| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We want an accurate SrcSpan for redundant constraints:
• Redundant constraint: Eq a
• In the type signature for:
f :: forall a. Eq a => a -> ()
|
5 | f :: Eq a => a -> ()
| ^^^^
This patch adds some plumbing to achieve this
* New data type GHC.Tc.Types.Origin.ReportRedundantConstraints (RRC)
* This RRC value is kept inside
- FunSigCtxt
- ExprSigCtxt
* Then, when reporting the error in GHC.Tc.Errors, use this SrcSpan
to control the error message: GHC.Tc.Errors.warnRedundantConstraints
Quite a lot of files are touched in a boring way.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit introduces a new `Severity` type constructor called
`SevIgnore`, which can be used to classify diagnostic messages which are
not meant to be displayed to the user, for example suppressed warnings.
This extra constructor allows us to get rid of a bunch of redundant
checks when emitting diagnostics, typically in the form of the pattern:
```
when (optM Opt_XXX) $
addDiagnosticTc (WarningWithFlag Opt_XXX) ...
```
Fair warning! Not all checks should be omitted/skipped, as evaluating some data
structures used to produce a diagnostic might still be expensive (e.g.
zonking, etc). Therefore, a case-by-case analysis must be conducted when
deciding if a check can be removed or not.
Last but not least, we remove the unnecessary `CmdLine.WarnReason` type, which is now
redundant with `DiagnosticReason`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit further expand on the design for #18516 by getting rid of
the `defaultReasonSeverity` in favour of a function called
`diagReasonSeverity` which correctly takes the `DynFlags` as input. The
idea is to compute the `Severity` and the `DiagnosticReason` of each
message "at birth", without doing any later re-classifications, which
are potentially error prone, as the `DynFlags` might evolve during the
course of the program.
In preparation for a proper refactoring, now `pprWarning` from the
Parser.Ppr module has been renamed to `mkParserWarn`, which now takes a
`DynFlags` as input.
We also get rid of the reclassification we were performing inside `printOrThrowWarnings`.
Last but not least, this commit removes the need for reclassify inside GHC.Tc.Errors,
and also simplifies the implementation of `maybeReportError`.
Update Haddock submodule
|
|
|
|
|
|
| |
Follow-up from !2418, see #19579
Updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Other than that:
* Fix T16167,json,json2,T7478,T10637 tests to reflect the introduction of
the `MessageClass` type
* Remove `makeIntoWarning`
* Remove `warningsToMessages`
* Refactor GHC.Tc.Errors
1. Refactors GHC.Tc.Errors so that we use `DiagnosticReason` for "choices"
(defer types errors, holes, etc);
2. We get rid of `reportWarning` and `reportError` in favour of a general
`reportDiagnostic`.
* Introduce `DiagnosticReason`, `Severity` is an enum: This big commit makes
`Severity` a simple enumeration, and introduces the concept of `DiagnosticReason`,
which classifies the /reason/ why we are emitting a particular diagnostic.
It also adds a monomorphic `DiagnosticMessage` type which is used for
generic messages.
* The `Severity` is computed (for now) from the reason, statically.
Later improvement will add a `diagReasonSeverity` function to compute
the `Severity` taking `DynFlags` into account.
* Rename `logWarnings` into `logDiagnostics`
* Add note and expand description of the `mkHoleError` function
|
|
|
|
|
|
|
|
| |
Metric Increase:
T10370
parsing001
Updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds two new methods to the Quasi class, putDoc and getDoc. They
allow Haddock documentation to be added to declarations, module headers,
function arguments and class/type family instances, as well as looked
up.
It works by building up a map of names to attach pieces of
documentation to, which are then added in the extractDocs function in
GHC.HsToCore.Docs. However because these template haskell names need to
be resolved to GHC names at the time they are added, putDoc cannot
directly add documentation to declarations that are currently being
spliced. To remedy this, withDecDoc/withDecsDoc wraps the operation with
addModFinalizer, and provides a more ergonomic interface for doing so.
Similarly, the funD_doc, dataD_doc etc. combinators provide a more
ergonomic interface for documenting functions and their arguments
simultaneously.
This also changes ArgDocMap to use an IntMap rather than an Map Int, for
efficiency.
Part of the work towards #5467
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It's surprisingly tricky to deal with 'main' (#19397). This
patch does quite bit of refactoring do to it right. Well,
more-right anyway!
The moving parts are documented in GHC.Tc.Module
Note [Dealing with main]
Some other oddments:
* Rename tcRnExports to rnExports; no typechecking here!
* rnExports now uses checkNoErrs rather than failIfErrsM;
the former fails only if rnExports itself finds errors
* Small improvements to tcTyThingCategory, which ultimately
weren't important to the patch, but I've retained as
a minor improvement.
|
|
|
|
| |
Found with ghc-debug on the ManyConstructors test
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When implementing Quick Look I'd failed to remember that overloaded
labels, like #foo, should be treated as a "head", so that they can be
instantiated with Visible Type Application. This caused #19154.
A very similar ticket covers overloaded literals: #19167.
This patch fixes both problems, but (annoyingly, albeit temporarily)
in two different ways.
Overloaded labels
I dealt with overloaded labels by buying fully into the
Rebindable Syntax approach described in GHC.Hs.Expr
Note [Rebindable syntax and HsExpansion].
There is a good overview in GHC.Rename.Expr
Note [Handling overloaded and rebindable constructs].
That module contains much of the payload for this patch.
Specifically:
* Overloaded labels are expanded in the renamer, fixing #19154.
See Note [Overloaded labels] in GHC.Rename.Expr.
* Left and right sections used to have special code paths in the
typechecker and desugarer. Now we just expand them in the
renamer. This is harder than it sounds. See GHC.Rename.Expr
Note [Left and right sections].
* Infix operator applications are expanded in the typechecker,
specifically in GHC.Tc.Gen.App.splitHsApps. See
Note [Desugar OpApp in the typechecker] in that module
* ExplicitLists are expanded in the renamer, when (and only when)
OverloadedLists is on.
* HsIf is expanded in the renamer when (and only when) RebindableSyntax
is on. Reason: the coverage checker treats HsIf specially. Maybe
we could instead expand it unconditionally, and fix up the coverage
checker, but I did not attempt that.
Overloaded literals
Overloaded literals, like numbers (3, 4.2) and strings with
OverloadedStrings, were not working correctly with explicit type
applications (see #19167). Ideally I'd also expand them in the
renamer, like the stuff above, but I drew back on that because they
can occur in HsPat as well, and I did not want to to do the HsExpanded
thing for patterns.
But they *can* now be the "head" of an application in the typechecker,
and hence something like ("foo" @T) works now. See
GHC.Tc.Gen.Head.tcInferOverLit. It's also done a bit more elegantly,
rather than by constructing a new HsExpr and re-invoking the
typechecker. There is some refactoring around tcShortCutLit.
Ultimately there is more to do here, following the Rebindable Syntax
story.
There are a lot of knock-on effects:
* HsOverLabel and ExplicitList no longer need funny (Maybe SyntaxExpr)
fields to support rebindable syntax -- good!
* HsOverLabel, OpApp, SectionL, SectionR all become impossible in the
output of the typecheker, GhcTc; so we set their extension fields to
Void. See GHC.Hs.Expr Note [Constructor cannot occur]
* Template Haskell quotes for HsExpanded is a bit tricky. See
Note [Quotation and rebindable syntax] in GHC.HsToCore.Quote.
* In GHC.HsToCore.Match.viewLExprEq, which groups equal HsExprs for the
purpose of pattern-match overlap checking, I found that dictionary
evidence for the same type could have two different names. Easily
fixed by comparing types not names.
* I did quite a bit of annoying fiddling around in GHC.Tc.Gen.Head and
GHC.Tc.Gen.App to get error message locations and contexts right,
esp in splitHsApps, and the HsExprArg type. Tiresome and not very
illuminating. But at least the tricky, higher order, Rebuilder
function is gone.
* Some refactoring in GHC.Tc.Utils.Monad around contexts and locations
for rebindable syntax.
* Incidentally fixes #19346, because we now print renamed, rather than
typechecked, syntax in error mesages about applications.
The commit removes the vestigial module GHC.Builtin.RebindableNames,
and thus triggers a 2.4% metric decrease for test MultiLayerModules
(#19293).
Metric Decrease:
MultiLayerModules
T12545
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The roughMatchTcs function enables a quick definitely-no-match test
in lookupInstEnv. Unfortunately, it didn't account for type families.
This didn't matter when type families were flattened away, but now
they aren't flattened it matters a lot.
The fix is very easy. See INVARIANT in GHC.Core.InstEnv
Note [ClsInst laziness and the rough-match fields]
Fixes #19336
The change makes compiler perf worse on two very-type-family-heavy
benchmarks, T9872{a,d}:
T9872a(normal) ghc/alloc 2172536442.7 2216337648.0 +2.0%
T9872d(normal) ghc/alloc 614584024.0 621081384.0 +1.1%
(Everything else is 0.0% or at most 0.1%.)
I think we just have to put up with this. Some cases were being
wrongly filtered out by roughMatchTcs that might actually match, which
could lead to false apartness checks. And it only affects these very
type-family-heavy cases.
Metric Increase:
T9872a
T9872d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, the only way to override GHC's default logging
behavior was to set `log_action`, `dump_action` and `trace_action`
fields in DynFlags. This patch introduces a new Logger abstraction and
stores it in HscEnv instead.
This is part of #17957 (avoid storing state in DynFlags). DynFlags are
duplicated and updated per-module (because of OPTIONS_GHC pragma), so
we shouldn't store global state in them.
This patch also fixes a race in parallel "--make" mode which updated
the `generatedDumps` IORef concurrently.
Bump haddock submodule
The increase in MultilayerModules is tracked in #19293.
Metric Increase:
MultiLayerModules
|
|
|
|
|
| |
This commit introduces a DecoratedSDoc type which replaces the old
ErrDoc, and hopefully better reflects the intent.
|
|
|
|
| |
Updates Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit boldly removes the ErrDoc and the MsgDoc from the codebase.
The former was introduced with the only purpose of classifying errors
according to their importance, but a similar result can be obtained just
by having a simple [SDoc], and placing bullets after each of them.
On top of that I have taken the perhaps controversial decision to also
banish MsgDoc, as it was merely a type alias over an SDoc and as such it wasn't
offering any extra type safety. Granted, it was perhaps making type
signatures slightly more "focused", but at the expense of cognitive
burden: if it's really just an SDoc, let's call it with its proper name.
|
|
|
|
|
|
|
|
|
| |
This commit paves the way to a richer and more structured representation
of GHC error messages, as per GHC proposal #306. More specifically
'Messages' from 'GHC.Types.Error' now gains an extra type parameter,
that we instantiate to 'ErrDoc' for now. Later, this will allow us to
replace ErrDoc with something more structure (for example messages
coming from the parser, the typechecker etc).
|
|
|
|
|
|
|
|
|
| |
Parameterize collect*Binders functions with a flag indicating if
evidence binders should be collected.
The related note in GHC.Hs.Utils has been updated.
Bump haddock submodule
|
|
|
|
| |
Missing this caused #19197. Easily fixed.
|
|
|
|
|
|
|
|
|
|
|
| |
This commit removes the errShortString field from the ErrMsg type,
allowing us to cleanup a lot of dynflag-dependent error functions, and
move them in a more specialised 'GHC.Driver.Errors' closer to the
driver, where they are actually used.
Metric Increase:
T4801
T9961
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch establishes invariant (GivenInv) from GHC.Tc.Utils.TcType
Note [TcLevel invariants]. (GivenInv) says that unification variables
from level 'n' should not appear in the Givens for level 'n'. See
Note [GivenInv] in teh same module.
This invariant was already very nearly true, but a dark corner of
partial type signatures made it false. The patch re-jigs partial type
signatures a bit to avoid the problem, and documents the invariant
much more thorughly
Fixes #18646 along the way: see Note [Extra-constraints wildcards]
in GHC.Tc.Gen.Bind
I also simplified the interface to tcSimplifyInfer slightly, so that
it /emits/ the residual constraint, rather than /returning/ it.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch significantly refactors key renamer datastructures (primarily Avail
and GlobalRdrElt) in order to treat DuplicateRecordFields in a more robust way.
In particular it allows the extension to be used with pattern synonyms (fixes
where mangled record selector names could be printed instead of field labels
(e.g. with -Wpartial-fields or hole fits, see new tests).
The key idea is the introduction of a new type GreName for names that may
represent either normal entities or field labels. This is then used in
GlobalRdrElt and AvailInfo, in place of the old way of representing fields
using FldParent (yuck) and an extra list in AvailTC.
Updates the haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The unit database cache, the home unit and the unit state were stored in
DynFlags while they ought to be stored in the compiler session state
(HscEnv). This patch fixes this.
It introduces a new UnitEnv type that should be used in the future to
handle separate unit environments (especially host vs target units).
Related to #17957
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
| |
Loaded plugins have nothing to do in DynFlags so this patch moves them
into HscEnv (session state).
"DynFlags plugins" become "Driver plugins" to still be able to register
static plugins.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This refactors the GHC AST to remove `HsImplicitBndrs` and replace it with
`HsOuterTyVarBndrs`, a type which records whether the outermost quantification
in a type is explicit (i.e., with an outermost, invisible `forall`) or
implicit. As a result of this refactoring, it is now evident in the AST where
the `forall`-or-nothing rule applies: it's all the places that use
`HsOuterTyVarBndrs`. See the revamped `Note [forall-or-nothing rule]` in
`GHC.Hs.Type` (previously in `GHC.Rename.HsType`).
Moreover, the places where `ScopedTypeVariables` brings lexically scoped type
variables into scope are a subset of the places that adhere to the
`forall`-or-nothing rule, so this also makes places that interact with
`ScopedTypeVariables` easier to find. See the revamped
`Note [Lexically scoped type variables]` in `GHC.Hs.Type` (previously in
`GHC.Tc.Gen.Sig`).
`HsOuterTyVarBndrs` are used in type signatures (see `HsOuterSigTyVarBndrs`)
and type family equations (see `HsOuterFamEqnTyVarBndrs`). The main difference
between the former and the latter is that the former cares about specificity
but the latter does not.
There are a number of knock-on consequences:
* There is now a dedicated `HsSigType` type, which is the combination of
`HsOuterSigTyVarBndrs` and `HsType`. `LHsSigType` is now an alias for an
`XRec` of `HsSigType`.
* Working out the details led us to a substantial refactoring of
the handling of explicit (user-written) and implicit type-variable
bindings in `GHC.Tc.Gen.HsType`.
Instead of a confusing family of higher order functions, we now
have a local data type, `SkolemInfo`, that controls how these
binders are kind-checked.
It remains very fiddly, not fully satisfying. But it's better
than it was.
Fixes #16762. Bumps the Haddock submodule.
Co-authored-by: Simon Peyton Jones <simonpj@microsoft.com>
Co-authored-by: Richard Eisenberg <rae@richarde.dev>
Co-authored-by: Zubin Duggal <zubin@cmi.ac.in>
|
|
|
|
|
|
|
|
|
|
| |
The User's Guide claims that `:kind!` should expand type synonyms,
but GHCi wasn't doing this in practice. Let's just update the implementation
to match the specification in the User's Guide.
Fixes #13795. Fixes #18828.
Co-authored-by: Ryan Scott <ryan.gl.scott@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, the functions in `GHC.Core.Lint` used a patchwork of
different ways to display Core Lint errors:
* `lintPassResult` (which is the source of most Core Lint errors) renders
Core Lint errors with a distinctive banner (e.g.,
`*** Core Lint errors : in result of ... ***`) that sets them apart
from ordinary GHC error messages.
* `lintAxioms`, in contrast, uses a completely different code path that
displays Core Lint errors in a rather confusing manner. For example,
the program in #18770 would give these results:
```
Bug.hs:1:1: error:
Bug.hs:12:1: warning:
Non-*-like kind when *-like expected: RuntimeRep
when checking the body of forall: 'TupleRep '[r]
In the coercion axiom Bug.N:T :: []. Bug.T ~_R Any
Substitution: [TCvSubst
In scope: InScope {r}
Type env: [axl :-> r]
Co env: []]
|
1 | {-# LANGUAGE DataKinds #-}
| ^
```
* Further digging reveals that `GHC.IfaceToCore` displays Core Lint
errors for iface unfoldings as though they were a GHC panic. See, for
example, this excerpt from #17723:
```
ghc: panic! (the 'impossible' happened)
(GHC version 8.8.2 for x86_64-unknown-linux):
Iface Lint failure
In interface for Lib
...
```
This patch makes all of these code paths display Core Lint errors and
warnings consistently. I decided to adopt the conventions that
`lintPassResult` currently uses, as they appear to have been around the
longest (and look the best, in my subjective opinion). We now use the
`displayLintResult` function for all three scenarios mentioned above.
For example, here is what the Core Lint error for the program in #18770 looks
like after this patch:
```
[1 of 1] Compiling Bug ( Bug.hs, Bug.o )
*** Core Lint errors : in result of TcGblEnv axioms ***
Bug.hs:12:1: warning:
Non-*-like kind when *-like expected: RuntimeRep
when checking the body of forall: 'TupleRep '[r_axn]
In the coercion axiom N:T :: []. T ~_R Any
Substitution: [TCvSubst
In scope: InScope {r_axn}
Type env: [axn :-> r_axn]
Co env: []]
*** Offending Program ***
axiom N:T :: T = Any -- Defined at Bug.hs:12:1
*** End of Offense ***
<no location info>: error:
Compilation had errors
```
Fixes #18770.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was working on making DynFlags stateless (#17957), especially by
storing loaded plugins into HscEnv instead of DynFlags. It turned out to
be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin
isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I
didn't feel like introducing yet another hs-boot file to break the loop.
Additionally I remember that while we introduced the module hierarchy
(#13009) we talked about splitting GHC.Driver.Types because it contained
various unrelated types and functions, but we never executed. I didn't
feel like making GHC.Driver.Types bigger with more unrelated Plugins
related types, so finally I bit the bullet and split GHC.Driver.Types.
As a consequence this patch moves a lot of things. I've tried to put
them into appropriate modules but nothing is set in stone.
Several other things moved to avoid loops.
* Removed Binary instances from GHC.Utils.Binary for random compiler
things
* Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they
import a lot of things that users of GHC.Utils.Binary don't want to
depend on.
* put everything related to Units/Modules under GHC.Unit:
GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.}
* Created several modules under GHC.Types: GHC.Types.Fixity, SourceText,
etc.
* Split GHC.Utils.Error (into GHC.Types.Error)
* Finally removed GHC.Driver.Types
Note that this patch doesn't put loaded plugins into HscEnv. It's left
for another patch.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
| |
The linear arrow can be parsed as `%1 ->` or a direct single token unicode
equivalent.
Make sure that this distinction is captured in the parsed AST by using
IsUnicodeSyntax where it appears, and introduce a new API Annotation,
AnnMult to represent its location when unicode is not used.
Updated haddock submodule
|
| |
|
|
|
|
|
| |
Instead of recreating the HomeUnit from the DynFlags every time we need
it, we store it in the HscEnv.
|
|
|
|
| |
[skip ci]
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does two things:
* It refactors GHC.Tc.Errors a bit. In debugging Quick Look I was
forced to look in detail at error messages, and ended up doing a bit
of refactoring, esp in mkTyVarEqErr'. It's still quite a mess, but
a bit better, I think.
* It makes a significant improvement to the kind checking of type and
class declarations. Specifically, we now ensure that if kind
checking fails with an unsolved constraint, all the skolems are in
scope. That wasn't the case before, which led to some obscure error
messages; and occasional failures with "no skolem info" (eg #16245).
Both of these, and the main Quick Look patch itself, affect a /lot/ of
error messages, as you can see from the number of files changed. I've
checked them all; I think they are as good or better than before.
Smaller things
* I documented the various instances of VarBndr better.
See Note [The VarBndr tyep and its uses] in GHC.Types.Var
* Renamed GHC.Tc.Solver.simpl_top to simplifyTopWanteds
* A bit of refactoring in bindExplicitTKTele, to avoid the
footwork with Either. Simpler now.
* Move promoteTyVar from GHC.Tc.Solver to GHC.Tc.Utils.TcMType
Fixes #16245 (comment 211369), memorialised as
typecheck/polykinds/T16245a
Also fixes the three bugs in #18640
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements Quick Look impredicativity (#18126), sticking
very closely to the design in
A quick look at impredicativity, Serrano et al, ICFP 2020
The main change is that a big chunk of GHC.Tc.Gen.Expr has been
extracted to two new modules
GHC.Tc.Gen.App
GHC.Tc.Gen.Head
which deal with typechecking n-ary applications, and the head of
such applications, respectively. Both contain a good deal of
documentation.
Three other loosely-related changes are in this patch:
* I implemented (partly by accident) points (2,3)) of the accepted GHC
proposal "Clean up printing of foralls", namely
https://github.com/ghc-proposals/ghc-proposals/blob/
master/proposals/0179-printing-foralls.rst
(see #16320).
In particular, see Note [TcRnExprMode] in GHC.Tc.Module
- :type instantiates /inferred/, but not /specified/, quantifiers
- :type +d instantiates /all/ quantifiers
- :type +v is killed off
That completes the implementation of the proposal,
since point (1) was done in
commit df08468113ab46832b7ac0a7311b608d1b418c4d
Author: Krzysztof Gogolewski <krzysztof.gogolewski@tweag.io>
Date: Mon Feb 3 21:17:11 2020 +0100
Always display inferred variables using braces
* HsRecFld (which the renamer introduces for record field selectors),
is now preserved by the typechecker, rather than being rewritten
back to HsVar. This is more uniform, and turned out to be more
convenient in the new scheme of things.
* The GHCi debugger uses a non-standard unification that allows the
unification variables to unify with polytypes. We used to hack
this by using ImpredicativeTypes, but that doesn't work anymore
so I introduces RuntimeUnkTv. See Note [RuntimeUnkTv] in
GHC.Runtime.Heap.Inspect
Updates haddock submodule.
WARNING: this patch won't validate on its own. It was too
hard to fully disentangle it from the following patch, on
type errors and kind generalisation.
Changes to tests
* Fixes #9730 (test added)
* Fixes #7026 (test added)
* Fixes most of #8808, except function `g2'` which uses a
section (which doesn't play with QL yet -- see #18126)
Test added
* Fixes #1330. NB Church1.hs subsumes Church2.hs, which is now deleted
* Fixes #17332 (test added)
* Fixes #4295
* This patch makes typecheck/should_run/T7861 fail.
But that turns out to be a pre-existing bug: #18467.
So I have just made T7861 into expect_broken(18467)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Two bugs, #18627 and #18649, had the same cause: we were not
account for the fact that a constaint tuple might hide an implicit
parameter.
The solution is not hard: look for implicit parameters in
superclasses. See Note [Local implicit parameters] in
GHC.Core.Predicate.
Then we use this new function in two places
* The "short-cut solver" in GHC.Tc.Solver.Interact.shortCutSolver
which simply didn't handle implicit parameters properly at all.
This fixes #18627
* The specialiser, which should not specialise on implicit parameters
This fixes #18649
There are some lingering worries (see Note [Local implicit
parameters]) but things are much better.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we pretty-print a UnitId for the user, we try to map it back to its
origin package name, version and component to print
"package-version:component" instead of some hash.
The UnitId type doesn't carry these information, so we have to look into
a UnitState to find them. This is why the Outputable instance of
UnitId used `sdocWithDynFlags` in order to access the `unitState` field
of DynFlags.
This is wrong for several reasons:
1. The DynFlags are accessed when the message is printed, not when it is
generated. So we could imagine that the unitState may have changed
in-between. Especially if we want to allow unit unloading.
2. We want GHC to support several independent sessions at once, hence
several UnitState. The current approach supposes there is a unique
UnitState as a UnitId doesn't indicate which UnitState to use.
See the Note [Pretty-printing UnitId] in GHC.Unit for the new approach
implemented by this patch.
One step closer to remove `sdocDynFlags` field from `SDocContext`
(#10143).
Fix #18124.
Also fix some Backpack code to use SDoc instead of String.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since Backpack the "home unit" is much more involved than what it was
before (just an identifier obtained with `-this-unit-id`). Now it is
used in conjunction with `-component-id` and `-instantiated-with` to
configure module instantiations and to detect if we are type-checking an
indefinite unit or compiling a definite one.
This patch introduces a new HomeUnit datatype which is much easier to
understand. Moreover to make GHC support several packages in the same
instances, we will need to handle several HomeUnits so having a
dedicated (documented) type is helpful.
Finally in #14335 we will also need to handle the case where we have no
HomeUnit at all because we are only loading existing interfaces for
plugins which live in a different space compared to units used to
produce target code. Several functions will have to be refactored to
accept "Maybe HomeUnit" parameters instead of implicitly querying the
HomeUnit fields in DynFlags. Having a dedicated type will make this
easier.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
|
|
|
|
|
|
| |
We don't need to use `sdocWithDynFlags` to know whether we should
display linear types for datacon types, we already have
`sdocLinearTypes` field in `SDocContext`. Moreover we want to remove
`sdocWithDynFlags` (#10143, #17957)).
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Haddock comments are, first and foremost, comments. It's very annoying
to incorporate them into the grammar. We can take advantage of an
important property: adding a Haddock comment does not change the parse
tree in any way other than wrapping some nodes in HsDocTy and the like
(and if it does, that's a bug).
This patch implements the following:
* Accumulate Haddock comments with their locations in the P monad.
This is handled in the lexer.
* After parsing, do a pass over the AST to associate Haddock comments
with AST nodes using location info.
* Report the leftover comments to the user as a warning (-Winvalid-haddock).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Following a long conversation with Richard, this patch tidies up the
handling of return kinds for data/newtype declarations (vanilla,
family, and instance).
I have substantially edited the Notes in TyCl, so they would
bear careful reading.
Fixes #18300, #18357
In GHC.Tc.Instance.Family.newFamInst we were checking some Lint-like
properties with ASSSERT. Instead Richard and I have added
a proper linter for axioms, and called it from lintGblEnv, which in
turn is called in tcRnModuleTcRnM
New tests (T18300, T18357) cause an ASSERT failure in HEAD.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first step towards implementation of the linear types proposal
(https://github.com/ghc-proposals/ghc-proposals/pull/111).
It features
* A language extension -XLinearTypes
* Syntax for linear functions in the surface language
* Linearity checking in Core Lint, enabled with -dlinear-core-lint
* Core-to-core passes are mostly compatible with linearity
* Fields in a data type can be linear or unrestricted; linear fields
have multiplicity-polymorphic constructors.
If -XLinearTypes is disabled, the GADT syntax defaults to linear fields
The following items are not yet supported:
* a # m -> b syntax (only prefix FUN is supported for now)
* Full multiplicity inference (multiplicities are really only checked)
* Decent linearity error messages
* Linear let, where, and case expressions in the surface language
(each of these currently introduce the unrestricted variant)
* Multiplicity-parametric fields
* Syntax for annotating lambda-bound or let-bound with a multiplicity
* Syntax for non-linear/multiple-field-multiplicity records
* Linear projections for records with a single linear field
* Linear pattern synonyms
* Multiplicity coercions (test LinearPolyType)
A high-level description can be found at
https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation
Following the link above you will find a description of the changes made to Core.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Matthew Pickering
* Arnaud Spiwack
With contributions from:
* Mark Barbone
* Alexander Vershilov
Updates haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, `HsForAllTy` permits the combination of `ForallVis` and
`Inferred`, but you can't actually typecheck code that uses it
(e.g., `forall {a} ->`). This patch refactors `HsForAllTy` to use a
new `HsForAllTelescope` data type that makes a type-level distinction
between visible and invisible `forall`s such that visible `forall`s
do not track `Specificity`. That part of the patch is actually quite
small; the rest is simply changing consumers of `HsType` to
accommodate this new type.
Fixes #18235. Bumps the `haddock` submodule.
|
|
|
|
|
| |
* rename thisPackage into homeUnit
* document and refactor several Backpack things
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch simplifies GHC to use simple subsumption.
Ticket #17775
Implements GHC proposal #287
https://github.com/ghc-proposals/ghc-proposals/blob/master/
proposals/0287-simplify-subsumption.rst
All the motivation is described there; I will not repeat it here.
The implementation payload:
* tcSubType and friends become noticably simpler, because it no
longer uses eta-expansion when checking subsumption.
* No deeplyInstantiate or deeplySkolemise
That in turn means that some tests fail, by design; they can all
be fixed by eta expansion. There is a list of such changes below.
Implementing the patch led me into a variety of sticky corners, so
the patch includes several othe changes, some quite significant:
* I made String wired-in, so that
"foo" :: String rather than
"foo" :: [Char]
This improves error messages, and fixes #15679
* The pattern match checker relies on knowing about in-scope equality
constraints, andd adds them to the desugarer's environment using
addTyCsDs. But the co_fn in a FunBind was missed, and for some reason
simple-subsumption ends up with dictionaries there. So I added a
call to addTyCsDs. This is really part of #18049.
* I moved the ic_telescope field out of Implication and into
ForAllSkol instead. This is a nice win; just expresses the code
much better.
* There was a bug in GHC.Tc.TyCl.Instance.tcDataFamInstHeader.
We called checkDataKindSig inside tc_kind_sig, /before/
solveEqualities and zonking. Obviously wrong, easily fixed.
* solveLocalEqualitiesX: there was a whole mess in here, around
failing fast enough. I discovered a bad latent bug where we
could successfully kind-check a type signature, and use it,
but have unsolved constraints that could fill in coercion
holes in that signature -- aargh.
It's all explained in Note [Failure in local type signatures]
in GHC.Tc.Solver. Much better now.
* I fixed a serious bug in anonymous type holes. IN
f :: Int -> (forall a. a -> _) -> Int
that "_" should be a unification variable at the /outer/
level; it cannot be instantiated to 'a'. This was plain
wrong. New fields mode_lvl and mode_holes in TcTyMode,
and auxiliary data type GHC.Tc.Gen.HsType.HoleMode.
This fixes #16292, but makes no progress towards the more
ambitious #16082
* I got sucked into an enormous refactoring of the reporting of
equality errors in GHC.Tc.Errors, especially in
mkEqErr1
mkTyVarEqErr
misMatchMsg
misMatchMsgOrCND
In particular, the very tricky mkExpectedActualMsg function
is gone.
It took me a full day. But the result is far easier to understand.
(Still not easy!) This led to various minor improvements in error
output, and an enormous number of test-case error wibbles.
One particular point: for occurs-check errors I now just say
Can't match 'a' against '[a]'
rather than using the intimidating language of "occurs check".
* Pretty-printing AbsBinds
Tests review
* Eta expansions
T11305: one eta expansion
T12082: one eta expansion (undefined)
T13585a: one eta expansion
T3102: one eta expansion
T3692: two eta expansions (tricky)
T2239: two eta expansions
T16473: one eta
determ004: two eta expansions (undefined)
annfail06: two eta (undefined)
T17923: four eta expansions (a strange program indeed!)
tcrun035: one eta expansion
* Ambiguity check at higher rank. Now that we have simple
subsumption, a type like
f :: (forall a. Eq a => Int) -> Int
is no longer ambiguous, because we could write
g :: (forall a. Eq a => Int) -> Int
g = f
and it'd typecheck just fine. But f's type is a bit
suspicious, and we might want to consider making the
ambiguity check do a check on each sub-term. Meanwhile,
these tests are accepted, whereas they were previously
rejected as ambiguous:
T7220a
T15438
T10503
T9222
* Some more interesting error message wibbles
T13381: Fine: one error (Int ~ Exp Int)
rather than two (Int ~ Exp Int, Exp Int ~ Int)
T9834: Small change in error (improvement)
T10619: Improved
T2414: Small change, due to order of unification, fine
T2534: A very simple case in which a change of unification order
means we get tow unsolved constraints instead of one
tc211: bizarre impredicative tests; just accept this for now
Updates Cabal and haddock submodules.
Metric Increase:
T12150
T12234
T5837
haddock.base
Metric Decrease:
haddock.compiler
haddock.Cabal
haddock.base
Merge note: This appears to break the
`UnliftedNewtypesDifficultUnification` test. It has been marked as
broken in the interest of merging.
(cherry picked from commit 66b7b195cb3dce93ed5078b80bf568efae904cc5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We often have (ModuleName, Bool) or (Module, Bool) pairs for "extended"
module names (without or with a unit id) disambiguating boot and normal
modules. We think this is important enough across the compiler that it
deserves a new nominal product type. We do this with synnoyms and a
functor named with a `Gen` prefix, matching other newly created
definitions.
It was also requested that we keep custom `IsBoot` / `NotBoot` sum type.
So we have it too. This means changing many the many bools to use that
instead.
Updates `haddock` submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implementation for Ticket #16393.
Explicit specificity allows users to manually create inferred type variables,
by marking them with braces.
This way, the user determines which variables can be instantiated through
visible type application.
The additional syntax is included in the parser, allowing users to write
braces in type variable binders (type signatures, data constructors etc).
This information is passed along through the renamer and verified in the
type checker.
The AST for type variable binders, data constructors, pattern synonyms,
partial signatures and Template Haskell has been updated to include the
specificity of type variables.
Minor notes:
- Bumps haddock submodule
- Disables pattern match checking in GHC.Iface.Type with GHC 8.8
|