| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, associated type family defaults were validity-checked
during typechecking. Unfortunately, the error messages that these
checks produce run the risk of printing knot-tied type constructors,
which will cause GHC to diverge. In order to preserve the current
error message's descriptiveness, this patch postpones these validity
checks until after typechecking, which are now located in the new
function `GHC.Tc.Validity.checkValidAssocTyFamDeflt`.
Fixes #18648.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FastStrings can be compared in 2 ways: by Unique or lexically. We don't
want to bless one particular way with an "Ord" instance because it leads
to bugs (#18562) or to suboptimal code (e.g. using lexical comparison
while a Unique comparison would suffice).
UTF-8 encoding has the advantage that sorting strings by their encoded
bytes also sorts them by their Unicode code points, without having to
decode the actual code points. BUT GHC uses Modified UTF-8 which
diverges from UTF-8 by encoding \0 as 0xC080 instead of 0x00 (to avoid
null bytes in the middle of a String so that the string can still be
null-terminated). This patch adds a new `utf8CompareShortByteString`
function that performs sorting by bytes but that also takes Modified
UTF-8 into account. It is much more performant than decoding the strings
into [Char] to perform comparisons (which we did in the previous patch).
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we pretty-print a UnitId for the user, we try to map it back to its
origin package name, version and component to print
"package-version:component" instead of some hash.
The UnitId type doesn't carry these information, so we have to look into
a UnitState to find them. This is why the Outputable instance of
UnitId used `sdocWithDynFlags` in order to access the `unitState` field
of DynFlags.
This is wrong for several reasons:
1. The DynFlags are accessed when the message is printed, not when it is
generated. So we could imagine that the unitState may have changed
in-between. Especially if we want to allow unit unloading.
2. We want GHC to support several independent sessions at once, hence
several UnitState. The current approach supposes there is a unique
UnitState as a UnitId doesn't indicate which UnitState to use.
See the Note [Pretty-printing UnitId] in GHC.Unit for the new approach
implemented by this patch.
One step closer to remove `sdocDynFlags` field from `SDocContext`
(#10143).
Fix #18124.
Also fix some Backpack code to use SDoc instead of String.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch mainly just replaces use of
XRec p (IdP p)
with
LIdP p
One slightly more significant change is to parameterise
HsPatSynDetails over the pass rather than the argument type,
so that it's uniform with HsConDeclDetails and HsConPatDetails.
I also got rid of the dead code GHC.Hs.type.conDetailsArgs
But this is all just minor refactoring. No change in functionality.
|
|
|
|
|
| |
Move uniqFromMask from Unique.Supply to Unique.
Move the the functions that call mkUnique from Unique to Builtin.Uniques
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix #18323 by adding a few lines of code to handle non-recursive
pattern bindings. see GHC.Tc.Gen.Bind
Note [Special case for non-recursive pattern bindings]
Alas, this confused the pattern-match overlap checker; see #18323.
Note that this patch only affects pattern bindings like that
for (x,y) in this program
combine :: (forall a . [a] -> a) -> [forall a. a -> a]
-> ((forall a . [a] -> a), [forall a. a -> a])
breaks = let (x,y) = combine head ids
in x y True
We need ImpredicativeTypes for those [forall a. a->a] types to be
valid. And with ImpredicativeTypes the old, unprincipled "allow
unification variables to unify with a polytype" story actually
works quite well. So this test compiles fine (if delicatedly) with
old GHCs; but not with QuickLook unless we add this patch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since Backpack the "home unit" is much more involved than what it was
before (just an identifier obtained with `-this-unit-id`). Now it is
used in conjunction with `-component-id` and `-instantiated-with` to
configure module instantiations and to detect if we are type-checking an
indefinite unit or compiling a definite one.
This patch introduces a new HomeUnit datatype which is much easier to
understand. Moreover to make GHC support several packages in the same
instances, we will need to handle several HomeUnits so having a
dedicated (documented) type is helpful.
Finally in #14335 we will also need to handle the case where we have no
HomeUnit at all because we are only loading existing interfaces for
plugins which live in a different space compared to units used to
produce target code. Several functions will have to be refactored to
accept "Maybe HomeUnit" parameters instead of implicitly querying the
HomeUnit fields in DynFlags. Having a dedicated type will make this
easier.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Where bindings can see evidence from the pattern match of the `GRHSs`
they belong to, but not from anything in any of the guards (which belong
to one of possibly many RHSs).
Before this patch, we did *not* consider said evidence, causing #18533,
where the lack of considering type information from a case pattern match
leads to failure to resolve the vanilla COMPLETE set of a data type.
Making available that information required a medium amount of
refactoring so that `checkMatches` can return a
`[(Deltas, NonEmpty Deltas)]`; one `(Deltas, NonEmpty Deltas)` for each
`GRHSs` of the match group. The first component of the pair is the
covered set of the pattern, the second component is one covered set per
RHS.
Fixes #18533.
Regression test case: T18533
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
|
|
|
|
|
|
|
| |
Previously the desugarer would instead fall over when it realized that
there was no unfolding for an imported function with a SPECIALISE
pragma. We now rather drop the SPECIALISE pragma and throw a warning.
Fixes #18118.
|
|
|
|
|
|
| |
Close #18534.
See commentary in the patch.
|
|
|
|
|
|
|
| |
We don't need to use `sdocWithDynFlags` to know whether we should
display linear types for datacon types, we already have
`sdocLinearTypes` field in `SDocContext`. Moreover we want to remove
`sdocWithDynFlags` (#10143, #17957)).
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, `rnFamInstEqn` would mark the name of the type/data
family used in an equation as an occurrence, regardless of what sort
of family it is. Most of the time, this is the correct thing to do.
The exception is closed type families, whose equations constitute its
definition and therefore should not be marked as occurrences.
Overzealously counting the equations of a closed type family as
occurrences can cause certain warnings to not be emitted, as observed
in #18470. See `Note [Type family equations and occurrences]` in
`GHC.Rename.Module` for the full story.
This fixes #18470 with a little bit of extra-casing in
`rnFamInstEqn`. To accomplish this, I added an extra
`ClosedTyFamInfo` field to the `NonAssocTyFamEqn` constructor of
`AssocTyFamInfo` and refactored the relevant call sites accordingly
so that this information is propagated to `rnFamInstEqn`.
While I was in town, I moved `wrongTyFamName`, which checks that the
name of a closed type family matches the name in an equation for that
family, from the renamer to the typechecker to avoid the need for an
`ASSERT`. As an added bonus, this lets us simplify the details of
`ClosedTyFamInfo` a bit.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change `Located X` usage to `XRec pass X`
This increases the scope of the LPat experiment to almost all of GHC.
Introduce UnXRec and MapXRec classes
Fixes #17587 and #18408
Updates haddock submodule
Co-authored-by: Philipp Krüger <philipp.krueger1@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Issue #18451 showed that we could get an infinite type, through
over-use of occCheckExpand in the kind of an /occurrence/ of a
type variable.
See Note [Occurrence checking: look inside kinds] in GHC.Core.Type
This patch fixes the problem by making occCheckExpand less eager
to expand synonyms in kinds.
It also improves pretty printing of kinds, by *not* suppressing
the kind on a tyvar-binder like
(a :: Const Type b)
where type Const p q = p. Even though the kind of 'a' is Type,
we don't want to suppress the kind ascription. Example: the
error message for polykinds/T18451{a,b}. See GHC.Core.TyCo.Ppr
Note [Suppressing * kinds].
|
|
|
|
|
| |
There's one backwards compatibility issue: GHC.Prim no longer exports
Void#, we now manually re-export it from GHC.Exts.
|
|
|
|
|
|
|
|
|
| |
They both have the same role and Backend name is more explicit.
Metric Decrease:
T3064
Update Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Haddock comments are, first and foremost, comments. It's very annoying
to incorporate them into the grammar. We can take advantage of an
important property: adding a Haddock comment does not change the parse
tree in any way other than wrapping some nodes in HsDocTy and the like
(and if it does, that's a bug).
This patch implements the following:
* Accumulate Haddock comments with their locations in the P monad.
This is handled in the lexer.
* After parsing, do a pass over the AST to associate Haddock comments
with AST nodes using location info.
* Report the leftover comments to the user as a warning (-Winvalid-haddock).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are three problems with the current API:
1. It is hard to properly write instances for ``Quote m => m (TExp a)`` as the type is the composition
of two type constructors. Doing so in your program involves making your own newtype and
doing a lot of wrapping/unwrapping.
For example, if I want to create a language which I can either run immediately or
generate code from I could write the following with the new API. ::
class Lang r where
_int :: Int -> r Int
_if :: r Bool -> r a -> r a -> r a
instance Lang Identity where
_int = Identity
_if (Identity b) (Identity t) (Identity f) = Identity (if b then t else f)
instance Quote m => Lang (Code m) where
_int = liftTyped
_if cb ct cf = [|| if $$cb then $$ct else $$cf ||]
2. When doing code generation it is common to want to store code fragments in
a map. When doing typed code generation, these code fragments contain a
type index so it is desirable to store them in one of the parameterised
map data types such as ``DMap`` from ``dependent-map`` or ``MapF`` from
``parameterized-utils``.
::
compiler :: Env -> AST a -> Code Q a
data AST a where ...
data Ident a = ...
type Env = MapF Ident (Code Q)
newtype Code m a = Code (m (TExp a))
In this example, the ``MapF`` maps an ``Ident String`` directly to a ``Code Q String``.
Using one of these map types currently requires creating your own newtype and constantly
wrapping every quotation and unwrapping it when using a splice. Achievable, but
it creates even more syntactic noise than normal metaprogramming.
3. ``m (TExp a)`` is ugly to read and write, understanding ``Code m a`` is
easier. This is a weak reason but one everyone
can surely agree with.
Updates text submodule.
|
|
|
|
|
|
|
| |
This pragma has no effect since 2011.
It was introduced for External Core, which no longer exists.
Updates haddock submodule.
|
|
|
|
|
|
|
|
|
|
| |
This patch (due to Richard Eisenberg) improves
documentation of the wrapper returned by tcSubMult
(see Note [Wrapper returned from tcSubMult] in
GHC.Tc.Utils.Unify).
And, more substantially, it cleans up the multiplicity
handling in the typechecking of NPlusKPat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As #18412 points out, it should be OK for multiple case alternatives
to have a higher rank type, provided they are all the same.
This patch implements that change. It sweeps away
GHC.Tc.Gen.Match.tauifyMultipleBranches, and friends, replacing it
with an enhanced version of fillInferResult.
The basic change to fillInferResult is to permit the case in which
another case alternative has already filled in the result; and in
that case simply unify. It's very simple actually.
See the new Note [fillInferResult] in TcMType
Other refactoring:
- Move all the InferResult code to one place, in GHC.Tc.Utils.TcMType
(previously some of it was in Unify)
- Move tcInstType and friends from TcMType to Instantiate, where it
more properly belongs. (TCMType was getting very long.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Executing on the plan described in #17582, this patch changes the way if expressions
are handled in the compiler in the presence of rebindable syntax. We get rid of the
SyntaxExpr field of HsIf and instead, when rebindable syntax is on, we rewrite the HsIf
node to the appropriate sequence of applications of the local `ifThenElse` function.
In order to be able to report good error messages, with expressions as they were
written by the user (and not as desugared by the renamer), we make use of TTG
extensions to extend GhcRn expression ASTs with an `HsExpansion` construct, which
keeps track of a source (GhcPs) expression and the desugared (GhcRn) expression that
it gives rise to. This way, we can typecheck the latter while reporting the former in
error messages.
In order to discard the error context lines that arise from typechecking the desugared
expressions (because they talk about expressions that the user has not written), we
carefully give a special treatment to the nodes fabricated by this new renaming-time
transformation when typechecking them. See Note [Rebindable syntax and HsExpansion]
for more details. The note also includes a recipe to apply the same treatment to
other rebindable constructs.
Tests 'rebindable11' and 'rebindable12' have been added to make sure we report
identical error messages as before this patch under various circumstances.
We also now disable rebindable syntax when processing untyped TH quotes, as per
the discussion in #18102 and document the interaction of rebindable syntax and
Template Haskell, both in Note [Template Haskell quotes and Rebindable Syntax]
and in the user guide, adding a test to make sure that we do not regress in
that regard.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes #17667 and should help to avoid such issues going forward.
The changes are mostly mechanical in nature. With two notable
exceptions.
* The register allocator.
The register allocator references registers by distinct uniques.
However they come from the types of VirtualReg, Reg or Unique in
various places. As a result we sometimes cast the key type of the
map and use functions which operate on the now typed map but take
a raw Unique as actual key. The logic itself has not changed it
just becomes obvious where we do so now.
* <Type>Env Modules.
As an example a ClassEnv is currently queried using the types `Class`,
`Name`, and `TyCon`. This is safe since for a distinct class value all
these expressions give the same unique.
getUnique cls
getUnique (classTyCon cls)
getUnique (className cls)
getUnique (tcName $ classTyCon cls)
This is for the most part contained within the modules defining the
interface. However it requires us to play dirty when we are given a
`Name` to lookup in a `UniqFM Class a` map. But again the logic did
not change and it's for the most part hidden behind the Env Module.
Some of these cases could be avoided by refactoring but this is left
for future work.
We also bump the haddock submodule as it uses UniqFM.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Following a long conversation with Richard, this patch tidies up the
handling of return kinds for data/newtype declarations (vanilla,
family, and instance).
I have substantially edited the Notes in TyCl, so they would
bear careful reading.
Fixes #18300, #18357
In GHC.Tc.Instance.Family.newFamInst we were checking some Lint-like
properties with ASSSERT. Instead Richard and I have added
a proper linter for axioms, and called it from lintGblEnv, which in
turn is called in tcRnModuleTcRnM
New tests (T18300, T18357) cause an ASSERT failure in HEAD.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
`GeneralizedNewtypeDeriving` is in the unique situation where it must
produce an `LHsType GhcPs` from a Core `Type`. Historically, this was
done with the `typeToLHsType` function, which walked over the entire
`Type` and attempted to construct an `LHsType` with the same overall
structure. `typeToLHsType` is quite complicated, however, and has
been the subject of numerous bugs over the years (e.g., #14579).
Luckily, there is an easier way to accomplish the same thing: the
`XHsType` constructor of `HsType`. `XHsType` bundles an `NHsCoreTy`,
which allows embedding a Core `Type` directly into an `HsType`,
avoiding the need to laboriously convert from one to another (as
`typeToLHsType` did). Moreover, renaming and typechecking an
`XHsType` is simple, since one doesn't need to do anything to a
Core `Type`...
...well, almost. For the reasons described in
`Note [Typechecking NHsCoreTys]` in `GHC.Tc.Gen.HsType`, we must
apply a substitution that we build from the local `tcl_env` type
environment. But that's a relatively modest price to pay.
Now that `GeneralizedNewtypeDeriving` uses `NHsCoreTy`, the
`typeToLHsType` function no longer has any uses in GHC, so this patch
rips it out. Some additional tweaks to `hsTypeNeedsParens` were
necessary to make the new `-ddump-deriv` output correctly
parenthesized, but other than that, this patch is quite
straightforward.
This is a mostly internal refactoring, although it is likely that
`GeneralizedNewtypeDeriving`-generated code will now need fewer
language extensions in certain situations than it did before.
|
|
|
|
| |
The code is simpler and cleaner.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This started as a simple fix for #18321 that organically grew into a
much more sweeping refactor of how auxiliary bindings for derived
instances are handled. I have rewritten `Note [Auxiliary binders]`
in `GHC.Tc.Deriv.Generate` to explain all of the moving parts, but
the highlights are:
* Previously, the OccName of each auxiliary binding would be given
a suffix containing a hash of its package name, module name, and
parent data type to avoid name clashes. This was needlessly
complicated, so we take the more direct approach of generating
`Exact` `RdrName`s for each auxiliary binding with the same
`OccName`, but using an underlying `System` `Name` with a fresh
`Unique` for each binding. Unlike hashes, allocating new `Unique`s
does not require any cleverness and avoid name clashes all the
same...
* ...speaking of which, in order to convince the renamer that multiple
auxiliary bindings with the same `OccName` (but different
`Unique`s) are kosher, we now use `rnLocalValBindsLHS` instead of
`rnTopBindsLHS` to rename auxiliary bindings. Again, see
`Note [Auxiliary binders]` for the full story.
* I have removed the `DerivHsBind` constructor for
`DerivStuff`—which was only used for `Data.Data`-related
auxiliary bindings—and refactored `gen_Data_binds` to use
`DerivAuxBind` instead. This brings the treatment of
`Data.Data`-related auxiliary bindings in line with every other
form of auxiliary binding.
Fixes #18321.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Co-authored-by: Facundo Domínguez <facundo.dominguez@tweag.io>
QualifiedDo is implemented using the same placeholders for operation names in
the AST that were devised for RebindableSyntax. Whenever the renamer checks
which names to use for do syntax, it first checks if the do block is qualified
(e.g. M.do { stmts }), in which case it searches for qualified names in
the module M.
This allows users to write
{-# LANGUAGE QualifiedDo #-}
import qualified SomeModule as M
f x = M.do -- desugars to:
y <- M.return x -- M.return x M.>>= \y ->
M.return y -- M.return y M.>>
M.return y -- M.return y
See Note [QualifiedDo] and the users' guide for more details.
Issue #18214
Proposal:
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0216-qualified-do.rst
Since we change the constructors `ITdo` and `ITmdo` to carry the new module
name, we need to bump the haddock submodule to account or the new shape of
these constructors.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This updates haddock comments only.
This patch focuses to update for hyperlinks in GHC API's haddock comments,
because broken links especially discourage newcomers.
This includes the following hierarchies:
- GHC.Iface.*
- GHC.Llvm.*
- GHC.Rename.*
- GHC.Tc.*
- GHC.HsToCore.*
- GHC.StgToCmm.*
- GHC.CmmToAsm.*
- GHC.Runtime.*
- GHC.Unit.*
- GHC.Utils.*
- GHC.SysTools.*
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GHC.Hs.Extension had
type GhcPs = GhcPass 'Parsed
type GhcRn = GhcPass 'Renamed
type GhcTc = GhcPass 'Typechecked
type GhcTcId = GhcTc
The last of these, GhcTcId, is a vestige of the past.
This patch expunges it from GHC.
|
|
|
|
| |
It avoids having to use DynFlags to reach for pprUserLength.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Thanks to ghc-bignum, the compiler can be simplified:
* Types and constructors of Integer and Natural can be wired-in. It
means that we don't have to query them from interfaces. It also means
that numeric literals don't have to carry their type with them.
* The same code is used whatever ghc-bignum backend is enabled. In
particular, conversion of bignum literals into final Core expressions
is now much more straightforward. Bignum closure inspection too.
* GHC itself doesn't depend on any integer-* package anymore
* The `integerLibrary` setting is gone.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements several general performance improvements to GHC,
to offset the effect of the linear types change.
General optimisations:
- Add a `coreFullView` function which iterates `coreView` on the
head. This avoids making function recursive solely because the
iterate `coreView` themselves. As a consequence, this functions can
be inlined, and trigger case-of-known constructor (_e.g._
`kindRep_maybe`, `isLiftedRuntimeRep`, `isMultiplicityTy`,
`getTyVar_maybe`, `splitAppTy_maybe`, `splitFunType_maybe`,
`tyConAppTyCon_maybe`). The common pattern about all these functions
is that they are almost always used as views, and immediately
consumed by a case expression. This commit also mark them asx `INLINE`.
- In `subst_ty` add a special case for nullary `TyConApp`, which avoid
allocations altogether.
- Use `mkTyConApp` in `subst_ty` for the general `TyConApp`. This
required quite a bit of module shuffling.
case. `myTyConApp` enforces crucial sharing, which was lost during
substitution. See also !2952 .
- Make `subst_ty` stricter.
- In `eqType` (specifically, in `nonDetCmpType`), add a special case,
tested first, for the very common case of nullary `TyConApp`.
`nonDetCmpType` has been made `INLINE` otherwise it is actually a
regression. This is similar to the optimisations in !2952.
Linear-type specific optimisations:
- Use `tyConAppTyCon_maybe` instead of the more complex `eqType` in
the definition of the pattern synonyms `One` and `Many`.
- Break the `hs-boot` cycles between `Multiplicity.hs` and `Type.hs`:
`Multiplicity` now import `Type` normally, rather than from the
`hs-boot`. This way `tyConAppTyCon_maybe` can inline properly in the
`One` and `Many` pattern synonyms.
- Make `updateIdTypeAndMult` strict in its type and multiplicity
- The `scaleIdBy` gets a specialised definition rather than being an
alias to `scaleVarBy`
- `splitFunTy_maybe` is given the type `Type -> Maybe (Mult, Type,
Type)` instead of `Type -> Maybe (Scaled Type, Type)`
- Remove the `MultMul` pattern synonym in favour of a view `isMultMul`
because pattern synonyms appear not to inline well.
- in `eqType`, in a `FunTy`, compare multiplicities last: they are
almost always both `Many`, so it helps failing faster.
- Cache `manyDataConTy` in `mkTyConApp`, to make sure that all the
instances of `TyConApp ManyDataConTy []` are physically the same.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Arnaud Spiwack
Metric Decrease:
haddock.base
T12227
T12545
T12990
T1969
T3064
T5030
T9872b
Metric Increase:
haddock.base
haddock.Cabal
haddock.compiler
T12150
T12234
T12425
T12707
T13035
T13056
T15164
T16190
T18304
T1969
T3064
T3294
T5631
T5642
T5837
T6048
T9020
T9233
T9675
T9872a
T9961
WWRec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first step towards implementation of the linear types proposal
(https://github.com/ghc-proposals/ghc-proposals/pull/111).
It features
* A language extension -XLinearTypes
* Syntax for linear functions in the surface language
* Linearity checking in Core Lint, enabled with -dlinear-core-lint
* Core-to-core passes are mostly compatible with linearity
* Fields in a data type can be linear or unrestricted; linear fields
have multiplicity-polymorphic constructors.
If -XLinearTypes is disabled, the GADT syntax defaults to linear fields
The following items are not yet supported:
* a # m -> b syntax (only prefix FUN is supported for now)
* Full multiplicity inference (multiplicities are really only checked)
* Decent linearity error messages
* Linear let, where, and case expressions in the surface language
(each of these currently introduce the unrestricted variant)
* Multiplicity-parametric fields
* Syntax for annotating lambda-bound or let-bound with a multiplicity
* Syntax for non-linear/multiple-field-multiplicity records
* Linear projections for records with a single linear field
* Linear pattern synonyms
* Multiplicity coercions (test LinearPolyType)
A high-level description can be found at
https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation
Following the link above you will find a description of the changes made to Core.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Matthew Pickering
* Arnaud Spiwack
With contributions from:
* Mark Barbone
* Alexander Vershilov
Updates haddock submodule.
|
|
|
|
|
| |
This bit of documentation got outdated after commit
1fcede43d2b30f33b7505e25eb6b1f321be0407f
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, `HsForAllTy` permits the combination of `ForallVis` and
`Inferred`, but you can't actually typecheck code that uses it
(e.g., `forall {a} ->`). This patch refactors `HsForAllTy` to use a
new `HsForAllTelescope` data type that makes a type-level distinction
between visible and invisible `forall`s such that visible `forall`s
do not track `Specificity`. That part of the patch is actually quite
small; the rest is simply changing consumers of `HsType` to
accommodate this new type.
Fixes #18235. Bumps the `haddock` submodule.
|
|
|
|
|
|
|
| |
* rename PackageState into UnitState
* rename findWiredInPackages into findWiredInUnits
* rename lookupModuleInAll[Packages,Units]
* etc.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The terminology changed over time and now package databases contain
"units" (there can be several units compiled from a single Cabal
package: one per-component, one for each option set, one per
instantiation, etc.). We should try to be consistent internally and use
"units": that's what this renaming does. Maybe one day we'll fix the UI
too (e.g. replace -package-id with -unit-id, we already have
-this-unit-id and ghc-pkg has -unit-id...) but it's not done in this
patch.
* rename getPkgFrameworkOpts into getUnitFrameworkOpts
* rename UnitInfoMap into ClosureUnitInfoMap
* rename InstalledPackageIndex into UnitInfoMap
* rename UnusablePackages into UnusableUnits
* rename PackagePrecedenceIndex into UnitPrecedenceMap
* rename PackageDatabase into UnitDatabase
* rename pkgDatabase into unitDatabases
* rename pkgState into unitState
* rename initPackages into initUnits
* rename renamePackage into renameUnitInfo
* rename UnusablePackageReason into UnusableUnitReason
* rename getPackage* into getUnit*
* etc.
|
|
|
|
|
|
|
|
| |
* use UnitId instead of String to identify wired-in units
* use UnitId instead of Unit in the backend (Unit are only use by
Backpack to produce type-checked interfaces, not real code)
* rename lookup functions for consistency
* documentation
|
|
|
|
|
| |
* rename thisPackage into homeUnit
* document and refactor several Backpack things
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This updates comments only.
This patch replaces leaf module names according to new module
hierarchy [1][2] as followings:
* Expand leaf names to easily find the module path:
for instance, `Id.hs` to `GHC.Types.Id`.
* Modify leaf names according to new module hierarchy:
for instance, `Convert.hs` to `GHC.ThToHs`.
* Fix typo:
for instance, `GHC.Core.TyCo.Rep.hs` to `GHC.Core.TyCo.Rep`
See also !3375
[1]: https://gitlab.haskell.org/ghc/ghc/-/wikis/Make-GHC-codebase-more-modular
[2]: https://gitlab.haskell.org/ghc/ghc/issues/13009
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements a first step towards #16762 by changing the renamer
to always use `rnImplicitBndrs` to bring implicitly bound type
variables into scope. The main change is in `rnFamInstEqn` and
`bindHsQTyVars`, which previously used _ad hoc_ methods of binding
their implicit tyvars.
There are a number of knock-on consequences:
* One of the reasons that `rnFamInstEqn` used an _ad hoc_ binding
mechanism was to give more precise source locations in
`-Wunused-type-patterns` warnings. (See
https://gitlab.haskell.org/ghc/ghc/issues/16762#note_273343 for an
example of this.) However, these warnings are actually a little
_too_ precise, since implicitly bound type variables don't have
exact binding sites like explicitly bound type variables do.
A similar problem existed for
"`Different names for the same type variable`" errors involving
implicit tyvars bound by `bindHsQTyVars`.
Therefore, we simply accept the less precise (but more accurate)
source locations from `rnImplicitBndrs` in `rnFamInstEqn` and
`bindHsQTyVars`. See
`Note [Source locations for implicitly bound type variables]` in
`GHC.Rename.HsType` for the full story.
* In order for `rnImplicitBndrs` to work in `rnFamInstEqn`, it needs
to be able to look up names from the parent class (in the event
that we are renaming an associated type family instance). As a
result, `rnImplicitBndrs` now takes an argument of type
`Maybe assoc`, which is `Just` in the event that a type family
instance is associated with a class.
* Previously, GHC kept track of three type synonyms for free type
variables in the renamer: `FreeKiTyVars`, `FreeKiTyVarsDups`
(which are allowed to contain duplicates), and
`FreeKiTyVarsNoDups` (which contain no duplicates). However, making
is a distinction between `-Dups` and `-NoDups` is now pointless, as
all code that returns `FreeKiTyVars{,Dups,NoDups}` will eventually
end up being passed to `rnImplicitBndrs`, which removes duplicates.
As a result, I decided to just get rid of `FreeKiTyVarsDups` and
`FreeKiTyVarsNoDups`, leaving only `FreeKiTyVars`.
* The `bindLRdrNames` and `deleteBys` functions are now dead code, so
I took the liberty of removing them.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Issue #18191 revealed that the types of GADT constructors don't quite
adhere to the `forall`-or-nothing rule. This patch serves to clean up
this sad state of affairs somewhat. The main change is not in the
code itself, but in the documentation, as this patch introduces two
sections to the GHC User's Guide:
* A "Formal syntax for GADTs" section that presents a BNF-style
grammar for what is and isn't allowed in GADT constructor types.
This mostly exists to codify GHC's existing behavior, but it also
imposes a new restriction that addresses #18191: the outermost
`forall` and/or context in a GADT constructor is not allowed to be
surrounded by parentheses. Doing so would make these
`forall`s/contexts nested, and GADTs do not support nested
`forall`s/contexts at present.
* A "`forall`-or-nothing rule" section that describes exactly what
the `forall`-or-nothing rule is all about. Surprisingly, there was
no mention of this anywhere in the User's Guide up until now!
To adhere the new specification in the "Formal syntax for GADTs"
section of the User's Guide, the following code changes were made:
* A new function, `GHC.Hs.Type.splitLHsGADTPrefixTy`, was introduced.
This is very much like `splitLHsSigmaTy`, except that it avoids
splitting apart any parentheses, which can be syntactically
significant for GADT types. See
`Note [No nested foralls or contexts in GADT constructors]` in
`GHC.Hs.Type`.
* `ConDeclGADTPrefixPs`, an extension constructor for `XConDecl`, was
introduced so that `GHC.Parser.PostProcess.mkGadtDecl` can return
it when given a prefix GADT constructor. Unlike `ConDeclGADT`,
`ConDeclGADTPrefixPs` does not split the GADT type into its argument
and result types, as this cannot be done until after the type is
renamed (see `Note [GADT abstract syntax]` in `GHC.Hs.Decls` for why
this is the case).
* `GHC.Renamer.Module.rnConDecl` now has an additional case for
`ConDeclGADTPrefixPs` that (1) splits apart the full `LHsType` into
its `forall`s, context, argument types, and result type, and
(2) checks for nested `forall`s/contexts. Step (2) used to be
performed the typechecker (in `GHC.Tc.TyCl.badDataConTyCon`) rather
than the renamer, but now the relevant code from the typechecker
can simply be deleted.
One nice side effect of this change is that we are able to give a
more accurate error message for GADT constructors that use visible
dependent quantification (e.g., `MkFoo :: forall a -> a -> Foo a`),
which improves the stderr in the `T16326_Fail6` test case.
Fixes #18191. Bumps the Haddock submodule.
|