summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Solver/Interact.hs
Commit message (Collapse)AuthorAgeFilesLines
* Don't specialise incoherent instance applicationsGergő Érdi2023-02-271-21/+24
| | | | | | | | | | | | | | Using incoherent instances, there can be situations where two occurrences of the same overloaded function at the same type use two different instances (see #22448). For incoherently resolved instances, we must mark them with `nospec` to avoid the specialiser rewriting one to the other. This marking is done during the desugaring of the `WpEvApp` wrapper. Fixes #22448 Metric Increase: T15304
* Introduce warning for loopy superclass solvesheaf2023-02-141-38/+65
| | | | | | | | | | | | | | | | | Commit aed1974e completely re-engineered the treatment of loopy superclass dictionaries in instance declarations. Unfortunately, it has the potential to break (albeit in a rather minor way) user code. To alleviate migration concerns, this commit re-introduces the old behaviour. Any reliance on this old behaviour triggers a warning, controlled by `-Wloopy-superclass-solve`. The warning text explains that GHC might produce bottoming evidence, and provides a migration strategy. This allows us to provide a graceful migration period, alerting users when they are relying on this unsound behaviour. Fixes #22912 #22891 #20666 #22894 #22905
* Refactor the treatment of loopy superclass dictswip/T20666Richard Eisenberg2023-01-111-36/+35
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch completely re-engineers how we deal with loopy superclass dictionaries in instance declarations. It fixes #20666 and #19690 The highlights are * Recognise that the loopy-superclass business should use precisely the Paterson conditions. This is much much nicer. See Note [Recursive superclasses] in GHC.Tc.TyCl.Instance * With that in mind, define "Paterson-smaller" in Note [Paterson conditions] in GHC.Tc.Validity, and the new data type `PatersonSize` in GHC.Tc.Utils.TcType, along with functions to compute and compare PatsonSizes * Use the new PatersonSize stuff when solving superclass constraints See Note [Solving superclass constraints] in GHC.Tc.TyCl.Instance * In GHC.Tc.Solver.Monad.lookupInInerts, add a missing call to prohibitedSuperClassSolve. This was the original cause of #20666. * Treat (TypeError "stuff") as having PatersonSize zero. See Note [Paterson size for type family applications] in GHC.Tc.Utils.TcType. * Treat the head of a Wanted quantified constraint in the same way as the superclass of an instance decl; this is what fixes #19690. See GHC.Tc.Solver.Canonical Note [Solving a Wanted forall-constraint] (Thanks to Matthew Craven for this insight.) This entailed refactoring the GivenSc constructor of CtOrigin a bit, to say whether it comes from an instance decl or quantified constraint. * Some refactoring way in which redundant constraints are reported; we don't want to complain about the extra, apparently-redundant constraints that we must add to an instance decl because of the loopy-superclass thing. I moved some work from GHC.Tc.Errors to GHC.Tc.Solver. * Add a new section to the user manual to describe the loopy superclass issue and what rules it follows.
* Be more careful in GHC.Tc.Solver.Interact.solveOneFromTheOtherSimon Peyton Jones2022-11-301-41/+48
| | | | | | | | We were failing to account for the cc_pend_sc flag in this important function, with the result that we expanded superclasses forever. Fixes #22516.
* Killing cc_fundeps, streamlining kind equality orientation, and type ↵Apoorv Ingle2022-11-291-55/+128
| | | | | | | | | | | | | | | | | | | | equality processing order Fixes: #217093 Associated to #19415 This change * Flips the orientation of the the generated kind equality coercion in canEqLHSHetero; * Removes `cc_fundeps` in CDictCan as the check was incomplete; * Changes `canDecomposableTyConAppOk` to ensure we process kind equalities before type equalities and avoiding a call to `canEqLHSHetero` while processing wanted TyConApp equalities * Adds 2 new tests for validating the change - testsuites/typecheck/should_compile/T21703.hs and - testsuites/typecheck/should_fail/T19415b.hs (a simpler version of T19415.hs) * Misc: Due to the change in the equality direction some error messages now have flipped type mismatch errors * Changes in Notes: - Note [Fundeps with instances, and equality orientation] supercedes Note [Fundeps with instances] - Added Note [Kind Equality Orientation] to visualize the kind flipping - Added Note [Decomposing Dependent TyCons and Processing Wanted Equalties]
* Fix decomposition of TyConAppswip/T22331Simon Peyton Jones2022-11-251-5/+3
| | | | | | | | | | | | | | | | Ticket #22331 showed that we were being too eager to decompose a Wanted TyConApp, leading to incompleteness in the solver. To understand all this I ended up doing a substantial rewrite of the old Note [Decomposing equalities], now reborn as Note [Decomposing TyConApp equalities]. Plus rewrites of other related Notes. The actual fix is very minor and actually simplifies the code: in `can_decompose` in `GHC.Tc.Solver.Canonical.canTyConApp`, we now call `noMatchableIrreds`. A closely related refactor: we stop trying to use the same "no matchable givens" function here as in `matchClassInst`. Instead split into two much simpler functions.
* Scrub some no-warning pragmas.M Farkas-Dyck2022-11-231-1/+0
|
* Type vs Constraint: finally nailedSimon Peyton Jones2022-11-111-26/+33
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This big patch addresses the rats-nest of issues that have plagued us for years, about the relationship between Type and Constraint. See #11715/#21623. The main payload of the patch is: * To introduce CONSTRAINT :: RuntimeRep -> Type * To make TYPE and CONSTRAINT distinct throughout the compiler Two overview Notes in GHC.Builtin.Types.Prim * Note [TYPE and CONSTRAINT] * Note [Type and Constraint are not apart] This is the main complication. The specifics * New primitive types (GHC.Builtin.Types.Prim) - CONSTRAINT - ctArrowTyCon (=>) - tcArrowTyCon (-=>) - ccArrowTyCon (==>) - funTyCon FUN -- Not new See Note [Function type constructors and FunTy] and Note [TYPE and CONSTRAINT] * GHC.Builtin.Types: - New type Constraint = CONSTRAINT LiftedRep - I also stopped nonEmptyTyCon being built-in; it only needs to be wired-in * Exploit the fact that Type and Constraint are distinct throughout GHC - Get rid of tcView in favour of coreView. - Many tcXX functions become XX functions. e.g. tcGetCastedTyVar --> getCastedTyVar * Kill off Note [ForAllTy and typechecker equality], in (old) GHC.Tc.Solver.Canonical. It said that typechecker-equality should ignore the specified/inferred distinction when comparein two ForAllTys. But that wsa only weakly supported and (worse) implies that we need a separate typechecker equality, different from core equality. No no no. * GHC.Core.TyCon: kill off FunTyCon in data TyCon. There was no need for it, and anyway now we have four of them! * GHC.Core.TyCo.Rep: add two FunTyFlags to FunCo See Note [FunCo] in that module. * GHC.Core.Type. Lots and lots of changes driven by adding CONSTRAINT. The key new function is sORTKind_maybe; most other changes are built on top of that. See also `funTyConAppTy_maybe` and `tyConAppFun_maybe`. * Fix a longstanding bug in GHC.Core.Type.typeKind, and Core Lint, in kinding ForAllTys. See new tules (FORALL1) and (FORALL2) in GHC.Core.Type. (The bug was that before (forall (cv::t1 ~# t2). blah), where blah::TYPE IntRep, would get kind (TYPE IntRep), but it should be (TYPE LiftedRep). See Note [Kinding rules for types] in GHC.Core.Type. * GHC.Core.TyCo.Compare is a new module in which we do eqType and cmpType. Of course, no tcEqType any more. * GHC.Core.TyCo.FVs. I moved some free-var-like function into this module: tyConsOfType, visVarsOfType, and occCheckExpand. Refactoring only. * GHC.Builtin.Types. Compiletely re-engineer boxingDataCon_maybe to have one for each /RuntimeRep/, rather than one for each /Type/. This dramatically widens the range of types we can auto-box. See Note [Boxing constructors] in GHC.Builtin.Types The boxing types themselves are declared in library ghc-prim:GHC.Types. GHC.Core.Make. Re-engineer the treatment of "big" tuples (mkBigCoreVarTup etc) GHC.Core.Make, so that it auto-boxes unboxed values and (crucially) types of kind Constraint. That allows the desugaring for arrows to work; it gathers up free variables (including dictionaries) into tuples. See Note [Big tuples] in GHC.Core.Make. There is still work to do here: #22336. But things are better than before. * GHC.Core.Make. We need two absent-error Ids, aBSENT_ERROR_ID for types of kind Type, and aBSENT_CONSTRAINT_ERROR_ID for vaues of kind Constraint. Ditto noInlineId vs noInlieConstraintId in GHC.Types.Id.Make; see Note [inlineId magic]. * GHC.Core.TyCo.Rep. Completely refactor the NthCo coercion. It is now called SelCo, and its fields are much more descriptive than the single Int we used to have. A great improvement. See Note [SelCo] in GHC.Core.TyCo.Rep. * GHC.Core.RoughMap.roughMatchTyConName. Collapse TYPE and CONSTRAINT to a single TyCon, so that the rough-map does not distinguish them. * GHC.Core.DataCon - Mainly just improve documentation * Some significant renamings: GHC.Core.Multiplicity: Many --> ManyTy (easier to grep for) One --> OneTy GHC.Core.TyCo.Rep TyCoBinder --> GHC.Core.Var.PiTyBinder GHC.Core.Var TyCoVarBinder --> ForAllTyBinder AnonArgFlag --> FunTyFlag ArgFlag --> ForAllTyFlag GHC.Core.TyCon TyConTyCoBinder --> TyConPiTyBinder Many functions are renamed in consequence e.g. isinvisibleArgFlag becomes isInvisibleForAllTyFlag, etc * I refactored FunTyFlag (was AnonArgFlag) into a simple, flat data type data FunTyFlag = FTF_T_T -- (->) Type -> Type | FTF_T_C -- (-=>) Type -> Constraint | FTF_C_T -- (=>) Constraint -> Type | FTF_C_C -- (==>) Constraint -> Constraint * GHC.Tc.Errors.Ppr. Some significant refactoring in the TypeEqMisMatch case of pprMismatchMsg. * I made the tyConUnique field of TyCon strict, because I saw code with lots of silly eval's. That revealed that GHC.Settings.Constants.mAX_SUM_SIZE can only be 63, because we pack the sum tag into a 6-bit field. (Lurking bug squashed.) Fixes * #21530 Updates haddock submodule slightly. Performance changes ~~~~~~~~~~~~~~~~~~~ I was worried that compile times would get worse, but after some careful profiling we are down to a geometric mean 0.1% increase in allocation (in perf/compiler). That seems fine. There is a big runtime improvement in T10359 Metric Decrease: LargeRecord MultiLayerModulesTH_OneShot T13386 T13719 Metric Increase: T8095
* matchLocalInst: do domination analysissheaf2022-09-281-65/+193
| | | | | | | | | | | | | | | | | | | | | | | | | | When multiple Given quantified constraints match a Wanted, and there is a quantified constraint that dominates all others, we now pick it to solve the Wanted. See Note [Use only the best matching quantified constraint]. For example: [G] d1: forall a b. ( Eq a, Num b, C a b ) => D a b [G] d2: forall a . C a Int => D a Int [W] {w}: D a Int When solving the Wanted, we find that both Givens match, but we pick the second, because it has a weaker precondition, C a Int, compared to (Eq a, Num Int, C a Int). We thus say that d2 dominates d1; see Note [When does a quantified instance dominate another?]. This domination test is done purely in terms of superclass expansion, in the function GHC.Tc.Solver.Interact.impliedBySCs. We don't attempt to do a full round of constraint solving; this simple check suffices for now. Fixes #22216 and #22223
* Fix typosEric Lindblad2022-09-141-7/+7
| | | | | | | This fixes various typos and spelling mistakes in the compiler. Fixes #21891
* Remove TCvSubst and use Subst for both term and type-level substYiyun Liu2022-08-041-7/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch removes the TCvSubst data type and instead uses Subst as the environment for both term and type level substitution. This change is partially motivated by the existential type proposal, which will introduce types that contain expressions and therefore forces us to carry around an "IdSubstEnv" even when substituting for types. It also reduces the amount of code because "Subst" and "TCvSubst" share a lot of common operations. There isn't any noticeable impact on performance (geo. mean for ghc/alloc is around 0.0% but we have -94 loc and one less data type to worry abount). Currently, the "TCvSubst" data type for substitution on types is identical to the "Subst" data type except the former doesn't store "IdSubstEnv". Using "Subst" for type-level substitution means there will be a redundant field stored in the data type. However, in cases where the substitution starts from the expression, using "Subst" for type-level substitution saves us from having to project "Subst" into a "TCvSubst". This probably explains why the allocation is mostly even despite the redundant field. The patch deletes "TCvSubst" and moves "Subst" and its relevant functions from "GHC.Core.Subst" into "GHC.Core.TyCo.Subst". Substitution on expressions is still defined in "GHC.Core.Subst" so we don't have to expose the definition of "Expr" in the hs-boot file that "GHC.Core.TyCo.Subst" must import to refer to "IdSubstEnv" (whose codomain is "CoreExpr"). Most functions named fooTCvSubst are renamed into fooSubst with a few exceptions (e.g. "isEmptyTCvSubst" is a distinct function from "isEmptySubst"; the former ignores the emptiness of "IdSubstEnv"). These exceptions mainly exist for performance reasons and will go away when "Expr" and "Type" are mutually recursively defined (we won't be able to take those shortcuts if we can't make the assumption that expressions don't appear in types).
* Get the in-scope set right in FamInstEnv.injectiveBranchesSimon Peyton Jones2022-07-251-6/+18
| | | | | | | | | | | | | There was an assert error, as Gergo pointed out in #21896. I fixed this by adding an InScopeSet argument to tcUnifyTyWithTFs. And also to GHC.Core.Unify.niFixTCvSubst. I also took the opportunity to get a couple more InScopeSets right, and to change some substTyUnchecked into substTy. This MR touches a lot of other files, but only because I also took the opportunity to introduce mkInScopeSetList, and use it.
* Consider the stage of typeable evidence when checking stage restrictionMatthew Pickering2022-05-221-1/+1
| | | | | | | | | | | | | | We were considering all Typeable evidence to be "BuiltinInstance"s which meant the stage restriction was going unchecked. In-fact, typeable has evidence and so we need to apply the stage restriction. This is complicated by the fact we don't generate typeable evidence and the corresponding DFunIds until after typechecking is concluded so we introcue a new `InstanceWhat` constructor, BuiltinTypeableInstance which records whether the evidence is going to be local or not. Fixes #21547
* TcPlugin: access to irreducible givens + fix passed ev_binds_varPavol Vargovcik2022-05-161-4/+5
|
* Fix several note referencesKrzysztof Gogolewski2022-05-021-1/+1
|
* Fix unification of ConcreteTvs, removing IsRefl#sheaf2022-04-281-10/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch fixes the unification of concrete type variables. The subtlety was that unifying concrete metavariables is more subtle than other metavariables, as decomposition is possible. See the Note [Unifying concrete metavariables], which explains how we unify a concrete type variable with a type 'ty' by concretising 'ty', using the function 'GHC.Tc.Utils.Concrete.concretise'. This can be used to perform an eager syntactic check for concreteness, allowing us to remove the IsRefl# special predicate. Instead of emitting two constraints `rr ~# concrete_tv` and `IsRefl# rr concrete_tv`, we instead concretise 'rr'. If this succeeds we can fill 'concrete_tv', and otherwise we directly emit an error message to the typechecker environment instead of deferring. We still need the error message to be passed on (instead of directly thrown), as we might benefit from further unification in which case we will need to zonk the stored types. To achieve this, we change the 'wc_holes' field of 'WantedConstraints' to 'wc_errors', which stores general delayed errors. For the moement, a delayed error is either a hole, or a syntactic equality error. hasFixedRuntimeRep_MustBeRefl is now hasFixedRuntimeRep_syntactic, and hasFixedRuntimeRep has been refactored to directly return the most useful coercion for PHASE 2 of FixedRuntimeRep. This patch also adds a field ir_frr to the InferResult datatype, holding a value of type Maybe FRROrigin. When this value is not Nothing, this means that we must fill the ir_ref field with a type which has a fixed RuntimeRep. When it comes time to fill such an ExpType, we ensure that the type has a fixed RuntimeRep by performing a representation-polymorphism check with the given FRROrigin This is similar to what we already do to ensure we fill an Infer ExpType with a type of the correct TcLevel. This allows us to properly perform representation-polymorphism checks on 'Infer' 'ExpTypes'. The fillInferResult function had to be moved to GHC.Tc.Utils.Unify to avoid a cyclic import now that it calls hasFixedRuntimeRep. This patch also changes the code in matchExpectedFunTys to make use of the coercions, which is now possible thanks to the previous change. This implements PHASE 2 of FixedRuntimeRep in some situations. For example, the test cases T13105 and T17536b are now both accepted. Fixes #21239 and #21325 ------------------------- Metric Decrease: T18223 T5631 -------------------------
* Add Red Herring to Note [What might equal later?]Richard Eisenberg2022-03-281-1/+1
| | | | Close #21208.
* Introduce ConcreteTv metavariablessheaf2022-03-021-5/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch introduces a new kind of metavariable, by adding the constructor `ConcreteTv` to `MetaInfo`. A metavariable with `ConcreteTv` `MetaInfo`, henceforth a concrete metavariable, can only be unified with a type that is concrete (that is, a type that answers `True` to `GHC.Core.Type.isConcrete`). This solves the problem of dangling metavariables in `Concrete#` constraints: instead of emitting `Concrete# ty`, which contains a secret existential metavariable, we simply emit a primitive equality constraint `ty ~# concrete_tv` where `concrete_tv` is a fresh concrete metavariable. This means we can avoid all the complexity of canonicalising `Concrete#` constraints, as we can just re-use the existing machinery for `~#`. To finish things up, this patch then removes the `Concrete#` special predicate, and instead introduces the special predicate `IsRefl#` which enforces that a coercion is reflexive. Such a constraint is needed because the canonicaliser is quite happy to rewrite an equality constraint such as `ty ~# concrete_tv`, but such a rewriting is not handled by the rest of the compiler currently, as we need to make use of the resulting coercion, as outlined in the FixedRuntimeRep plan. The big upside of this approach (on top of simplifying the code) is that we can now selectively implement PHASE 2 of FixedRuntimeRep, by changing individual calls of `hasFixedRuntimeRep_MustBeRefl` to `hasFixedRuntimeRep` and making use of the obtained coercion.
* Kill derived constraintsRichard Eisenberg2022-02-231-260/+270
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Co-authored by: Sam Derbyshire Previously, GHC had three flavours of constraint: Wanted, Given, and Derived. This removes Derived constraints. Though serving a number of purposes, the most important role of Derived constraints was to enable better error messages. This job has been taken over by the new RewriterSets, as explained in Note [Wanteds rewrite wanteds] in GHC.Tc.Types.Constraint. Other knock-on effects: - Various new Notes as I learned about under-described bits of GHC - A reshuffling around the AST for implicit-parameter bindings, with better integration with TTG. - Various improvements around fundeps. These were caused by the fact that, previously, fundep constraints were all Derived, and Derived constraints would get dropped. Thus, an unsolved Derived didn't stop compilation. Without Derived, this is no longer possible, and so we have to be considerably more careful around fundeps. - A nice little refactoring in GHC.Tc.Errors to center the work on a new datatype called ErrorItem. Constraints are converted into ErrorItems at the start of processing, and this allows for a little preprocessing before the main classification. - This commit also cleans up the behavior in generalisation around functional dependencies. Now, if a variable is determined by functional dependencies, it will not be quantified. This change is user facing, but it should trim down GHC's strange behavior around fundeps. - Previously, reportWanteds did quite a bit of work, even on an empty WantedConstraints. This commit adds a fast path. - Now, GHC will unconditionally re-simplify constraints during quantification. See Note [Unconditionally resimplify constraints when quantifying], in GHC.Tc.Solver. Close #18398. Close #18406. Solve the fundep-related non-confluence in #18851. Close #19131. Close #19137. Close #20922. Close #20668. Close #19665. ------------------------- Metric Decrease: LargeRecord T9872b T9872b_defer T9872d TcPlugin_RewritePerf -------------------------
* Fix a few Note inconsistenciesBen Gamari2022-02-011-3/+3
|
* Use local instances with least superclass depthRichard Eisenberg2021-11-121-37/+101
| | | | | | | | | | See new Note [Use only the best local instance] in GHC.Tc.Solver.Interact. This commit also refactors the InstSC/OtherSC mechanism slightly. Close #20582.
* Improve redundant-constraints warningRichard Eisenberg2021-11-121-53/+52
| | | | | | | | | | | | | | Previously, we reported things wrong with f :: (Eq a, Ord a) => a -> Bool f x = x == x saying that Eq a was redundant. This is fixed now, along with some simplification in Note [Replacement vs keeping]. There's a tiny bit of extra complexity in setImplicationStatus, but it's explained in Note [Tracking redundant constraints]. Close #20602
* Introduce Concrete# for representation polymorphism checkssheaf2021-10-171-10/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | PHASE 1: we never rewrite Concrete# evidence. This patch migrates all the representation polymorphism checks to the typechecker, using a new constraint form Concrete# :: forall k. k -> TupleRep '[] Whenever a type `ty` must be representation-polymorphic (e.g. it is the type of an argument to a function), we emit a new `Concrete# ty` Wanted constraint. If this constraint goes unsolved, we report a representation-polymorphism error to the user. The 'FRROrigin' datatype keeps track of the context of the representation-polymorphism check, for more informative error messages. This paves the way for further improvements, such as allowing type families in RuntimeReps and improving the soundness of typed Template Haskell. This is left as future work (PHASE 2). fixes #17907 #20277 #20330 #20423 #20426 updates haddock submodule ------------------------- Metric Decrease: T5642 -------------------------
* Use eqType, not tcEqType, in metavar kind checkRichard Eisenberg2021-10-021-1/+1
| | | | | | | | | | | | Close #20356. See addendum to Note [coreView vs tcView] in GHC.Core.Type for the details. Also killed old Note about metaTyVarUpdateOK, which has been gone for some time. test case: typecheck/should_fail/T20356
* Add and use new constructors to TcRnMessageAlfredo Di Napoli2021-09-071-8/+1
| | | | | | | | | | | | | This commit adds the following constructors to the TcRnMessage type and uses them to replace sdoc-based diagnostics in some parts of GHC (e.g. TcRnUnknownMessage). It includes: * Add TcRnMonomorphicBindings diagnostic * Convert TcRnUnknownMessage in Tc.Solver.Interact * Add and use the TcRnOrphanInstance constructor to TcRnMessage * Add TcRnFunDepConflict and TcRnDupInstanceDecls constructors to TcRnMessage * Add and use TcRnConflictingFamInstDecls constructor to TcRnMessage * Get rid of TcRnUnknownMessage from GHC.Tc.Instance.Family
* TcPlugins: solve and report contras simultaneouslysheaf2021-08-231-8/+11
| | | | | | | | | | | | This changes the TcPlugin datatype to allow type-checking plugins to report insoluble constraints while at the same time solve some other constraints. This allows better error messages, as the plugin can still simplify constraints, even when it wishes to report a contradiction. Pattern synonyms TcPluginContradiction and TcPluginOk are provided for backwards compatibility: existing type-checking plugins should continue to work without modification.
* Add rewriting to typechecking pluginssheaf2021-08-131-13/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | Type-checking plugins can now directly rewrite type-families. The TcPlugin record is given a new field, tcPluginRewrite. The plugin specifies how to rewrite certain type-families with a value of type `UniqFM TyCon TcPluginRewriter`, where: type TcPluginRewriter = RewriteEnv -- Rewriter environment -> [Ct] -- Givens -> [TcType] -- type family arguments -> TcPluginM TcPluginRewriteResult data TcPluginRewriteResult = TcPluginNoRewrite | TcPluginRewriteTo { tcPluginRewriteTo :: Reduction , tcRewriterNewWanteds :: [Ct] } When rewriting an exactly-saturated type-family application, GHC will first query type-checking plugins for possible rewritings before proceeding. Includes some changes to the TcPlugin API, e.g. removal of the EvBindsVar parameter to the TcPluginM monad.
* Try to simplify zoo of functions in `Tc.Utils.Monad`Alfredo Di Napoli2021-06-281-1/+4
| | | | | | | | | | | This commit tries to untangle the zoo of diagnostic-related functions in `Tc.Utils.Monad` so that we can have the interfaces mentions only `TcRnMessage`s while we push the creation of these messages upstream. It also ports TcRnMessage diagnostics to use the new API, in particular this commit switch to use TcRnMessage in the external interfaces of the diagnostic functions, and port the old SDoc to be wrapped into TcRnUnknownMessage.
* Fix #19682 by breaking cycles in DerivedsRichard Eisenberg2021-06-051-11/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit expands the old Note [Type variable cycles in Givens] to apply as well to Deriveds. See the Note for details and examples. This fixes a regression introduced by my earlier commit that killed off the flattener in favor of the rewriter. A few other things happened along the way: * unifyTest was renamed to touchabilityTest, because that's what it does. * isInsolubleOccursCheck was folded into checkTypeEq, which does much of the same work. To get this to work out, though, we need to keep more careful track of what errors we spot in checkTypeEq, and so CheckTyEqResult has become rather more glorious. * A redundant Note or two was eliminated. * Kill off occCheckForErrors; due to Note [Rewriting synonyms], the extra occCheckExpand here is always redundant. * Store blocked equalities separately from other inerts; less stuff to look through when kicking out. Close #19682. test case: typecheck/should_compile/T19682{,b}
* Rip GHC.Tc.Solver.Monad asunder (only)Richard Eisenberg2021-05-291-1/+3
| | | | | | | | | | | This creates new modules GHC.Tc.Solver.InertSet and GHC.Tc.Solver.Types. The Monad module is still pretty big, but this is an improvement. Moreover, it means that GHC.HsToCore.Pmc.Solver.Types no longer depends on the constraint solver (it now depends on GHC.Tc.Solver.InertSet), making the error-messages work easier. This patch thus contributes to #18516.
* Remove useless {-# LANGUAGE CPP #-} pragmasSylvain Henry2021-05-121-1/+1
|
* Fully remove HsVersions.hSylvain Henry2021-05-121-2/+0
| | | | | | | | | | Replace uses of WARN macro with calls to: warnPprTrace :: Bool -> SDoc -> a -> a Remove the now unused HsVersions.h Bump haddock submodule
* Replace CPP assertions with Haskell functionsSylvain Henry2021-05-121-4/+5
| | | | | | | | | | | | | | | There is no reason to use CPP. __LINE__ and __FILE__ macros are now better replaced with GHC's CallStack. As a bonus, assert error messages now contain more information (function name, column). Here is the mapping table (HasCallStack omitted): * ASSERT: assert :: Bool -> a -> a * MASSERT: massert :: Bool -> m () * ASSERTM: assertM :: m Bool -> m () * ASSERT2: assertPpr :: Bool -> SDoc -> a -> a * MASSERT2: massertPpr :: Bool -> SDoc -> m () * ASSERTM2: assertPprM :: m Bool -> SDoc -> m ()
* Avoid fundep-caused loop in the typecheckerSimon Peyton Jones2021-03-311-24/+101
| | | | | | | | | | | Ticket #19415 showed a nasty typechecker loop, which can happen with fundeps that do not satisfy the coverage condition. This patch fixes the problem. It's described in GHC.Tc.Solver.Interact Note [Fundeps with instances] It's not a perfect solution, as the Note explains, but it's better than the status quo.
* Unify result type earlier to improve error messagesSimon Peyton Jones2021-03-011-22/+81
| | | | | | | | | | | | | | | | | | | | | | Ticket #19364 helpfully points out that we do not currently take advantage of pushing the result type of an application into the arguments. This makes error messages notably less good. The fix is rather easy: move the result-type unification step earlier. It's even a bit more efficient; in the the checking case we now do one less zonk. See Note [Unify with expected type before typechecking arguments] in GHC.Tc.Gen.App This change generally improves error messages, but it made one worse: typecheck/should_fail/T16204c. That led me to the realisation that a good error can be replaced by a less-good one, which provoked me to change GHC.Tc.Solver.Interact.inertsCanDischarge. It's explained in the new Note [Combining equalities] One other refactoring: I discovered that KindEqOrigin didn't need a Maybe in its type -- a nice simplification.
* Fix a long standing bug in constraint solvingSimon Peyton Jones2021-02-091-11/+49
| | | | | | | | | | | | | | | | When combining Inert: [W] C ty1 ty2 Work item: [D] C ty1 ty2 we were simply discarding the Derived one. Not good! We should turn the inert back into [WD] or keep both. E.g. fundeps work only on Derived (see isImprovable). This little patch fixes it. The bug is hard to tickle, but #19315 did so. The fix is a little messy (see Note [KeepBoth] plus the change in addDictCt), but I am disinclined to refine it further because it'll all be swept away when we Kill Deriveds.
* Fix typosBrian Wignall2021-02-061-2/+2
|
* Make matchableGivens more reliably correct.Richard Eisenberg2021-01-231-9/+10
| | | | | | | | | | | | | | | | | | | | | | | This has two fixes: 1. Take TyVarTvs into account in matchableGivens. This fixes #19106. 2. Don't allow unifying alpha ~ Maybe alpha. This fixes #19107. This patch also removes a redundant Note and redirects references to a better replacement. Also some refactoring/improvements around the BindFun in the pure unifier, which now can take the RHS type into account. Close #19106. Close #19107. Test case: partial-sigs/should_compile/T19106, typecheck/should_compile/T19107
* Remove unused extension pragmas from the compiler code baseHécate2021-01-171-1/+1
|
* Kill floatEqualities completelySimon Peyton Jones2020-12-201-41/+87
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch delivers on #17656, by entirel killing off the complex floatEqualities mechanism. Previously, floatEqualities would float an equality out of an implication, so that it could be solved at an outer level. But now we simply do unification in-place, without floating the constraint, relying on level numbers to determine untouchability. There are a number of important new Notes: * GHC.Tc.Utils.Unify Note [Unification preconditions] describes the preconditions for unification, including both skolem-escape and touchability. * GHC.Tc.Solver.Interact Note [Solve by unification] describes what we do when we do unify * GHC.Tc.Solver.Monad Note [The Unification Level Flag] describes how we control solver iteration under this new scheme * GHC.Tc.Solver.Monad Note [Tracking Given equalities] describes how we track when we have Given equalities * GHC.Tc.Types.Constraint Note [HasGivenEqs] is a new explanation of the ic_given_eqs field of an implication A big raft of subtle Notes in Solver, concerning floatEqualities, disappears. Main code changes: * GHC.Tc.Solver.floatEqualities disappears entirely * GHC.Tc.Solver.Monad: new fields in InertCans, inert_given_eq_lvl and inert_given_eq, updated by updateGivenEqs See Note [Tracking Given equalities]. * In exchange for updateGivenEqa, GHC.Tc.Solver.Monad.getHasGivenEqs is much simpler and more efficient * I found I could kill of metaTyVarUpdateOK entirely One test case T14683 showed a 5.1% decrease in compile-time allocation; and T5631 was down 2.2%. Other changes were small. Metric Decrease: T14683 T5631
* Rename the flattener to become the rewriter.Richard Eisenberg2020-12-011-2/+2
| | | | | | | | Now that flattening doesn't produce flattening variables, it's not really flattening anything: it's rewriting. This change also means that the rewriter can no longer be confused the core flattener (in GHC.Core.Unify), which is sometimes used during type-checking.
* Remove flattening variablesRichard Eisenberg2020-12-011-583/+140
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch redesigns the flattener to simplify type family applications directly instead of using flattening meta-variables and skolems. The key new innovation is the CanEqLHS type and the new CEqCan constraint (Ct). A CanEqLHS is either a type variable or exactly-saturated type family application; either can now be rewritten using a CEqCan constraint in the inert set. Because the flattener no longer reduces all type family applications to variables, there was some performance degradation if a lengthy type family application is now flattened over and over (not making progress). To compensate, this patch contains some extra optimizations in the flattener, leading to a number of performance improvements. Close #18875. Close #18910. There are many extra parts of the compiler that had to be affected in writing this patch: * The family-application cache (formerly the flat-cache) sometimes stores coercions built from Given inerts. When these inerts get kicked out, we must kick out from the cache as well. (This was, I believe, true previously, but somehow never caused trouble.) Kicking out from the cache requires adding a filterTM function to TrieMap. * This patch obviates the need to distinguish "blocking" coercion holes from non-blocking ones (which, previously, arose from CFunEqCans). There is thus some simplification around coercion holes. * Extra commentary throughout parts of the code I read through, to preserve the knowledge I gained while working. * A change in the pure unifier around unifying skolems with other types. Unifying a skolem now leads to SurelyApart, not MaybeApart, as documented in Note [Binding when looking up instances] in GHC.Core.InstEnv. * Some more use of MCoercion where appropriate. * Previously, class-instance lookup automatically noticed that e.g. C Int was a "unifier" to a target [W] C (F Bool), because the F Bool was flattened to a variable. Now, a little more care must be taken around checking for unifying instances. * Previously, tcSplitTyConApp_maybe would split (Eq a => a). This is silly, because (=>) is not a tycon in Haskell. Fixed now, but there are some knock-on changes in e.g. TrieMap code and in the canonicaliser. * New function anyFreeVarsOf{Type,Co} to check whether a free variable satisfies a certain predicate. * Type synonyms now remember whether or not they are "forgetful"; a forgetful synonym drops at least one argument. This is useful when flattening; see flattenView. * The pattern-match completeness checker invokes the solver. This invocation might need to look through newtypes when checking representational equality. Thus, the desugarer needs to keep track of the in-scope variables to know what newtype constructors are in scope. I bet this bug was around before but never noticed. * Extra-constraints wildcards are no longer simplified before printing. See Note [Do not simplify ConstraintHoles] in GHC.Tc.Solver. * Whether or not there are Given equalities has become slightly subtler. See the new HasGivenEqs datatype. * Note [Type variable cycles in Givens] in GHC.Tc.Solver.Canonical explains a significant new wrinkle in the new approach. * See Note [What might match later?] in GHC.Tc.Solver.Interact, which explains the fix to #18910. * The inert_count field of InertCans wasn't actually used, so I removed it. Though I (Richard) did the implementation, Simon PJ was very involved in design and review. This updates the Haddock submodule to avoid #18932 by adding a type signature. ------------------------- Metric Decrease: T12227 T5030 T9872a T9872b T9872c Metric Increase: T9872d -------------------------
* Add the proper HLint rules and remove redundant keywords from compilerHécate2020-11-011-6/+4
|
* Remove unnecessary gender from comments/docsRichard Eisenberg2020-10-291-2/+2
| | | | | | | While, say, alternating "he" and "she" in sequential writing may be nicer than always using "they", reading code/documentation is almost never sequential. If this small change makes individuals feel more welcome in GHC's codebase, that's a good thing.
* Lint the compiler for extraneous LANGUAGE pragmasHécate2020-10-101-7/+10
|
* Fix typos in commentsKrzysztof Gogolewski2020-10-021-1/+1
| | | | [skip ci]
* Care with implicit-parameter superclassesSimon Peyton Jones2020-09-151-3/+6
| | | | | | | | | | | | | | | | | | | | | | Two bugs, #18627 and #18649, had the same cause: we were not account for the fact that a constaint tuple might hide an implicit parameter. The solution is not hard: look for implicit parameters in superclasses. See Note [Local implicit parameters] in GHC.Core.Predicate. Then we use this new function in two places * The "short-cut solver" in GHC.Tc.Solver.Interact.shortCutSolver which simply didn't handle implicit parameters properly at all. This fixes #18627 * The specialiser, which should not specialise on implicit parameters This fixes #18649 There are some lingering worries (see Note [Local implicit parameters]) but things are much better.
* DynFlags: disentangle OutputableSylvain Henry2020-08-121-0/+1
| | | | | | | | | - put panic related functions into GHC.Utils.Panic - put trace related functions using DynFlags in GHC.Driver.Ppr One step closer making Outputable fully independent of DynFlags. Bump haddock submodule
* Clean up haddock hyperlinks of GHC.* (part2)Takenobu Tani2020-06-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | This updates haddock comments only. This patch focuses to update for hyperlinks in GHC API's haddock comments, because broken links especially discourage newcomers. This includes the following hierarchies: - GHC.Iface.* - GHC.Llvm.* - GHC.Rename.* - GHC.Tc.* - GHC.HsToCore.* - GHC.StgToCmm.* - GHC.CmmToAsm.* - GHC.Runtime.* - GHC.Unit.* - GHC.Utils.* - GHC.SysTools.*
* Refactor hole constraints.Richard Eisenberg2020-05-061-7/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously, holes (both expression holes / out of scope variables and partial-type-signature wildcards) were emitted as *constraints* via the CHoleCan constructor. While this worked fine for error reporting, there was a fair amount of faff in keeping these constraints in line. In particular, and unlike other constraints, we could never change a CHoleCan to become CNonCanonical. In addition: * the "predicate" of a CHoleCan constraint was really the type of the hole, which is not a predicate at all * type-level holes (partial type signature wildcards) carried evidence, which was never used * tcNormalise (used in the pattern-match checker) had to create a hole constraint just to extract it again; it was quite messy The new approach is to record holes directly in WantedConstraints. It flows much more nicely now. Along the way, I did some cleaning up of commentary in GHC.Tc.Errors.Hole, which I had a hard time understanding. This was instigated by a future patch that will refactor the way predicates are handled. The fact that CHoleCan's "predicate" wasn't really a predicate is incompatible with that future patch. No test case, because this is meant to be purely internal. It turns out that this change improves the performance of the pattern-match checker, likely because fewer constraints are sloshing about in tcNormalise. I have not investigated deeply, but an improvement is not a surprise here: ------------------------- Metric Decrease: PmSeriesG -------------------------