a] -> a), [forall a. a -> a]) breaks = let (x,y) = combine head ids in x y True We need ImpredicativeTypes for those [forall a. a->a] types to be valid. And with ImpredicativeTypes the old, unprincipled "allow unification variables to unify with a polytype" story actually works quite well. So this test compiles fine (if delicatedly) with old GHCs; but not with QuickLook unless we add this patch
* Add HomeUnit typeSylvain Henry2020-08-135-28/+32
| | | | | | | | | | | | | | | | | | | | | | | Since Backpack the "home unit" is much more involved than what it was before (just an identifier obtained with `-this-unit-id`). Now it is used in conjunction with `-component-id` and `-instantiated-with` to configure module instantiations and to detect if we are type-checking an indefinite unit or compiling a definite one. This patch introduces a new HomeUnit datatype which is much easier to understand. Moreover to make GHC support several packages in the same instances, we will need to handle several HomeUnits so having a dedicated (documented) type is helpful. Finally in #14335 we will also need to handle the case where we have no HomeUnit at all because we are only loading existing interfaces for plugins which live in a different space compared to units used to produce target code. Several functions will have to be refactored to accept "Maybe HomeUnit" parameters instead of implicitly querying the HomeUnit fields in DynFlags. Having a dedicated type will make this easier. Bump haddock submodule
* PmCheck: Better long-distance info for where bindings (#18533)Sebastian Graf2020-08-132-0/+5
| | | | | | | | | | | | | | | | | | | | Where bindings can see evidence from the pattern match of the `GRHSs` they belong to, but not from anything in any of the guards (which belong to one of possibly many RHSs). Before this patch, we did *not* consider said evidence, causing #18533, where the lack of considering type information from a case pattern match leads to failure to resolve the vanilla COMPLETE set of a data type. Making available that information required a medium amount of refactoring so that `checkMatches` can return a `[(Deltas, NonEmpty Deltas)]`; one `(Deltas, NonEmpty Deltas)` for each `GRHSs` of the match group. The first component of the pair is the covered set of the pattern, the second component is one covered set per RHS. Fixes #18533. Regression test case: T18533
* DynFlags: disentangle OutputableSylvain Henry2020-08-1246-7/+62
| | | | | | | | | - put panic related functions into GHC.Utils.Panic - put trace related functions using DynFlags in GHC.Driver.Ppr One step closer making Outputable fully independent of DynFlags. Bump haddock submodule
* typecheck: Drop SPECIALISE pragmas when there is no unfoldingBen Gamari2020-08-111-3/+7
| | | | | | | | Previously the desugarer would instead fall over when it realized that there was no unfolding for an imported function with a SPECIALISE pragma. We now rather drop the SPECIALISE pragma and throw a warning. Fixes #18118.
* Fail eagerly on a lev-poly datacon argRichard Eisenberg2020-08-061-11/+24
| | | | | | Close #18534. See commentary in the patch.
* DynFlags: don't use sdocWithDynFlags in datacon pprSylvain Henry2020-07-303-9/+10
| | | | | | | We don't need to use `sdocWithDynFlags` to know whether we should display linear types for datacon types, we already have `sdocLinearTypes` field in `SDocContext`. Moreover we want to remove `sdocWithDynFlags` (#10143, #17957)).
* Fix minimal imports dump for boot files (fix #18497)Sylvain Henry2020-07-301-1/+1
|
* Don't mark closed type family equations as occurrencesRyan Scott2020-07-302-8/+23
| | | | | | | | | | | | | | | | | | | | | | | | Previously, `rnFamInstEqn` would mark the name of the type/data family used in an equation as an occurrence, regardless of what sort of family it is. Most of the time, this is the correct thing to do. The exception is closed type families, whose equations constitute its definition and therefore should not be marked as occurrences. Overzealously counting the equations of a closed type family as occurrences can cause certain warnings to not be emitted, as observed in #18470. See `Note [Type family equations and occurrences]` in `GHC.Rename.Module` for the full story. This fixes #18470 with a little bit of extra-casing in `rnFamInstEqn`. To accomplish this, I added an extra `ClosedTyFamInfo` field to the `NonAssocTyFamEqn` constructor of `AssocTyFamInfo` and refactored the relevant call sites accordingly so that this information is propagated to `rnFamInstEqn`. While I was in town, I moved `wrongTyFamName`, which checks that the name of a closed type family matches the name in an equation for that family, from the renamer to the typechecker to avoid the need for an `ASSERT`. As an added bonus, this lets us simplify the details of `ClosedTyFamInfo` a bit.
* Filter out unreachable constructors when deriving stock instances (#16431)Brandon Chinn2020-07-293-18/+103
|
* Pass tc_args to gen_fnBrandon Chinn2020-07-293-32/+33
|
* Pass dit_rep_tc_args to dsm_stock_gen_fnBrandon Chinn2020-07-292-9/+15
|
* Simplify XRec definitionZubin Duggal2020-07-251-4/+8
| | | | | | | | | | | | Change `Located X` usage to `XRec pass X` This increases the scope of the LPat experiment to almost all of GHC. Introduce UnXRec and MapXRec classes Fixes #17587 and #18408 Updates haddock submodule Co-authored-by: Philipp Krüger <philipp.krueger1@gmail.com>
* Care with occCheckExpand in kind of occurrencesSimon Peyton Jones2020-07-241-19/+7
| | | | | | | | | | | | | | | | | | | Issue #18451 showed that we could get an infinite type, through over-use of occCheckExpand in the kind of an /occurrence/ of a type variable. See Note [Occurrence checking: look inside kinds] in GHC.Core.Type This patch fixes the problem by making occCheckExpand less eager to expand synonyms in kinds. It also improves pretty printing of kinds, by *not* suppressing the kind on a tyvar-binder like (a :: Const Type b) where type Const p q = p. Even though the kind of 'a' is Type, we don't want to suppress the kind ascription. Example: the error message for polykinds/T18451{a,b}. See GHC.Core.TyCo.Ppr Note [Suppressing * kinds].
* Define type Void# = (# #) (#18441)Krzysztof Gogolewski2020-07-222-7/+6
| | | | | There's one backwards compatibility issue: GHC.Prim no longer exports Void#, we now manually re-export it from GHC.Exts.
* Replace HscTarget with BackendSylvain Henry2020-07-222-20/+22
| | | | | | | | | They both have the same role and Backend name is more explicit. Metric Decrease: T3064 Update Haddock submodule
* Accumulate Haddock comments in P (#17544, #17561, #8944)Vladislav Zavialov2020-07-211-1/+1
| | | | | | | | | | | | | | | | | | Haddock comments are, first and foremost, comments. It's very annoying to incorporate them into the grammar. We can take advantage of an important property: adding a Haddock comment does not change the parse tree in any way other than wrapping some nodes in HsDocTy and the like (and if it does, that's a bug). This patch implements the following: * Accumulate Haddock comments with their locations in the P monad. This is handled in the lexer. * After parsing, do a pass over the AST to associate Haddock comments with AST nodes using location info. * Report the leftover comments to the user as a warning (-Winvalid-haddock).
* Use a newtype `Code` for the return type of typed quotations (Proposal #195)Matthew Pickering2020-07-212-17/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are three problems with the current API: 1. It is hard to properly write instances for ``Quote m => m (TExp a)`` as the type is the composition of two type constructors. Doing so in your program involves making your own newtype and doing a lot of wrapping/unwrapping. For example, if I want to create a language which I can either run immediately or generate code from I could write the following with the new API. :: class Lang r where _int :: Int -> r Int _if :: r Bool -> r a -> r a -> r a instance Lang Identity where _int = Identity _if (Identity b) (Identity t) (Identity f) = Identity (if b then t else f) instance Quote m => Lang (Code m) where _int = liftTyped _if cb ct cf = [|| if $$cb then $$ct else $$cf ||] 2. When doing code generation it is common to want to store code fragments in a map. When doing typed code generation, these code fragments contain a type index so it is desirable to store them in one of the parameterised map data types such as ``DMap`` from ``dependent-map`` or ``MapF`` from ``parameterized-utils``. :: compiler :: Env -> AST a -> Code Q a data AST a where ... data Ident a = ... type Env = MapF Ident (Code Q) newtype Code m a = Code (m (TExp a)) In this example, the ``MapF`` maps an ``Ident String`` directly to a ``Code Q String``. Using one of these map types currently requires creating your own newtype and constantly wrapping every quotation and unwrapping it when using a splice. Achievable, but it creates even more syntactic noise than normal metaprogramming. 3. ``m (TExp a)`` is ugly to read and write, understanding ``Code m a`` is easier. This is a weak reason but one everyone can surely agree with. Updates text submodule.
* Remove {-# CORE #-} pragma (part of #18048)Krzysztof Gogolewski2020-07-181-1/+0
| | | | | | | This pragma has no effect since 2011. It was introduced for External Core, which no longer exists. Updates haddock submodule.
* Improve typechecking of NPlusK patternsSimon Peyton Jones2020-07-185-52/+42
| | | | | | | | | | This patch (due to Richard Eisenberg) improves documentation of the wrapper returned by tcSubMult (see Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify). And, more substantially, it cleans up the multiplicity handling in the typechecking of NPlusKPat
* Allow multiple case branches to have a higher rank typeSimon Peyton Jones2020-07-1811-534/+559
| | | | | | | | | | | | | | | | | | | | | | | As #18412 points out, it should be OK for multiple case alternatives to have a higher rank type, provided they are all the same. This patch implements that change. It sweeps away GHC.Tc.Gen.Match.tauifyMultipleBranches, and friends, replacing it with an enhanced version of fillInferResult. The basic change to fillInferResult is to permit the case in which another case alternative has already filled in the result; and in that case simply unify. It's very simple actually. See the new Note [fillInferResult] in TcMType Other refactoring: - Move all the InferResult code to one place, in GHC.Tc.Utils.TcMType (previously some of it was in Unify) - Move tcInstType and friends from TcMType to Instantiate, where it more properly belongs. (TCMType was getting very long.)
* compiler: re-engineer the treatment of rebindable ifAlp Mestanogullari2020-07-145-38/+92
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Executing on the plan described in #17582, this patch changes the way if expressions are handled in the compiler in the presence of rebindable syntax. We get rid of the SyntaxExpr field of HsIf and instead, when rebindable syntax is on, we rewrite the HsIf node to the appropriate sequence of applications of the local `ifThenElse` function. In order to be able to report good error messages, with expressions as they were written by the user (and not as desugared by the renamer), we make use of TTG extensions to extend GhcRn expression ASTs with an `HsExpansion` construct, which keeps track of a source (GhcPs) expression and the desugared (GhcRn) expression that it gives rise to. This way, we can typecheck the latter while reporting the former in error messages. In order to discard the error context lines that arise from typechecking the desugared expressions (because they talk about expressions that the user has not written), we carefully give a special treatment to the nodes fabricated by this new renaming-time transformation when typechecking them. See Note [Rebindable syntax and HsExpansion] for more details. The note also includes a recipe to apply the same treatment to other rebindable constructs. Tests 'rebindable11' and 'rebindable12' have been added to make sure we report identical error messages as before this patch under various circumstances. We also now disable rebindable syntax when processing untyped TH quotes, as per the discussion in #18102 and document the interaction of rebindable syntax and Template Haskell, both in Note [Template Haskell quotes and Rebindable Syntax] and in the user guide, adding a test to make sure that we do not regress in that regard.
* Comments onlySimon Peyton Jones2020-07-131-2/+5
|
* Give Uniq[D]FM a phantom type for its key.Andreas Klebinger2020-07-122-10/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes #17667 and should help to avoid such issues going forward. The changes are mostly mechanical in nature. With two notable exceptions. * The register allocator. The register allocator references registers by distinct uniques. However they come from the types of VirtualReg, Reg or Unique in various places. As a result we sometimes cast the key type of the map and use functions which operate on the now typed map but take a raw Unique as actual key. The logic itself has not changed it just becomes obvious where we do so now. * <Type>Env Modules. As an example a ClassEnv is currently queried using the types `Class`, `Name`, and `TyCon`. This is safe since for a distinct class value all these expressions give the same unique. getUnique cls getUnique (classTyCon cls) getUnique (className cls) getUnique (tcName $ classTyCon cls) This is for the most part contained within the modules defining the interface. However it requires us to play dirty when we are given a `Name` to lookup in a `UniqFM Class a` map. But again the logic did not change and it's for the most part hidden behind the Env Module. Some of these cases could be avoided by refactoring but this is left for future work. We also bump the haddock submodule as it uses UniqFM.
* Improve handling of data type return kindswip/T18300Simon Peyton Jones2020-07-037-281/+424
| | | | | | | | | | | | | | | | | | Following a long conversation with Richard, this patch tidies up the handling of return kinds for data/newtype declarations (vanilla, family, and instance). I have substantially edited the Notes in TyCl, so they would bear careful reading. Fixes #18300, #18357 In GHC.Tc.Instance.Family.newFamInst we were checking some Lint-like properties with ASSSERT. Instead Richard and I have added a proper linter for axioms, and called it from lintGblEnv, which in turn is called in tcRnModuleTcRnM New tests (T18300, T18357) cause an ASSERT failure in HEAD.
* Fix duplicated words and typos in comments and user guideJan Hrček2020-06-2811-18/+18
|
* Use NHsCoreTy to embed types into GND-generated codeRyan Scott2020-06-283-10/+67
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | `GeneralizedNewtypeDeriving` is in the unique situation where it must produce an `LHsType GhcPs` from a Core `Type`. Historically, this was done with the `typeToLHsType` function, which walked over the entire `Type` and attempted to construct an `LHsType` with the same overall structure. `typeToLHsType` is quite complicated, however, and has been the subject of numerous bugs over the years (e.g., #14579). Luckily, there is an easier way to accomplish the same thing: the `XHsType` constructor of `HsType`. `XHsType` bundles an `NHsCoreTy`, which allows embedding a Core `Type` directly into an `HsType`, avoiding the need to laboriously convert from one to another (as `typeToLHsType` did). Moreover, renaming and typechecking an `XHsType` is simple, since one doesn't need to do anything to a Core `Type`... ...well, almost. For the reasons described in `Note [Typechecking NHsCoreTys]` in `GHC.Tc.Gen.HsType`, we must apply a substitution that we build from the local `tcl_env` type environment. But that's a relatively modest price to pay. Now that `GeneralizedNewtypeDeriving` uses `NHsCoreTy`, the `typeToLHsType` function no longer has any uses in GHC, so this patch rips it out. Some additional tweaks to `hsTypeNeedsParens` were necessary to make the new `-ddump-deriv` output correctly parenthesized, but other than that, this patch is quite straightforward. This is a mostly internal refactoring, although it is likely that `GeneralizedNewtypeDeriving`-generated code will now need fewer language extensions in certain situations than it did before.
* Don't generalize when typechecking a tuple sectionKrzysztof Gogolewski2020-06-272-13/+8
| | | | The code is simpler and cleaner.
* Revamp the treatment of auxiliary bindings for derived instancesRyan Scott2020-06-273-270/+567
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This started as a simple fix for #18321 that organically grew into a much more sweeping refactor of how auxiliary bindings for derived instances are handled. I have rewritten `Note [Auxiliary binders]` in `GHC.Tc.Deriv.Generate` to explain all of the moving parts, but the highlights are: * Previously, the OccName of each auxiliary binding would be given a suffix containing a hash of its package name, module name, and parent data type to avoid name clashes. This was needlessly complicated, so we take the more direct approach of generating `Exact` `RdrName`s for each auxiliary binding with the same `OccName`, but using an underlying `System` `Name` with a fresh `Unique` for each binding. Unlike hashes, allocating new `Unique`s does not require any cleverness and avoid name clashes all the same... * ...speaking of which, in order to convince the renamer that multiple auxiliary bindings with the same `OccName` (but different `Unique`s) are kosher, we now use `rnLocalValBindsLHS` instead of `rnTopBindsLHS` to rename auxiliary bindings. Again, see `Note [Auxiliary binders]` for the full story. * I have removed the `DerivHsBind` constructor for `DerivStuff`—which was only used for `Data.Data`-related auxiliary bindings—and refactored `gen_Data_binds` to use `DerivAuxBind` instead. This brings the treatment of `Data.Data`-related auxiliary bindings in line with every other form of auxiliary binding. Fixes #18321.
* Implement the proposed -XQualifiedDo extensionMatthias Pall Gissurarson2020-06-263-15/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Co-authored-by: Facundo Domínguez <facundo.dominguez@tweag.io> QualifiedDo is implemented using the same placeholders for operation names in the AST that were devised for RebindableSyntax. Whenever the renamer checks which names to use for do syntax, it first checks if the do block is qualified (e.g. M.do { stmts }), in which case it searches for qualified names in the module M. This allows users to write {-# LANGUAGE QualifiedDo #-} import qualified SomeModule as M f x = M.do -- desugars to: y <- M.return x -- M.return x M.>>= \y -> M.return y -- M.return y M.>> M.return y -- M.return y See Note [QualifiedDo] and the users' guide for more details. Issue #18214 Proposal: https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0216-qualified-do.rst Since we change the constructors `ITdo` and `ITmdo` to carry the new module name, we need to bump the haddock submodule to account or the new shape of these constructors.
* Clean up haddock hyperlinks of GHC.* (part2)Takenobu Tani2020-06-2523-61/+61
| | | | | | | | | | | | | | | | | | | | | | | | | This updates haddock comments only. This patch focuses to update for hyperlinks in GHC API's haddock comments, because broken links especially discourage newcomers. This includes the following hierarchies: - GHC.Iface.* - GHC.Llvm.* - GHC.Rename.* - GHC.Tc.* - GHC.HsToCore.* - GHC.StgToCmm.* - GHC.CmmToAsm.* - GHC.Runtime.* - GHC.Unit.* - GHC.Utils.* - GHC.SysTools.*
* Expunge GhcTcIdSimon Peyton Jones2020-06-2517-155/+154
| | | | | | | | | | | | | GHC.Hs.Extension had type GhcPs = GhcPass 'Parsed type GhcRn = GhcPass 'Renamed type GhcTc = GhcPass 'Typechecked type GhcTcId = GhcTc The last of these, GhcTcId, is a vestige of the past. This patch expunges it from GHC.
* DynFlags: store default depth in SDocContext (#17957)Sylvain Henry2020-06-181-2/+2
| | | | It avoids having to use DynFlags to reach for pprUserLength.
* Update compilerSylvain Henry2020-06-174-10/+12
| | | | | | | | | | | | | | | | Thanks to ghc-bignum, the compiler can be simplified: * Types and constructors of Integer and Natural can be wired-in. It means that we don't have to query them from interfaces. It also means that numeric literals don't have to carry their type with them. * The same code is used whatever ghc-bignum backend is enabled. In particular, conversion of bignum literals into final Core expressions is now much more straightforward. Bignum closure inspection too. * GHC itself doesn't depend on any integer-* package anymore * The `integerLibrary` setting is gone.
* Various performance improvementsKrzysztof Gogolewski2020-06-1716-29/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This implements several general performance improvements to GHC, to offset the effect of the linear types change. General optimisations: - Add a `coreFullView` function which iterates `coreView` on the head. This avoids making function recursive solely because the iterate `coreView` themselves. As a consequence, this functions can be inlined, and trigger case-of-known constructor (_e.g._ `kindRep_maybe`, `isLiftedRuntimeRep`, `isMultiplicityTy`, `getTyVar_maybe`, `splitAppTy_maybe`, `splitFunType_maybe`, `tyConAppTyCon_maybe`). The common pattern about all these functions is that they are almost always used as views, and immediately consumed by a case expression. This commit also mark them asx `INLINE`. - In `subst_ty` add a special case for nullary `TyConApp`, which avoid allocations altogether. - Use `mkTyConApp` in `subst_ty` for the general `TyConApp`. This required quite a bit of module shuffling. case. `myTyConApp` enforces crucial sharing, which was lost during substitution. See also !2952 . - Make `subst_ty` stricter. - In `eqType` (specifically, in `nonDetCmpType`), add a special case, tested first, for the very common case of nullary `TyConApp`. `nonDetCmpType` has been made `INLINE` otherwise it is actually a regression. This is similar to the optimisations in !2952. Linear-type specific optimisations: - Use `tyConAppTyCon_maybe` instead of the more complex `eqType` in the definition of the pattern synonyms `One` and `Many`. - Break the `hs-boot` cycles between `Multiplicity.hs` and `Type.hs`: `Multiplicity` now import `Type` normally, rather than from the `hs-boot`. This way `tyConAppTyCon_maybe` can inline properly in the `One` and `Many` pattern synonyms. - Make `updateIdTypeAndMult` strict in its type and multiplicity - The `scaleIdBy` gets a specialised definition rather than being an alias to `scaleVarBy` - `splitFunTy_maybe` is given the type `Type -> Maybe (Mult, Type, Type)` instead of `Type -> Maybe (Scaled Type, Type)` - Remove the `MultMul` pattern synonym in favour of a view `isMultMul` because pattern synonyms appear not to inline well. - in `eqType`, in a `FunTy`, compare multiplicities last: they are almost always both `Many`, so it helps failing faster. - Cache `manyDataConTy` in `mkTyConApp`, to make sure that all the instances of `TyConApp ManyDataConTy []` are physically the same. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Arnaud Spiwack Metric Decrease: haddock.base T12227 T12545 T12990 T1969 T3064 T5030 T9872b Metric Increase: haddock.base haddock.Cabal haddock.compiler T12150 T12234 T12425 T12707 T13035 T13056 T15164 T16190 T18304 T1969 T3064 T3294 T5631 T5642 T5837 T6048 T9020 T9233 T9675 T9872a T9961 WWRec
* Linear types (#15981)Krzysztof Gogolewski2020-06-1743-599/+1045
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the first step towards implementation of the linear types proposal (https://github.com/ghc-proposals/ghc-proposals/pull/111). It features * A language extension -XLinearTypes * Syntax for linear functions in the surface language * Linearity checking in Core Lint, enabled with -dlinear-core-lint * Core-to-core passes are mostly compatible with linearity * Fields in a data type can be linear or unrestricted; linear fields have multiplicity-polymorphic constructors. If -XLinearTypes is disabled, the GADT syntax defaults to linear fields The following items are not yet supported: * a # m -> b syntax (only prefix FUN is supported for now) * Full multiplicity inference (multiplicities are really only checked) * Decent linearity error messages * Linear let, where, and case expressions in the surface language (each of these currently introduce the unrestricted variant) * Multiplicity-parametric fields * Syntax for annotating lambda-bound or let-bound with a multiplicity * Syntax for non-linear/multiple-field-multiplicity records * Linear projections for records with a single linear field * Linear pattern synonyms * Multiplicity coercions (test LinearPolyType) A high-level description can be found at https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation Following the link above you will find a description of the changes made to Core. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Matthew Pickering * Arnaud Spiwack With contributions from: * Mark Barbone * Alexander Vershilov Updates haddock submodule.
* User's Guide: KnownNat evidence is NaturalVladislav Zavialov2020-06-151-4/+4
| | | | | This bit of documentation got outdated after commit 1fcede43d2b30f33b7505e25eb6b1f321be0407f
* Use HsForAllTelescope to avoid inferred, visible forallsRyan Scott2020-06-137-80/+94
| | | | | | | | | | | | | Currently, `HsForAllTy` permits the combination of `ForallVis` and `Inferred`, but you can't actually typecheck code that uses it (e.g., `forall {a} ->`). This patch refactors `HsForAllTy` to use a new `HsForAllTelescope` data type that makes a type-level distinction between visible and invisible `forall`s such that visible `forall`s do not track `Specificity`. That part of the patch is actually quite small; the rest is simply changing consumers of `HsType` to accommodate this new type. Fixes #18235. Bumps the `haddock` submodule.
* Rename Package into Unit (2)Sylvain Henry2020-06-131-1/+1
| | | | | | | * rename PackageState into UnitState * rename findWiredInPackages into findWiredInUnits * rename lookupModuleInAll[Packages,Units] * etc.
* Rename Package into UnitSylvain Henry2020-06-131-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | The terminology changed over time and now package databases contain "units" (there can be several units compiled from a single Cabal package: one per-component, one for each option set, one per instantiation, etc.). We should try to be consistent internally and use "units": that's what this renaming does. Maybe one day we'll fix the UI too (e.g. replace -package-id with -unit-id, we already have -this-unit-id and ghc-pkg has -unit-id...) but it's not done in this patch. * rename getPkgFrameworkOpts into getUnitFrameworkOpts * rename UnitInfoMap into ClosureUnitInfoMap * rename InstalledPackageIndex into UnitInfoMap * rename UnusablePackages into UnusableUnits * rename PackagePrecedenceIndex into UnitPrecedenceMap * rename PackageDatabase into UnitDatabase * rename pkgDatabase into unitDatabases * rename pkgState into unitState * rename initPackages into initUnits * rename renamePackage into renameUnitInfo * rename UnusablePackageReason into UnusableUnitReason * rename getPackage* into getUnit* * etc.
* Enhance UnitId useSylvain Henry2020-06-133-3/+3
| | | | | | | | * use UnitId instead of String to identify wired-in units * use UnitId instead of Unit in the backend (Unit are only use by Backpack to produce type-checked interfaces, not real code) * rename lookup functions for consistency * documentation
* Refactor homeUnitSylvain Henry2020-06-134-12/+17
| | | | | * rename thisPackage into homeUnit * document and refactor several Backpack things
* Clarify leaf module names for new module hierarchyTakenobu Tani2020-06-1013-22/+22
| | | | | | | | | | | | | | | | | | | | | This updates comments only. This patch replaces leaf module names according to new module hierarchy [1][2] as followings: * Expand leaf names to easily find the module path: for instance, `Id.hs` to `GHC.Types.Id`. * Modify leaf names according to new module hierarchy: for instance, `Convert.hs` to `GHC.ThToHs`. * Fix typo: for instance, `GHC.Core.TyCo.Rep.hs` to `GHC.Core.TyCo.Rep` See also !3375 [1]: https://gitlab.haskell.org/ghc/ghc/-/wikis/Make-GHC-codebase-more-modular [2]: https://gitlab.haskell.org/ghc/ghc/issues/13009
* Always use rnImplicitBndrs to bring implicit tyvars into scopeRyan Scott2020-06-101-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This implements a first step towards #16762 by changing the renamer to always use `rnImplicitBndrs` to bring implicitly bound type variables into scope. The main change is in `rnFamInstEqn` and `bindHsQTyVars`, which previously used _ad hoc_ methods of binding their implicit tyvars. There are a number of knock-on consequences: * One of the reasons that `rnFamInstEqn` used an _ad hoc_ binding mechanism was to give more precise source locations in `-Wunused-type-patterns` warnings. (See https://gitlab.haskell.org/ghc/ghc/issues/16762#note_273343 for an example of this.) However, these warnings are actually a little _too_ precise, since implicitly bound type variables don't have exact binding sites like explicitly bound type variables do. A similar problem existed for "`Different names for the same type variable`" errors involving implicit tyvars bound by `bindHsQTyVars`. Therefore, we simply accept the less precise (but more accurate) source locations from `rnImplicitBndrs` in `rnFamInstEqn` and `bindHsQTyVars`. See `Note [Source locations for implicitly bound type variables]` in `GHC.Rename.HsType` for the full story. * In order for `rnImplicitBndrs` to work in `rnFamInstEqn`, it needs to be able to look up names from the parent class (in the event that we are renaming an associated type family instance). As a result, `rnImplicitBndrs` now takes an argument of type `Maybe assoc`, which is `Just` in the event that a type family instance is associated with a class. * Previously, GHC kept track of three type synonyms for free type variables in the renamer: `FreeKiTyVars`, `FreeKiTyVarsDups` (which are allowed to contain duplicates), and `FreeKiTyVarsNoDups` (which contain no duplicates). However, making is a distinction between `-Dups` and `-NoDups` is now pointless, as all code that returns `FreeKiTyVars{,Dups,NoDups}` will eventually end up being passed to `rnImplicitBndrs`, which removes duplicates. As a result, I decided to just get rid of `FreeKiTyVarsDups` and `FreeKiTyVarsNoDups`, leaving only `FreeKiTyVars`. * The `bindLRdrNames` and `deleteBys` functions are now dead code, so I took the liberty of removing them.
* Make GADT constructors adhere to the forall-or-nothing rule properlyRyan Scott2020-06-091-39/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Issue #18191 revealed that the types of GADT constructors don't quite adhere to the `forall`-or-nothing rule. This patch serves to clean up this sad state of affairs somewhat. The main change is not in the code itself, but in the documentation, as this patch introduces two sections to the GHC User's Guide: * A "Formal syntax for GADTs" section that presents a BNF-style grammar for what is and isn't allowed in GADT constructor types. This mostly exists to codify GHC's existing behavior, but it also imposes a new restriction that addresses #18191: the outermost `forall` and/or context in a GADT constructor is not allowed to be surrounded by parentheses. Doing so would make these `forall`s/contexts nested, and GADTs do not support nested `forall`s/contexts at present. * A "`forall`-or-nothing rule" section that describes exactly what the `forall`-or-nothing rule is all about. Surprisingly, there was no mention of this anywhere in the User's Guide up until now! To adhere the new specification in the "Formal syntax for GADTs" section of the User's Guide, the following code changes were made: * A new function, `GHC.Hs.Type.splitLHsGADTPrefixTy`, was introduced. This is very much like `splitLHsSigmaTy`, except that it avoids splitting apart any parentheses, which can be syntactically significant for GADT types. See `Note [No nested foralls or contexts in GADT constructors]` in `GHC.Hs.Type`. * `ConDeclGADTPrefixPs`, an extension constructor for `XConDecl`, was introduced so that `GHC.Parser.PostProcess.mkGadtDecl` can return it when given a prefix GADT constructor. Unlike `ConDeclGADT`, `ConDeclGADTPrefixPs` does not split the GADT type into its argument and result types, as this cannot be done until after the type is renamed (see `Note [GADT abstract syntax]` in `GHC.Hs.Decls` for why this is the case). * `GHC.Renamer.Module.rnConDecl` now has an additional case for `ConDeclGADTPrefixPs` that (1) splits apart the full `LHsType` into its `forall`s, context, argument types, and result type, and (2) checks for nested `forall`s/contexts. Step (2) used to be performed the typechecker (in `GHC.Tc.TyCl.badDataConTyCon`) rather than the renamer, but now the relevant code from the typechecker can simply be deleted. One nice side effect of this change is that we are able to give a more accurate error message for GADT constructors that use visible dependent quantification (e.g., `MkFoo :: forall a -> a -> Foo a`), which improves the stderr in the `T16326_Fail6` test case. Fixes #18191. Bumps the Haddock submodule.