summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Utils/Backpack.hs
Commit message (Collapse)AuthorAgeFilesLines
* Handle records in the renamersheaf2023-03-291-30/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch moves the field-based logic for disambiguating record updates to the renamer. The type-directed logic, scheduled for removal, remains in the typechecker. To do this properly (and fix the myriad of bugs surrounding the treatment of duplicate record fields), we took the following main steps: 1. Create GREInfo, a renamer-level equivalent to TyThing which stores information pertinent to the renamer. This allows us to uniformly treat imported and local Names in the renamer, as described in Note [GREInfo]. 2. Remove GreName. Instead of a GlobalRdrElt storing GreNames, which distinguished between normal names and field names, we now store simple Names in GlobalRdrElt, along with the new GREInfo information which allows us to recover the FieldLabel for record fields. 3. Add namespacing for record fields, within the OccNames themselves. This allows us to remove the mangling of duplicate field selectors. This change ensures we don't print mangled names to the user in error messages, and allows us to handle duplicate record fields in Template Haskell. 4. Move record disambiguation to the renamer, and operate on the level of data constructors instead, to handle #21443. The error message text for ambiguous record updates has also been changed to reflect that type-directed disambiguation is on the way out. (3) means that OccEnv is now a bit more complex: we first key on the textual name, which gives an inner map keyed on NameSpace: OccEnv a ~ FastStringEnv (UniqFM NameSpace a) Note that this change, along with (2), both increase the memory residency of GlobalRdrEnv = OccEnv [GlobalRdrElt], which causes a few tests to regress somewhat in compile-time allocation. Even though (3) simplified a lot of code (in particular the treatment of field selectors within Template Haskell and in error messages), it came with one important wrinkle: in the situation of -- M.hs-boot module M where { data A; foo :: A -> Int } -- M.hs module M where { data A = MkA { foo :: Int } } we have that M.hs-boot exports a variable foo, which is supposed to match with the record field foo that M exports. To solve this issue, we add a new impedance-matching binding to M foo{var} = foo{fld} This mimics the logic that existed already for impedance-binding DFunIds, but getting it right was a bit tricky. See Note [Record field impedance matching] in GHC.Tc.Module. We also needed to be careful to avoid introducing space leaks in GHCi. So we dehydrate the GlobalRdrEnv before storing it anywhere, e.g. in ModIface. This means stubbing out all the GREInfo fields, with the function forceGlobalRdrEnv. When we read it back in, we rehydrate with rehydrateGlobalRdrEnv. This robustly avoids any space leaks caused by retaining old type environments. Fixes #13352 #14848 #17381 #17551 #19664 #21443 #21444 #21720 #21898 #21946 #21959 #22125 #22160 #23010 #23062 #23063 Updates haddock submodule ------------------------- Metric Increase: MultiComponentModules MultiLayerModules MultiLayerModulesDefsGhci MultiLayerModulesNoCode T13701 T14697 hard_hole_fits -------------------------
* Add structured error messages for GHC.Tc.Utils.BackpackTorsten Schmits2023-03-171-21/+3
| | | | | | | | | | | | Tracking ticket: #20119 MR: !10127 This converts uses of `mkTcRnUnknownMessage` to newly added constructors of `TcRnMessage`. One occurrence, when handing a nested error from the interface loading machinery, was omitted. It will be handled by a subsequent changeset that addresses interface errors.
* Refactor the treatment of loopy superclass dictswip/T20666Richard Eisenberg2023-01-111-21/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch completely re-engineers how we deal with loopy superclass dictionaries in instance declarations. It fixes #20666 and #19690 The highlights are * Recognise that the loopy-superclass business should use precisely the Paterson conditions. This is much much nicer. See Note [Recursive superclasses] in GHC.Tc.TyCl.Instance * With that in mind, define "Paterson-smaller" in Note [Paterson conditions] in GHC.Tc.Validity, and the new data type `PatersonSize` in GHC.Tc.Utils.TcType, along with functions to compute and compare PatsonSizes * Use the new PatersonSize stuff when solving superclass constraints See Note [Solving superclass constraints] in GHC.Tc.TyCl.Instance * In GHC.Tc.Solver.Monad.lookupInInerts, add a missing call to prohibitedSuperClassSolve. This was the original cause of #20666. * Treat (TypeError "stuff") as having PatersonSize zero. See Note [Paterson size for type family applications] in GHC.Tc.Utils.TcType. * Treat the head of a Wanted quantified constraint in the same way as the superclass of an instance decl; this is what fixes #19690. See GHC.Tc.Solver.Canonical Note [Solving a Wanted forall-constraint] (Thanks to Matthew Craven for this insight.) This entailed refactoring the GivenSc constructor of CtOrigin a bit, to say whether it comes from an instance decl or quantified constraint. * Some refactoring way in which redundant constraints are reported; we don't want to complain about the extra, apparently-redundant constraints that we must add to an instance decl because of the loopy-superclass thing. I moved some work from GHC.Tc.Errors to GHC.Tc.Solver. * Add a new section to the user manual to describe the loopy superclass issue and what rules it follows.
* backpack: Be more careful when adding together ImportAvailsMatthew Pickering2022-12-081-9/+21
| | | | | | | | | | | | | | There was some code in the signature merging logic which added together the ImportAvails of the signature and the signature which was merged into it. This had the side-effect of making the merged signature depend on the signature (via a normal module dependency). The intention was to propagate orphan instances through the merge but this also messed up recompilation logic because we shouldn't be attempting to load B.hi when mergeing it. The fix is to just combine the part of ImportAvails that we intended to (transitive info, orphan instances and type family instances) rather than the whole thing.
* Convert Diagnostics in GHC.Tc.Gen.Splice (#20116)Aaron Allen2022-10-241-1/+1
| | | | | | | Replaces uses of `TcRnUnknownMessage` in `GHC.Tc.Gen.Splice` with structured diagnostics. closes #20116
* Add diagnostic codessheaf2022-09-131-5/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This MR adds diagnostic codes, assigning unique numeric codes to error and warnings, e.g. error: [GHC-53633] Pattern match is redundant This is achieved as follows: - a type family GhcDiagnosticCode that gives the diagnostic code for each diagnostic constructor, - a type family ConRecursInto that specifies whether to recur into an argument of the constructor to obtain a more fine-grained code (e.g. different error codes for different 'deriving' errors), - generics machinery to generate the value-level function assigning each diagnostic its error code; see Note [Diagnostic codes using generics] in GHC.Types.Error.Codes. The upshot is that, to add a new diagnostic code, contributors only need to modify the two type families mentioned above. All logic relating to diagnostic codes is thus contained to the GHC.Types.Error.Codes module, with no code duplication. This MR also refactors error message datatypes a bit, ensuring we can derive Generic for them, and cleans up the logic around constraint solver reports by splitting up 'TcSolverReportInfo' into separate datatypes (see #20772). Fixes #21684
* TTG: Move ImpExp client-independent bits to L.H.S.ImpExpromes2022-07-031-2/+0
| | | | | | | | | | | Move the GHC-independent definitions from GHC.Hs.ImpExp to Language.Haskell.Syntax.ImpExp with the required TTG extension fields such as to keep the AST independent from GHC. This is progress towards having the haskell-syntax package, as described in #21592 Bumps haddock submodule
* TTG: Move HsModule to L.H.Sromes2022-07-031-0/+2
| | | | | | | | | Move the definition of HsModule defined in GHC.Hs to Language.Haskell.Syntax with an added TTG parameter and corresponding extension fields. This is progress towards having the haskell-syntax package, as described in #21592
* compiler: Introduce and use RoughMap for instance environmentsBen Gamari2022-02-041-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Here we introduce a new data structure, RoughMap, inspired by the previous `RoughTc` matching mechanism for checking instance matches. This allows [Fam]InstEnv to be implemented as a trie indexed by these RoughTc signatures, reducing the complexity of instance lookup and FamInstEnv merging (done during the family instance conflict test) from O(n) to O(log n). The critical performance improvement currently realised by this patch is in instance matching. In particular the RoughMap mechanism allows us to discount many potential instances which will never match for constraints involving type variables (see Note [Matching a RoughMap]). In realistic code bases matchInstEnv was accounting for 50% of typechecker time due to redundant work checking instances when simplifying instance contexts when deriving instances. With this patch the cost is significantly reduced. The larger constants in InstEnv creation do mean that a few small tests regress in allocations slightly. However, the runtime of T19703 is reduced by a factor of 4. Moreover, the compilation time of the Cabal library is slightly improved. A couple of test cases are included which demonstrate significant improvements in compile time with this patch. This unfortunately does not fix the testcase provided in #19703 but does fix #20933 ------------------------- Metric Decrease: T12425 Metric Increase: T13719 T9872a T9872d hard_hole_fits ------------------------- Co-authored-by: Matthew Pickering <matthewtpickering@gmail.com>
* Rework the handling of SkolemInfoMatthew Pickering2022-01-291-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The main purpose of this patch is to attach a SkolemInfo directly to each SkolemTv. This fixes the large number of bugs which have accumulated over the years where we failed to report errors due to having "no skolem info" for particular type variables. Now the origin of each type varible is stored on the type variable we can always report accurately where it cames from. Fixes #20969 #20732 #20680 #19482 #20232 #19752 #10946 #19760 #20063 #13499 #14040 The main changes of this patch are: * SkolemTv now contains a SkolemInfo field which tells us how the SkolemTv was created. Used when reporting errors. * Enforce invariants relating the SkolemInfoAnon and level of an implication (ic_info, ic_tclvl) to the SkolemInfo and level of the type variables in ic_skols. * All ic_skols are TcTyVars -- Check is currently disabled * All ic_skols are SkolemTv * The tv_lvl of the ic_skols agrees with the ic_tclvl * The ic_info agrees with the SkolInfo of the implication. These invariants are checked by a debug compiler by checkImplicationInvariants. * Completely refactor kcCheckDeclHeader_sig which kept doing my head in. Plus, it wasn't right because it wasn't skolemising the binders as it decomposed the kind signature. The new story is described in Note [kcCheckDeclHeader_sig]. The code is considerably shorter than before (roughly 240 lines turns into 150 lines). It still has the same awkward complexity around computing arity as before, but that is a language design issue. See Note [Arity inference in kcCheckDeclHeader_sig] * I added new type synonyms MonoTcTyCon and PolyTcTyCon, and used them to be clear which TcTyCons have "finished" kinds etc, and which are monomorphic. See Note [TcTyCon, MonoTcTyCon, and PolyTcTyCon] * I renamed etaExpandAlgTyCon to splitTyConKind, becuase that's a better name, and it is very useful in kcCheckDeclHeader_sig, where eta-expansion isn't an issue. * Kill off the nasty `ClassScopedTvEnv` entirely. Co-authored-by: Simon Peyton Jones <simon.peytonjones@gmail.com>
* Multiple Home UnitsMatthew Pickering2021-12-281-31/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Multiple home units allows you to load different packages which may depend on each other into one GHC session. This will allow both GHCi and HLS to support multi component projects more naturally. Public Interface ~~~~~~~~~~~~~~~~ In order to specify multiple units, the -unit @⟨filename⟩ flag is given multiple times with a response file containing the arguments for each unit. The response file contains a newline separated list of arguments. ``` ghc -unit @unitLibCore -unit @unitLib ``` where the `unitLibCore` response file contains the normal arguments that cabal would pass to `--make` mode. ``` -this-unit-id lib-core-0.1.0.0 -i -isrc LibCore.Utils LibCore.Types ``` The response file for lib, can specify a dependency on lib-core, so then modules in lib can use modules from lib-core. ``` -this-unit-id lib-0.1.0.0 -package-id lib-core-0.1.0.0 -i -isrc Lib.Parse Lib.Render ``` Then when the compiler starts in --make mode it will compile both units lib and lib-core. There is also very basic support for multiple home units in GHCi, at the moment you can start a GHCi session with multiple units but only the :reload is supported. Most commands in GHCi assume a single home unit, and so it is additional work to work out how to modify the interface to support multiple loaded home units. Options used when working with Multiple Home Units There are a few extra flags which have been introduced specifically for working with multiple home units. The flags allow a home unit to pretend it’s more like an installed package, for example, specifying the package name, module visibility and reexported modules. -working-dir ⟨dir⟩ It is common to assume that a package is compiled in the directory where its cabal file resides. Thus, all paths used in the compiler are assumed to be relative to this directory. When there are multiple home units the compiler is often not operating in the standard directory and instead where the cabal.project file is located. In this case the -working-dir option can be passed which specifies the path from the current directory to the directory the unit assumes to be it’s root, normally the directory which contains the cabal file. When the flag is passed, any relative paths used by the compiler are offset by the working directory. Notably this includes -i and -I⟨dir⟩ flags. -this-package-name ⟨name⟩ This flag papers over the awkward interaction of the PackageImports and multiple home units. When using PackageImports you can specify the name of the package in an import to disambiguate between modules which appear in multiple packages with the same name. This flag allows a home unit to be given a package name so that you can also disambiguate between multiple home units which provide modules with the same name. -hidden-module ⟨module name⟩ This flag can be supplied multiple times in order to specify which modules in a home unit should not be visible outside of the unit it belongs to. The main use of this flag is to be able to recreate the difference between an exposed and hidden module for installed packages. -reexported-module ⟨module name⟩ This flag can be supplied multiple times in order to specify which modules are not defined in a unit but should be reexported. The effect is that other units will see this module as if it was defined in this unit. The use of this flag is to be able to replicate the reexported modules feature of packages with multiple home units. Offsetting Paths in Template Haskell splices ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When using Template Haskell to embed files into your program, traditionally the paths have been interpreted relative to the directory where the .cabal file resides. This causes problems for multiple home units as we are compiling many different libraries at once which have .cabal files in different directories. For this purpose we have introduced a way to query the value of the -working-dir flag to the Template Haskell API. By using this function we can implement a makeRelativeToProject function which offsets a path which is relative to the original project root by the value of -working-dir. ``` import Language.Haskell.TH.Syntax ( makeRelativeToProject ) foo = $(makeRelativeToProject "./relative/path" >>= embedFile) ``` > If you write a relative path in a Template Haskell splice you should use the makeRelativeToProject function so that your library works correctly with multiple home units. A similar function already exists in the file-embed library. The function in template-haskell implements this function in a more robust manner by honouring the -working-dir flag rather than searching the file system. Closure Property for Home Units ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For tools or libraries using the API there is one very important closure property which must be adhered to: > Any dependency which is not a home unit must not (transitively) depend on a home unit. For example, if you have three packages p, q and r, then if p depends on q which depends on r then it is illegal to load both p and r as home units but not q, because q is a dependency of the home unit p which depends on another home unit r. If you are using GHC by the command line then this property is checked, but if you are using the API then you need to check this property yourself. If you get it wrong you will probably get some very confusing errors about overlapping instances. Limitations of Multiple Home Units ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There are a few limitations of the initial implementation which will be smoothed out on user demand. * Package thinning/renaming syntax is not supported * More complicated reexports/renaming are not yet supported. * It’s more common to run into existing linker bugs when loading a large number of packages in a session (for example #20674, #20689) * Backpack is not yet supported when using multiple home units. * Dependency chasing can be quite slow with a large number of modules and packages. * Loading wired-in packages as home units is currently not supported (this only really affects GHC developers attempting to load template-haskell). * Barely any normal GHCi features are supported, it would be good to support enough for ghcid to work correctly. Despite these limitations, the implementation works already for nearly all packages. It has been testing on large dependency closures, including the whole of head.hackage which is a total of 4784 modules from 452 packages. Internal Changes ~~~~~~~~~~~~~~~~ * The biggest change is that the HomePackageTable is replaced with the HomeUnitGraph. The HomeUnitGraph is a map from UnitId to HomeUnitEnv, which contains information specific to each home unit. * The HomeUnitEnv contains: - A unit state, each home unit can have different package db flags - A set of dynflags, each home unit can have different flags - A HomePackageTable * LinkNode: A new node type is added to the ModuleGraph, this is used to place the linking step into the build plan so linking can proceed in parralel with other packages being built. * New invariant: Dependencies of a ModuleGraphNode can be completely determined by looking at the value of the node. In order to achieve this, downsweep now performs a more complete job of downsweeping and then the dependenices are recorded forever in the node rather than being computed again from the ModSummary. * Some transitive module calculations are rewritten to use the ModuleGraph which is more efficient. * There is always an active home unit, which simplifies modifying a lot of the existing API code which is unit agnostic (for example, in the driver). The road may be bumpy for a little while after this change but the basics are well-tested. One small metric increase, which we accept and also submodule update to haddock which removes ExtendedModSummary. Closes #10827 ------------------------- Metric Increase: MultiLayerModules ------------------------- Co-authored-by: Fendor <power.walross@gmail.com>
* More support for optional home-unitSylvain Henry2021-11-201-18/+21
| | | | | | | | | This is a preliminary refactoring for #14335 (supporting plugins in cross-compilers). In many places the home-unit must be optional because there won't be one available in the plugin environment (we won't be compiling anything in this environment). Hence we replace "HomeUnit" with "Maybe HomeUnit" in a few places and we avoid the use of "hsc_home_unit" (which is partial) in some few others.
* Refactor package importsSylvain Henry2021-10-221-39/+21
| | | | | | | | | Use an (Raw)PkgQual datatype instead of `Maybe FastString` to represent package imports. Factorize the code that renames RawPkgQual into PkgQual in function `rnPkgQual`. Renaming consists in checking if the FastString is the magic "this" keyword, the home-unit unit-id or something else. Bump haddock submodule
* Remove IndefiniteSylvain Henry2021-10-221-2/+2
| | | | We no longer need it after previous IndefUnitId refactoring.
* compiler: Rename nameEnvElts -> nonDetNameEnvEltsBen Gamari2021-09-291-1/+1
|
* Introduce FinderLocations for decoupling Finder from DynFlagsFendor2021-07-231-2/+6
|
* Remove useless .hs-bootSylvain Henry2021-07-011-1/+0
|
* Make withException use SDocContext instead of DynFlagsSylvain Henry2021-07-011-2/+5
|
* Try to simplify zoo of functions in `Tc.Utils.Monad`Alfredo Di Napoli2021-06-281-5/+8
| | | | | | | | | | | This commit tries to untangle the zoo of diagnostic-related functions in `Tc.Utils.Monad` so that we can have the interfaces mentions only `TcRnMessage`s while we push the creation of these messages upstream. It also ports TcRnMessage diagnostics to use the new API, in particular this commit switch to use TcRnMessage in the external interfaces of the diagnostic functions, and port the old SDoc to be wrapped into TcRnUnknownMessage.
* Make Logger independent of DynFlagsSylvain Henry2021-06-071-5/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce LogFlags as a independent subset of DynFlags used for logging. As a consequence in many places we don't have to pass both Logger and DynFlags anymore. The main reason for this refactoring is that I want to refactor the systools interfaces: for now many systools functions use DynFlags both to use the Logger and to fetch their parameters (e.g. ldInputs for the linker). I'm interested in refactoring the way they fetch their parameters (i.e. use dedicated XxxOpts data types instead of DynFlags) for #19877. But if I did this refactoring before refactoring the Logger, we would have duplicate parameters (e.g. ldInputs from DynFlags and linkerInputs from LinkerOpts). Hence this patch first. Some flags don't really belong to LogFlags because they are subsystem specific (e.g. most DumpFlags). For example -ddump-asm should better be passed in NCGConfig somehow. This patch doesn't fix this tight coupling: the dump flags are part of the UI but they are passed all the way down for example to infer the file name for the dumps. Because LogFlags are a subset of the DynFlags, we must update the former when the latter changes (not so often). As a consequence we now use accessors to read/write DynFlags in HscEnv instead of using `hsc_dflags` directly. In the process I've also made some subsystems less dependent on DynFlags: - CmmToAsm: by passing some missing flags via NCGConfig (see new fields in GHC.CmmToAsm.Config) - Core.Opt.*: - by passing -dinline-check value into UnfoldingOpts - by fixing some Core passes interfaces (e.g. CallArity, FloatIn) that took DynFlags argument for no good reason. - as a side-effect GHC.Core.Opt.Pipeline.doCorePass is much less convoluted.
* Fail before checking instances in checkHsigIface if exports don't match (#19244)Zubin Duggal2021-06-021-0/+9
|
* Remove useless {-# LANGUAGE CPP #-} pragmasSylvain Henry2021-05-121-1/+1
|
* Fully remove HsVersions.hSylvain Henry2021-05-121-2/+0
| | | | | | | | | | Replace uses of WARN macro with calls to: warnPprTrace :: Bool -> SDoc -> a -> a Remove the now unused HsVersions.h Bump haddock submodule
* Replace CPP assertions with Haskell functionsSylvain Henry2021-05-121-3/+3
| | | | | | | | | | | | | | | There is no reason to use CPP. __LINE__ and __FILE__ macros are now better replaced with GHC's CallStack. As a bonus, assert error messages now contain more information (function name, column). Here is the mapping table (HasCallStack omitted): * ASSERT: assert :: Bool -> a -> a * MASSERT: massert :: Bool -> m () * ASSERTM: assertM :: m Bool -> m () * ASSERT2: assertPpr :: Bool -> SDoc -> a -> a * MASSERT2: massertPpr :: Bool -> SDoc -> m () * ASSERTM2: assertPprM :: m Bool -> SDoc -> m ()
* Add GhcMessage and ancillary typesAlfredo Di Napoli2021-04-291-4/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds GhcMessage and ancillary (PsMessage, TcRnMessage, ..) types. These types will be expanded to represent more errors generated by different subsystems within GHC. Right now, they are underused, but more will come in the glorious future. See https://gitlab.haskell.org/ghc/ghc/-/wikis/Errors-as-(structured)-values for a design overview. Along the way, lots of other things had to happen: * Adds Semigroup and Monoid instance for Bag * Fixes #19746 by parsing OPTIONS_GHC pragmas into Located Strings. See GHC.Parser.Header.toArgs (moved from GHC.Utils.Misc, where it didn't belong anyway). * Addresses (but does not completely fix) #19709, now reporting desugarer warnings and errors appropriately for TH splices. Not done: reporting type-checker warnings for TH splices. * Some small refactoring around Safe Haskell inference, in order to keep separate classes of messages separate. * Some small refactoring around initDsTc, in order to keep separate classes of messages separate. * Separate out the generation of messages (that is, the construction of the text block) from the wrapping of messages (that is, assigning a SrcSpan). This is more modular than the previous design, which mixed the two. Close #19746. This was a collaborative effort by Alfredo di Napoli and Richard Eisenberg, with a key assist on #19746 by Iavor Diatchki. Metric Increase: MultiLayerModules
* Add `MessageClass`, rework `Severity` and add `DiagnosticReason`.wip/adinapoli-message-class-new-designAlfredo Di Napoli2021-03-291-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Other than that: * Fix T16167,json,json2,T7478,T10637 tests to reflect the introduction of the `MessageClass` type * Remove `makeIntoWarning` * Remove `warningsToMessages` * Refactor GHC.Tc.Errors 1. Refactors GHC.Tc.Errors so that we use `DiagnosticReason` for "choices" (defer types errors, holes, etc); 2. We get rid of `reportWarning` and `reportError` in favour of a general `reportDiagnostic`. * Introduce `DiagnosticReason`, `Severity` is an enum: This big commit makes `Severity` a simple enumeration, and introduces the concept of `DiagnosticReason`, which classifies the /reason/ why we are emitting a particular diagnostic. It also adds a monomorphic `DiagnosticMessage` type which is used for generic messages. * The `Severity` is computed (for now) from the reason, statically. Later improvement will add a `diagReasonSeverity` function to compute the `Severity` taking `DynFlags` into account. * Rename `logWarnings` into `logDiagnostics` * Add note and expand description of the `mkHoleError` function
* Refactor FinderCacheSylvain Henry2021-03-261-11/+34
|
* Refactor interface loadingSylvain Henry2021-03-261-6/+9
| | | | | | | | | | In order to support several home-units and several independent unit-databases, it's easier to explicitly pass UnitState, DynFlags, etc. to interface loading functions. This patch converts some functions using monads such as IfG or TcRnIf with implicit access to HscEnv to use IO instead and to pass them specific fields of HscEnv instead of an HscEnv value.
* GHC Exactprint main commitAlan Zimmerman2021-03-201-3/+3
| | | | | | | | Metric Increase: T10370 parsing001 Updates haddock submodule
* Refactor LoggerSylvain Henry2021-02-131-3/+6
| | | | | | | | | | | | | | | | | | | | | Before this patch, the only way to override GHC's default logging behavior was to set `log_action`, `dump_action` and `trace_action` fields in DynFlags. This patch introduces a new Logger abstraction and stores it in HscEnv instead. This is part of #17957 (avoid storing state in DynFlags). DynFlags are duplicated and updated per-module (because of OPTIONS_GHC pragma), so we shouldn't store global state in them. This patch also fixes a race in parallel "--make" mode which updated the `generatedDumps` IORef concurrently. Bump haddock submodule The increase in MultilayerModules is tracked in #19293. Metric Increase: MultiLayerModules
* Introduce the DecoratedSDoc typeAlfredo Di Napoli2021-02-011-3/+3
| | | | | This commit introduces a DecoratedSDoc type which replaces the old ErrDoc, and hopefully better reflects the intent.
* Remove ErrDoc and MsgDocAlfredo Di Napoli2021-02-011-3/+3
| | | | | | | | | | | | | This commit boldly removes the ErrDoc and the MsgDoc from the codebase. The former was introduced with the only purpose of classifying errors according to their importance, but a similar result can be obtained just by having a simple [SDoc], and placing bullets after each of them. On top of that I have taken the perhaps controversial decision to also banish MsgDoc, as it was merely a type alias over an SDoc and as such it wasn't offering any extra type safety. Granted, it was perhaps making type signatures slightly more "focused", but at the expense of cognitive burden: if it's really just an SDoc, let's call it with its proper name.
* Parameterise Messages over eAlfredo Di Napoli2021-01-221-3/+3
| | | | | | | | | This commit paves the way to a richer and more structured representation of GHC error messages, as per GHC proposal #306. More specifically 'Messages' from 'GHC.Types.Error' now gains an extra type parameter, that we instantiate to 'ErrDoc' for now. Later, this will allow us to replace ErrDoc with something more structure (for example messages coming from the parser, the typechecker etc).
* Put hole instantiation typechecking in the module graph and fix driver batch ↵John Ericson2020-12-281-23/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mode backpack edges Backpack instantiations need to be typechecked to make sure that the arguments fit the parameters. `tcRnInstantiateSignature` checks instantiations with concrete modules, while `tcRnCheckUnit` checks instantiations with free holes (signatures in the current modules). Before this change, it worked that `tcRnInstantiateSignature` was called after typechecking the argument module, see `HscMain.hsc_typecheck`, while `tcRnCheckUnit` was called in `unsweep'` where-bound in `GhcMake.upsweep`. `tcRnCheckUnit` was called once per each instantiation once all the argument sigs were processed. This was done with simple "to do" and "already done" accumulators in the fold. `parUpsweep` did not implement the change. With this change, `tcRnCheckUnit` instead is associated with its own node in the `ModuleGraph`. Nodes are now: ```haskell data ModuleGraphNode -- | Instantiation nodes track the instantiation of other units -- (backpack dependencies) with the holes (signatures) of the current package. = InstantiationNode InstantiatedUnit -- | There is a module summary node for each module, signature, and boot module being built. | ModuleNode ExtendedModSummary ``` instead of just `ModSummary`; the `InstantiationNode` case is the instantiation of a unit to be checked. The dependencies of such nodes are the same "free holes" as was checked with the accumulator before. Both versions of upsweep on such a node call `tcRnCheckUnit`. There previously was an `implicitRequirements` function which would crawl through every non-current-unit module dep to look for all free holes (signatures) to add as dependencies in `GHC.Driver.Make`. But this is no good: we shouldn't be looking for transitive anything when building the graph: the graph should only have immediate edges and the scheduler takes care that all transitive requirements are met. So `GHC.Driver.Make` stopped using `implicitRequirements`, and instead uses a new `implicitRequirementsShallow`, which just returns the outermost instantiation node (or module name if the immediate dependency is itself a signature). The signature dependencies are just treated like any other imported module, but the module ones then go in a list stored in the `ModuleNode` next to the `ModSummary` as the "extra backpack dependencies". When `downsweep` creates the mod summaries, it adds this information too. ------ There is one code quality, and possible correctness thing left: In addition to `implicitRequirements` there is `findExtraSigImports`, which says something like "if you are an instantiation argument (you are substituted or a signature), you need to import its things too". This is a little non-local so I am not quite sure how to get rid of it in `GHC.Driver.Make`, but we probably should eventually. First though, let's try to make a test case that observes that we don't do this, lest it actually be unneeded. Until then, I'm happy to leave it as is. ------ Beside the ability to use `-j`, the other major user-visibile side effect of this change is that that the --make progress log now includes "Instantiating" messages for these new nodes. Those also are numbered like module nodes and count towards the total. ------ Fixes #17188 Updates hackage submomdule Metric Increase: T12425 T13035
* Refactor renamer datastructuresAdam Gundry2020-12-241-3/+4
| | | | | | | | | | | | | | | This patch significantly refactors key renamer datastructures (primarily Avail and GlobalRdrElt) in order to treat DuplicateRecordFields in a more robust way. In particular it allows the extension to be used with pattern synonyms (fixes where mangled record selector names could be printed instead of field labels (e.g. with -Wpartial-fields or hole fits, see new tests). The key idea is the introduction of a new type GreName for names that may represent either normal entities or field labels. This is then used in GlobalRdrElt and AvailInfo, in place of the old way of representing fields using FldParent (yuck) and an extra list in AvailTC. Updates the haddock submodule.
* Move Unit related fields from DynFlags to HscEnvSylvain Henry2020-12-141-7/+4
| | | | | | | | | | | | | The unit database cache, the home unit and the unit state were stored in DynFlags while they ought to be stored in the compiler session state (HscEnv). This patch fixes this. It introduces a new UnitEnv type that should be used in the future to handle separate unit environments (especially host vs target units). Related to #17957 Bump haddock submodule
* Use tcSplitForAllInvisTyVars (not tcSplitForAllTyVars) in more placesRyan Scott2020-11-151-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The use of `tcSplitForAllTyVars` in `tcDataFamInstHeader` was the immediate cause of #18939, and replacing it with a new `tcSplitForAllInvisTyVars` function (which behaves like `tcSplitForAllTyVars` but only splits invisible type variables) fixes the issue. However, this led me to realize that _most_ uses of `tcSplitForAllTyVars` in GHC really ought to be `tcSplitForAllInvisTyVars` instead. While I was in town, I opted to replace most uses of `tcSplitForAllTys` with `tcSplitForAllTysInvis` to reduce the likelihood of such bugs in the future. I say "most uses" above since there is one notable place where we _do_ want to use `tcSplitForAllTyVars`: in `GHC.Tc.Validity.forAllTyErr`, which produces the "`Illegal polymorphic type`" error message if you try to use a higher-rank `forall` without having `RankNTypes` enabled. Here, we really do want to split all `forall`s, not just invisible ones, or we run the risk of giving an inaccurate error message in the newly added `T18939_Fail` test case. I debated at some length whether I wanted to name the new function `tcSplitForAllInvisTyVars` or `tcSplitForAllTyVarsInvisible`, but in the end, I decided that I liked the former better. For consistency's sake, I opted to rename the existing `splitPiTysInvisible` and `splitPiTysInvisibleN` functions to `splitInvisPiTys` and `splitPiTysInvisN`, respectively, so that they use the same naming convention. As a consequence, this ended up requiring a `haddock` submodule bump. Fixes #18939.
* Name (tc)SplitForAll- functions more consistentlyRyan Scott2020-11-151-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is a zoo of `splitForAll-` functions in `GHC.Core.Type` (as well as `tcSplitForAll-` functions in `GHC.Tc.Utils.TcType`) that all do very similar things, but vary in the particular form of type variable that they return. To make things worse, the names of these functions are often quite misleading. Some particularly egregious examples: * `splitForAllTys` returns `TyCoVar`s, but `splitSomeForAllTys` returns `VarBndr`s. * `splitSomeForAllTys` returns `VarBndr`s, but `tcSplitSomeForAllTys` returns `TyVar`s. * `splitForAllTys` returns `TyCoVar`s, but `splitForAllTysInvis` returns `InvisTVBinder`s. (This in particular arose in the context of #18939, and this finally motivated me to bite the bullet and improve the status quo vis-à-vis how we name these functions.) In an attempt to bring some sanity to how these functions are named, I have opted to rename most of these functions en masse to use consistent suffixes that describe the particular form of type variable that each function returns. In concrete terms, this amounts to: * Functions that return a `TyVar` now use the suffix `-TyVar`. This caused the following functions to be renamed: * `splitTyVarForAllTys` -> `splitForAllTyVars` * `splitForAllTy_ty_maybe` -> `splitForAllTyVar_maybe` * `tcSplitForAllTys` -> `tcSplitForAllTyVars` * `tcSplitSomeForAllTys` -> `tcSplitSomeForAllTyVars` * Functions that return a `CoVar` now use the suffix `-CoVar`. This caused the following functions to be renamed: * `splitForAllTy_co_maybe` -> `splitForAllCoVar_maybe` * Functions that return a `TyCoVar` now use the suffix `-TyCoVar`. This caused the following functions to be renamed: * `splitForAllTy` -> `splitForAllTyCoVar` * `splitForAllTys` -> `splitForAllTyCoVars` * `splitForAllTys'` -> `splitForAllTyCoVars'` * `splitForAllTy_maybe` -> `splitForAllTyCoVar_maybe` * Functions that return a `VarBndr` now use the suffix corresponding to the most relevant type synonym. This caused the following functions to be renamed: * `splitForAllVarBndrs` -> `splitForAllTyCoVarBinders` * `splitForAllTysInvis` -> `splitForAllInvisTVBinders` * `splitForAllTysReq` -> `splitForAllReqTVBinders` * `splitSomeForAllTys` -> `splitSomeForAllTyCoVarBndrs` * `tcSplitForAllVarBndrs` -> `tcSplitForAllTyVarBinders` * `tcSplitForAllTysInvis` -> `tcSplitForAllInvisTVBinders` * `tcSplitForAllTysReq` -> `tcSplitForAllReqTVBinders` * `tcSplitForAllTy_maybe` -> `tcSplitForAllTyVarBinder_maybe` Note that I left the following functions alone: * Functions that split apart things besides `ForAllTy`s, such as `splitFunTys` or `splitPiTys`. Thankfully, there are far fewer of these functions than there are functions that split apart `ForAllTy`s, so there isn't much of a pressing need to apply the new naming convention elsewhere. * Functions that split apart `ForAllCo`s in `Coercion`s, such as `GHC.Core.Coercion.splitForAllCo_maybe`. We could theoretically apply the new naming convention here, but then we'd have to figure out how to disambiguate `Type`-splitting functions from `Coercion`-splitting functions. Ultimately, the `Coercion`-splitting functions aren't used nearly as much as the `Type`-splitting functions, so I decided to leave the former alone. This is purely refactoring and should cause no change in behavior.
* Split GHC.Driver.TypesSylvain Henry2020-10-291-31/+49
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I was working on making DynFlags stateless (#17957), especially by storing loaded plugins into HscEnv instead of DynFlags. It turned out to be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I didn't feel like introducing yet another hs-boot file to break the loop. Additionally I remember that while we introduced the module hierarchy (#13009) we talked about splitting GHC.Driver.Types because it contained various unrelated types and functions, but we never executed. I didn't feel like making GHC.Driver.Types bigger with more unrelated Plugins related types, so finally I bit the bullet and split GHC.Driver.Types. As a consequence this patch moves a lot of things. I've tried to put them into appropriate modules but nothing is set in stone. Several other things moved to avoid loops. * Removed Binary instances from GHC.Utils.Binary for random compiler things * Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they import a lot of things that users of GHC.Utils.Binary don't want to depend on. * put everything related to Units/Modules under GHC.Unit: GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.} * Created several modules under GHC.Types: GHC.Types.Fixity, SourceText, etc. * Split GHC.Utils.Error (into GHC.Types.Error) * Finally removed GHC.Driver.Types Note that this patch doesn't put loaded plugins into HscEnv. It's left for another patch. Bump haddock submodule
* Lint the compiler for extraneous LANGUAGE pragmasHécate2020-10-101-5/+3
|
* Cache HomeUnit in HscEnv (#17957)Sylvain Henry2020-10-091-7/+10
| | | | | Instead of recreating the HomeUnit from the DynFlags every time we need it, we store it in the HscEnv.
* Remove mAIN completelyFendor2020-10-011-2/+1
|
* DynFlags: add UnfoldingOpts and SimpleOptsSylvain Henry2020-09-091-0/+1
| | | | | Milestone: after this patch, we only use 'unsafeGlobalDynFlags' for the state hack and for debug in Outputable.
* Refactor UnitId pretty-printingSylvain Henry2020-08-261-29/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we pretty-print a UnitId for the user, we try to map it back to its origin package name, version and component to print "package-version:component" instead of some hash. The UnitId type doesn't carry these information, so we have to look into a UnitState to find them. This is why the Outputable instance of UnitId used `sdocWithDynFlags` in order to access the `unitState` field of DynFlags. This is wrong for several reasons: 1. The DynFlags are accessed when the message is printed, not when it is generated. So we could imagine that the unitState may have changed in-between. Especially if we want to allow unit unloading. 2. We want GHC to support several independent sessions at once, hence several UnitState. The current approach supposes there is a unique UnitState as a UnitId doesn't indicate which UnitState to use. See the Note [Pretty-printing UnitId] in GHC.Unit for the new approach implemented by this patch. One step closer to remove `sdocDynFlags` field from `SDocContext` (#10143). Fix #18124. Also fix some Backpack code to use SDoc instead of String.
* Add HomeUnit typeSylvain Henry2020-08-131-10/+12
| | | | | | | | | | | | | | | | | | | | | | | Since Backpack the "home unit" is much more involved than what it was before (just an identifier obtained with `-this-unit-id`). Now it is used in conjunction with `-component-id` and `-instantiated-with` to configure module instantiations and to detect if we are type-checking an indefinite unit or compiling a definite one. This patch introduces a new HomeUnit datatype which is much easier to understand. Moreover to make GHC support several packages in the same instances, we will need to handle several HomeUnits so having a dedicated (documented) type is helpful. Finally in #14335 we will also need to handle the case where we have no HomeUnit at all because we are only loading existing interfaces for plugins which live in a different space compared to units used to produce target code. Several functions will have to be refactored to accept "Maybe HomeUnit" parameters instead of implicitly querying the HomeUnit fields in DynFlags. Having a dedicated type will make this easier. Bump haddock submodule
* DynFlags: disentangle OutputableSylvain Henry2020-08-121-0/+2
| | | | | | | | | - put panic related functions into GHC.Utils.Panic - put trace related functions using DynFlags in GHC.Driver.Ppr One step closer making Outputable fully independent of DynFlags. Bump haddock submodule
* Clean up haddock hyperlinks of GHC.* (part2)Takenobu Tani2020-06-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | This updates haddock comments only. This patch focuses to update for hyperlinks in GHC API's haddock comments, because broken links especially discourage newcomers. This includes the following hierarchies: - GHC.Iface.* - GHC.Llvm.* - GHC.Rename.* - GHC.Tc.* - GHC.HsToCore.* - GHC.StgToCmm.* - GHC.CmmToAsm.* - GHC.Runtime.* - GHC.Unit.* - GHC.Utils.* - GHC.SysTools.*
* Linear types (#15981)Krzysztof Gogolewski2020-06-171-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the first step towards implementation of the linear types proposal (https://github.com/ghc-proposals/ghc-proposals/pull/111). It features * A language extension -XLinearTypes * Syntax for linear functions in the surface language * Linearity checking in Core Lint, enabled with -dlinear-core-lint * Core-to-core passes are mostly compatible with linearity * Fields in a data type can be linear or unrestricted; linear fields have multiplicity-polymorphic constructors. If -XLinearTypes is disabled, the GADT syntax defaults to linear fields The following items are not yet supported: * a # m -> b syntax (only prefix FUN is supported for now) * Full multiplicity inference (multiplicities are really only checked) * Decent linearity error messages * Linear let, where, and case expressions in the surface language (each of these currently introduce the unrestricted variant) * Multiplicity-parametric fields * Syntax for annotating lambda-bound or let-bound with a multiplicity * Syntax for non-linear/multiple-field-multiplicity records * Linear projections for records with a single linear field * Linear pattern synonyms * Multiplicity coercions (test LinearPolyType) A high-level description can be found at https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation Following the link above you will find a description of the changes made to Core. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Matthew Pickering * Arnaud Spiwack With contributions from: * Mark Barbone * Alexander Vershilov Updates haddock submodule.
* Rename Package into Unit (2)Sylvain Henry2020-06-131-1/+1
| | | | | | | * rename PackageState into UnitState * rename findWiredInPackages into findWiredInUnits * rename lookupModuleInAll[Packages,Units] * etc.
* Rename Package into UnitSylvain Henry2020-06-131-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | The terminology changed over time and now package databases contain "units" (there can be several units compiled from a single Cabal package: one per-component, one for each option set, one per instantiation, etc.). We should try to be consistent internally and use "units": that's what this renaming does. Maybe one day we'll fix the UI too (e.g. replace -package-id with -unit-id, we already have -this-unit-id and ghc-pkg has -unit-id...) but it's not done in this patch. * rename getPkgFrameworkOpts into getUnitFrameworkOpts * rename UnitInfoMap into ClosureUnitInfoMap * rename InstalledPackageIndex into UnitInfoMap * rename UnusablePackages into UnusableUnits * rename PackagePrecedenceIndex into UnitPrecedenceMap * rename PackageDatabase into UnitDatabase * rename pkgDatabase into unitDatabases * rename pkgState into unitState * rename initPackages into initUnits * rename renamePackage into renameUnitInfo * rename UnusablePackageReason into UnusableUnitReason * rename getPackage* into getUnit* * etc.