| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Here we introduce a new data structure, RoughMap, inspired by the
previous `RoughTc` matching mechanism for checking instance matches.
This allows [Fam]InstEnv to be implemented as a trie indexed by these
RoughTc signatures, reducing the complexity of instance lookup and
FamInstEnv merging (done during the family instance conflict test)
from O(n) to O(log n).
The critical performance improvement currently realised by this patch is
in instance matching. In particular the RoughMap mechanism allows us to
discount many potential instances which will never match for constraints
involving type variables (see Note [Matching a RoughMap]). In realistic
code bases matchInstEnv was accounting for 50% of typechecker time due
to redundant work checking instances when simplifying instance contexts
when deriving instances. With this patch the cost is significantly
reduced.
The larger constants in InstEnv creation do mean that a few small
tests regress in allocations slightly. However, the runtime of T19703 is
reduced by a factor of 4. Moreover, the compilation time of the Cabal
library is slightly improved.
A couple of test cases are included which demonstrate significant
improvements in compile time with this patch.
This unfortunately does not fix the testcase provided in #19703 but does
fix #20933
-------------------------
Metric Decrease:
T12425
Metric Increase:
T13719
T9872a
T9872d
hard_hole_fits
-------------------------
Co-authored-by: Matthew Pickering <matthewtpickering@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main purpose of this patch is to attach a SkolemInfo directly to
each SkolemTv. This fixes the large number of bugs which have
accumulated over the years where we failed to report errors due to
having "no skolem info" for particular type variables. Now the origin of
each type varible is stored on the type variable we can always report
accurately where it cames from.
Fixes #20969 #20732 #20680 #19482 #20232 #19752 #10946
#19760 #20063 #13499 #14040
The main changes of this patch are:
* SkolemTv now contains a SkolemInfo field which tells us how the
SkolemTv was created. Used when reporting errors.
* Enforce invariants relating the SkolemInfoAnon and level of an implication (ic_info, ic_tclvl)
to the SkolemInfo and level of the type variables in ic_skols.
* All ic_skols are TcTyVars -- Check is currently disabled
* All ic_skols are SkolemTv
* The tv_lvl of the ic_skols agrees with the ic_tclvl
* The ic_info agrees with the SkolInfo of the implication.
These invariants are checked by a debug compiler by
checkImplicationInvariants.
* Completely refactor kcCheckDeclHeader_sig which kept
doing my head in. Plus, it wasn't right because it wasn't skolemising
the binders as it decomposed the kind signature.
The new story is described in Note [kcCheckDeclHeader_sig]. The code
is considerably shorter than before (roughly 240 lines turns into 150
lines).
It still has the same awkward complexity around computing arity as
before, but that is a language design issue.
See Note [Arity inference in kcCheckDeclHeader_sig]
* I added new type synonyms MonoTcTyCon and PolyTcTyCon, and used
them to be clear which TcTyCons have "finished" kinds etc, and
which are monomorphic. See Note [TcTyCon, MonoTcTyCon, and PolyTcTyCon]
* I renamed etaExpandAlgTyCon to splitTyConKind, becuase that's a
better name, and it is very useful in kcCheckDeclHeader_sig, where
eta-expansion isn't an issue.
* Kill off the nasty `ClassScopedTvEnv` entirely.
Co-authored-by: Simon Peyton Jones <simon.peytonjones@gmail.com>
|
|
|
|
|
|
|
|
|
| |
This fixes #20981. See Note [restoreLclEnv vs setLclEnv]
in GHC.Tc.Utils.Monad.
I also use updLclEnv rather than get/set when I can, because it's
then much clearer that it's an update rather than an entirely new
TcLclEnv coming from who-knows-where.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Multiple home units allows you to load different packages which may depend on
each other into one GHC session. This will allow both GHCi and HLS to support
multi component projects more naturally.
Public Interface
~~~~~~~~~~~~~~~~
In order to specify multiple units, the -unit @⟨filename⟩ flag
is given multiple times with a response file containing the arguments for each unit.
The response file contains a newline separated list of arguments.
```
ghc -unit @unitLibCore -unit @unitLib
```
where the `unitLibCore` response file contains the normal arguments that cabal would pass to `--make` mode.
```
-this-unit-id lib-core-0.1.0.0
-i
-isrc
LibCore.Utils
LibCore.Types
```
The response file for lib, can specify a dependency on lib-core, so then modules in lib can use modules from lib-core.
```
-this-unit-id lib-0.1.0.0
-package-id lib-core-0.1.0.0
-i
-isrc
Lib.Parse
Lib.Render
```
Then when the compiler starts in --make mode it will compile both units lib and lib-core.
There is also very basic support for multiple home units in GHCi, at the
moment you can start a GHCi session with multiple units but only the
:reload is supported. Most commands in GHCi assume a single home unit,
and so it is additional work to work out how to modify the interface to
support multiple loaded home units.
Options used when working with Multiple Home Units
There are a few extra flags which have been introduced specifically for
working with multiple home units. The flags allow a home unit to pretend
it’s more like an installed package, for example, specifying the package
name, module visibility and reexported modules.
-working-dir ⟨dir⟩
It is common to assume that a package is compiled in the directory
where its cabal file resides. Thus, all paths used in the compiler
are assumed to be relative to this directory. When there are
multiple home units the compiler is often not operating in the
standard directory and instead where the cabal.project file is
located. In this case the -working-dir option can be passed which
specifies the path from the current directory to the directory the
unit assumes to be it’s root, normally the directory which contains
the cabal file.
When the flag is passed, any relative paths used by the compiler are
offset by the working directory. Notably this includes -i and
-I⟨dir⟩ flags.
-this-package-name ⟨name⟩
This flag papers over the awkward interaction of the PackageImports
and multiple home units. When using PackageImports you can specify
the name of the package in an import to disambiguate between modules
which appear in multiple packages with the same name.
This flag allows a home unit to be given a package name so that you
can also disambiguate between multiple home units which provide
modules with the same name.
-hidden-module ⟨module name⟩
This flag can be supplied multiple times in order to specify which
modules in a home unit should not be visible outside of the unit it
belongs to.
The main use of this flag is to be able to recreate the difference
between an exposed and hidden module for installed packages.
-reexported-module ⟨module name⟩
This flag can be supplied multiple times in order to specify which
modules are not defined in a unit but should be reexported. The
effect is that other units will see this module as if it was defined
in this unit.
The use of this flag is to be able to replicate the reexported
modules feature of packages with multiple home units.
Offsetting Paths in Template Haskell splices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When using Template Haskell to embed files into your program,
traditionally the paths have been interpreted relative to the directory
where the .cabal file resides. This causes problems for multiple home
units as we are compiling many different libraries at once which have
.cabal files in different directories.
For this purpose we have introduced a way to query the value of the
-working-dir flag to the Template Haskell API. By using this function we
can implement a makeRelativeToProject function which offsets a path
which is relative to the original project root by the value of
-working-dir.
```
import Language.Haskell.TH.Syntax ( makeRelativeToProject )
foo = $(makeRelativeToProject "./relative/path" >>= embedFile)
```
> If you write a relative path in a Template Haskell splice you should use the makeRelativeToProject function so that your library works correctly with multiple home units.
A similar function already exists in the file-embed library. The
function in template-haskell implements this function in a more robust
manner by honouring the -working-dir flag rather than searching the file
system.
Closure Property for Home Units
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For tools or libraries using the API there is one very important closure
property which must be adhered to:
> Any dependency which is not a home unit must not (transitively) depend
on a home unit.
For example, if you have three packages p, q and r, then if p depends on
q which depends on r then it is illegal to load both p and r as home
units but not q, because q is a dependency of the home unit p which
depends on another home unit r.
If you are using GHC by the command line then this property is checked,
but if you are using the API then you need to check this property
yourself. If you get it wrong you will probably get some very confusing
errors about overlapping instances.
Limitations of Multiple Home Units
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are a few limitations of the initial implementation which will be smoothed out on user demand.
* Package thinning/renaming syntax is not supported
* More complicated reexports/renaming are not yet supported.
* It’s more common to run into existing linker bugs when loading a
large number of packages in a session (for example #20674, #20689)
* Backpack is not yet supported when using multiple home units.
* Dependency chasing can be quite slow with a large number of
modules and packages.
* Loading wired-in packages as home units is currently not supported
(this only really affects GHC developers attempting to load
template-haskell).
* Barely any normal GHCi features are supported, it would be good to
support enough for ghcid to work correctly.
Despite these limitations, the implementation works already for nearly
all packages. It has been testing on large dependency closures,
including the whole of head.hackage which is a total of 4784 modules
from 452 packages.
Internal Changes
~~~~~~~~~~~~~~~~
* The biggest change is that the HomePackageTable is replaced with the
HomeUnitGraph. The HomeUnitGraph is a map from UnitId to HomeUnitEnv,
which contains information specific to each home unit.
* The HomeUnitEnv contains:
- A unit state, each home unit can have different package db flags
- A set of dynflags, each home unit can have different flags
- A HomePackageTable
* LinkNode: A new node type is added to the ModuleGraph, this is used to
place the linking step into the build plan so linking can proceed in
parralel with other packages being built.
* New invariant: Dependencies of a ModuleGraphNode can be completely
determined by looking at the value of the node. In order to achieve
this, downsweep now performs a more complete job of downsweeping and
then the dependenices are recorded forever in the node rather than
being computed again from the ModSummary.
* Some transitive module calculations are rewritten to use the
ModuleGraph which is more efficient.
* There is always an active home unit, which simplifies modifying a lot
of the existing API code which is unit agnostic (for example, in the
driver).
The road may be bumpy for a little while after this change but the
basics are well-tested.
One small metric increase, which we accept and also submodule update to
haddock which removes ExtendedModSummary.
Closes #10827
-------------------------
Metric Increase:
MultiLayerModules
-------------------------
Co-authored-by: Fendor <power.walross@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Plugins were directly fetched from HscEnv (hsc_static_plugins and
hsc_plugins). The tight coupling of plugins and of HscEnv is undesirable
and it's better to store them in a new Plugins datatype and to use it in
the plugins' API (e.g. withPlugins, mapPlugins...).
In the process, the interactive context (used by GHCi) got proper
support for different static plugins than those used for loaded modules.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Names defined earier but shadowed need to be kept around, e.g. for type
signatures:
```
ghci> data T = T
ghci> let t = T
ghci> data T = T
ghci> :t t
t :: Ghci1.T
```
and indeed they can be used:
```
ghci> let t2 = Ghci1.T :: Ghci1.T
ghci> :t t2
t2 :: Ghci1.T
```
However, previously this did not happen for ids (non-types), although they
are still around under the qualified name internally:
```
ghci> let t = "other t"
ghci> t'
<interactive>:8:1: error:
• Variable not in scope: t'
• Perhaps you meant one of these:
‘Ghci2.t’ (imported from Ghci2), ‘t’ (line 7), ‘t2’ (line 5)
ghci> Ghci2.t
<interactive>:9:1: error:
• GHC internal error: ‘Ghci2.t’ is not in scope during type checking, but it passed the renamer
tcl_env of environment: []
• In the expression: Ghci2.t
In an equation for ‘it’: it = Ghci2.t
```
This fixes the problem by simply removing the code that tries to remove
shadowed ids from the environment. Now you can refer to shadowed ids using
`Ghci2.t`, just like you can do for data and type constructors. This
simplifies the code, makes terms and types more similar, and also
fixes #20455.
Now all names ever defined in GHCi are in `ic_tythings`, which is printed by
`:show bindings`. But for that commands, it seems to be more ergonomic
to only list those bindings that are not shadowed. Or, even if it is not
more ergonomic, it’s the current behavour. So let's restore that by filtering
in `icInScopeTTs`.
Of course a single `TyThing` can be associated with many names. We keep
it it in the bindings if _any_ of its names are still visible
unqualifiedly. It's a judgement call.
This commit also turns a rather old comment into a test files.
The comment is is rather stale and things are better explained
elsewhere. Fixes #925.
Two test cases are regressing:
T14052(ghci) ghc/alloc 2749444288.0 12192109912.0 +343.4% BAD
T14052Type(ghci) ghc/alloc 7365784616.0 10767078344.0 +46.2% BAD
This is not unexpected; the `ic_tythings list grows` a lot more if we
don’t remove shadowed Ids. I tried to alleviate it a bit with earlier
MRs, but couldn’t make up for it completely.
Metric Increase:
T14052
T14052Type
|
|
|
|
|
|
|
|
|
|
|
|
| |
In 806e49ae the package imports refactoring code was modified to rename
package imports. There was a small oversight which meant the code didn't
account for module visibility. This patch fixes that oversight.
In general the "lookupPackageName" function is unsafe to use as it
doesn't account for package visiblity/thinning/renaming etc, there is
just one use in the compiler which would be good to audit.
Fixes #20779
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Remove `getTag_RDR` (unused), `tidyKind` and `tidyOpenKind`
(already available as `tidyType` and `tidyOpenType`)
* Remove Note [Explicit Case Statement for Specificity].
Since 0a709dd9876e40 we require GHC 8.10 for bootstrapping.
* Change the warning to `cmpAltCon` to a panic.
This shouldn't happen. If it ever does, the code was wrong anyway:
it shouldn't always return `LT`, but rather `LT` in one case
and `GT` in the other case.
* Rename `verifyLinearConstructors` to `verifyLinearFields`
* Fix `Note [Local record selectors]` which was not referenced
* Remove vestiges of `type +v`
* Minor fixes to StaticPointers documentation, part of #15603
|
| |
|
|
|
|
|
| |
This allows us to use an Anchor with a DeltaPos in it when exact
printing.
|
|
|
|
|
|
|
|
|
| |
Use an (Raw)PkgQual datatype instead of `Maybe FastString` to represent
package imports. Factorize the code that renames RawPkgQual into PkgQual
in function `rnPkgQual`. Renaming consists in checking if the FastString
is the magic "this" keyword, the home-unit unit-id or something else.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The GlobalRdrEnv of a GHCI session changes in odd ways: New bindings are
not just added "to the end", but also "in the middle", namely when
changing the set of imports: These are treated as if they happened
before all bindings from the prompt, even those that happened earlier.
Previously, this meant that the `ic_rn_gbl_env` is recalculated from the
`ic_tythings`. But this wasteful if `ic_tythings` has many entries that
define the same unqualified name. By separately keeping track of a
`GlobalRdrEnv` of all the locally defined things we can speed this
operation up significantly.
This change improves `T14052Type` by 60% (It used to be 70%, but it
looks that !6723 already reaped some of the rewards).
But more importantly, it hopefully unblocks #20455, becaues with this
smarter caching, the change needed to fix that issue will no longer make
`T14052` explode. I hope.
It does regress `T14052` by 30%; caching isn’t free. Oh well.
Metric Decrease:
T14052Type
Metric Increase:
T14052
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PHASE 1: we never rewrite Concrete# evidence.
This patch migrates all the representation polymorphism checks to
the typechecker, using a new constraint form
Concrete# :: forall k. k -> TupleRep '[]
Whenever a type `ty` must be representation-polymorphic
(e.g. it is the type of an argument to a function), we emit a new
`Concrete# ty` Wanted constraint. If this constraint goes
unsolved, we report a representation-polymorphism error to the user.
The 'FRROrigin' datatype keeps track of the context of the
representation-polymorphism check, for more informative error messages.
This paves the way for further improvements, such as
allowing type families in RuntimeReps and improving the soundness
of typed Template Haskell. This is left as future work (PHASE 2).
fixes #17907 #20277 #20330 #20423 #20426
updates haddock submodule
-------------------------
Metric Decrease:
T5642
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Like the built-in type defaulting rules these plugins can propose candidates
to resolve ambiguous type variables.
Machine learning and other large APIs like those for game engines introduce
new numeric types and other complex typed APIs. The built-in defaulting
mechanism isn't powerful enough to resolve ambiguous types in these cases forcing
users to specify minutia that they might not even know how to do. There is
an example defaulting plugin linked in the documentation. Applications include
defaulting the device a computation executes on, if a gradient should be
computed for a tensor, or the size of a tensor.
See https://github.com/ghc-proposals/ghc-proposals/pull/396 for details.
|
| |
|
|
|
|
| |
And remove the former.
|
|
|
|
| |
Closes ticket #17820.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Type-checking plugins can now directly rewrite type-families.
The TcPlugin record is given a new field, tcPluginRewrite.
The plugin specifies how to rewrite certain type-families with a value
of type `UniqFM TyCon TcPluginRewriter`, where:
type TcPluginRewriter
= RewriteEnv -- Rewriter environment
-> [Ct] -- Givens
-> [TcType] -- type family arguments
-> TcPluginM TcPluginRewriteResult
data TcPluginRewriteResult
= TcPluginNoRewrite
| TcPluginRewriteTo
{ tcPluginRewriteTo :: Reduction
, tcRewriterNewWanteds :: [Ct]
}
When rewriting an exactly-saturated type-family application,
GHC will first query type-checking plugins for possible rewritings
before proceeding.
Includes some changes to the TcPlugin API, e.g. removal
of the EvBindsVar parameter to the TcPluginM monad.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Make mkDependencies pure
* Use Sets instead of sorted lists
Notable perf changes:
MultiLayerModules(normal) ghc/alloc 4130851520.0 2981473072.0 -27.8%
T13719(normal) ghc/alloc 4313296052.0 4151647512.0 -3.7%
Metric Decrease:
MultiLayerModules
T13719
|
|
|
|
|
|
|
|
|
| |
Parts of HsStmtContext were split into a separate data structure
HsDoFlavour. Before this change HsDo used to have HsStmtContext
inside, but in reality only parts of HsStmtContext were used and other
cases were invariants handled with panics. Separating those parts
into its own data structure helps us to get rid of those panics as
well as HsDoRn type family.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We define Reduction = Reduction Coercion !Type.
A reduction of the form 'Reduction co new_ty' witnesses an
equality ty ~co~> new_ty.
That is, the rewriting happens left-to-right: the right-hand-side
type of the coercion is the rewritten type, and the left-hand-side
type the original type.
Sticking to this convention makes the codebase more consistent,
helping to avoid certain applications of SymCo.
This replaces the parts of the codebase which represented reductions as
pairs, (Coercion,Type) or (Type,Coercion).
Reduction being strict in the Type argument improves performance
in some programs that rewrite many type families (such as T9872).
Fixes #20161
-------------------------
Metric Decrease:
T5321Fun
T9872a
T9872b
T9872c
T9872d
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use DiagOpts for diagnostic options instead of directly querying
DynFlags (#17957).
Surprising performance improvements on CI:
T4801(normal) ghc/alloc 313236344.0 306515216.0 -2.1% GOOD
T9961(normal) ghc/alloc 384502736.0 380584384.0 -1.0% GOOD
ManyAlternatives(normal) ghc/alloc 797356128.0 786644928.0 -1.3%
ManyConstructors(normal) ghc/alloc 4389732432.0 4317740880.0 -1.6%
T783(normal) ghc/alloc 408142680.0 402812176.0 -1.3%
Metric Decrease:
T4801
T9961
T783
ManyAlternatives
ManyConstructors
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
| |
This commit tries to untangle the zoo of diagnostic-related functions
in `Tc.Utils.Monad` so that we can have the interfaces mentions only
`TcRnMessage`s while we push the creation of these messages upstream.
It also ports TcRnMessage diagnostics to use the new API, in particular
this commit switch to use TcRnMessage in the external interfaces
of the diagnostic functions, and port the old SDoc to be wrapped
into TcRnUnknownMessage.
|
|
|
|
|
|
|
|
| |
This adds constructors to TcRnMessage to replace use of
TcRnUnknownMessage in Ghc.Tc.Module.
Adds a test case for the UnsafeDueToPlugin warning.
Closes #19926
|
|
|
|
| |
fixes #19756, updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce LogFlags as a independent subset of DynFlags used for logging.
As a consequence in many places we don't have to pass both Logger and
DynFlags anymore.
The main reason for this refactoring is that I want to refactor the
systools interfaces: for now many systools functions use DynFlags both
to use the Logger and to fetch their parameters (e.g. ldInputs for the
linker). I'm interested in refactoring the way they fetch their
parameters (i.e. use dedicated XxxOpts data types instead of DynFlags)
for #19877. But if I did this refactoring before refactoring the Logger,
we would have duplicate parameters (e.g. ldInputs from DynFlags and
linkerInputs from LinkerOpts). Hence this patch first.
Some flags don't really belong to LogFlags because they are subsystem
specific (e.g. most DumpFlags). For example -ddump-asm should better be
passed in NCGConfig somehow. This patch doesn't fix this tight coupling:
the dump flags are part of the UI but they are passed all the way down
for example to infer the file name for the dumps.
Because LogFlags are a subset of the DynFlags, we must update the former
when the latter changes (not so often). As a consequence we now use
accessors to read/write DynFlags in HscEnv instead of using `hsc_dflags`
directly.
In the process I've also made some subsystems less dependent on DynFlags:
- CmmToAsm: by passing some missing flags via NCGConfig (see new fields
in GHC.CmmToAsm.Config)
- Core.Opt.*:
- by passing -dinline-check value into UnfoldingOpts
- by fixing some Core passes interfaces (e.g. CallArity, FloatIn)
that took DynFlags argument for no good reason.
- as a side-effect GHC.Core.Opt.Pipeline.doCorePass is much less
convoluted.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit extends the GHC diagnostic hierarchy with a `GhcHint` type,
modelling helpful suggestions emitted by GHC which can be used to deal
with a particular warning or error.
As a direct consequence of this, the `Diagnostic` typeclass has been extended
with a `diagnosticHints` method, which returns a `[GhcHint]`. This means
that now we can clearly separate out the printing of the diagnostic
message with the suggested fixes.
This is done by extending the `printMessages` function in
`GHC.Driver.Errors`.
On top of that, the old `PsHint` type has been superseded by the new `GhcHint`
type, which de-duplicates some hints in favour of a general `SuggestExtension`
constructor that takes a `GHC.LanguageExtensions.Extension`.
|
|
|
|
| |
The check bypass is no longer necessary and the check would have avoided #19638.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit modifies interface files so that *only* direct information
about modules and packages is stored in the interface file.
* Only direct module and direct package dependencies are stored in the
interface files.
* Trusted packages are now stored separately as they need to be checked
transitively.
* hs-boot files below the compiled module in the home module are stored
so that eps_is_boot can be calculated in one-shot mode without loading
all interface files in the home package.
* The transitive closure of signatures is stored separately
This is important for two reasons
* Less recompilation is needed, as motivated by #16885, a lot of
redundant compilation was triggered when adding new imports deep in the
module tree as all the parent interface files had to be redundantly
updated.
* Checking an interface file is cheaper because you don't have to
perform a transitive traversal to check the dependencies are up-to-date.
In the code, places where we would have used the transitive closure, we
instead compute the necessary transitive closure. The closure is not
computed very often, was already happening in checkDependencies, and
was already happening in getLinkDeps.
Fixes #16885
-------------------------
Metric Decrease:
MultiLayerModules
T13701
T13719
-------------------------
|
|
|
|
|
|
|
|
|
|
| |
Replace uses of WARN macro with calls to:
warnPprTrace :: Bool -> SDoc -> a -> a
Remove the now unused HsVersions.h
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is no reason to use CPP. __LINE__ and __FILE__ macros are now
better replaced with GHC's CallStack. As a bonus, assert error messages
now contain more information (function name, column).
Here is the mapping table (HasCallStack omitted):
* ASSERT: assert :: Bool -> a -> a
* MASSERT: massert :: Bool -> m ()
* ASSERTM: assertM :: m Bool -> m ()
* ASSERT2: assertPpr :: Bool -> SDoc -> a -> a
* MASSERT2: massertPpr :: Bool -> SDoc -> m ()
* ASSERTM2: assertPprM :: m Bool -> SDoc -> m ()
|
|
|
|
|
|
|
|
|
|
|
| |
It is possible that the type variables bound by a class header will map to
something different in the typechecker in the presence of
`StandaloneKindSignatures`. `tcClassDecl2` was not aware of this, however,
leading to #19738. To fix it, in `tcTyClDecls` we map each class `TcTyCon` to
its `tcTyConScopedTyVars` as a `ClassScopedTVEnv`. We then plumb that
`ClassScopedTVEnv` to `tcClassDecl2` where it can be used.
Fixes #19738.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds GhcMessage and ancillary (PsMessage, TcRnMessage, ..)
types.
These types will be expanded to represent more errors generated
by different subsystems within GHC. Right now, they are underused,
but more will come in the glorious future.
See
https://gitlab.haskell.org/ghc/ghc/-/wikis/Errors-as-(structured)-values
for a design overview.
Along the way, lots of other things had to happen:
* Adds Semigroup and Monoid instance for Bag
* Fixes #19746 by parsing OPTIONS_GHC pragmas into Located Strings.
See GHC.Parser.Header.toArgs (moved from GHC.Utils.Misc, where it
didn't belong anyway).
* Addresses (but does not completely fix) #19709, now reporting
desugarer warnings and errors appropriately for TH splices.
Not done: reporting type-checker warnings for TH splices.
* Some small refactoring around Safe Haskell inference, in order
to keep separate classes of messages separate.
* Some small refactoring around initDsTc, in order to keep separate
classes of messages separate.
* Separate out the generation of messages (that is, the construction
of the text block) from the wrapping of messages (that is, assigning
a SrcSpan). This is more modular than the previous design, which
mixed the two.
Close #19746.
This was a collaborative effort by Alfredo di Napoli and
Richard Eisenberg, with a key assist on #19746 by Iavor
Diatchki.
Metric Increase:
MultiLayerModules
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We want an accurate SrcSpan for redundant constraints:
• Redundant constraint: Eq a
• In the type signature for:
f :: forall a. Eq a => a -> ()
|
5 | f :: Eq a => a -> ()
| ^^^^
This patch adds some plumbing to achieve this
* New data type GHC.Tc.Types.Origin.ReportRedundantConstraints (RRC)
* This RRC value is kept inside
- FunSigCtxt
- ExprSigCtxt
* Then, when reporting the error in GHC.Tc.Errors, use this SrcSpan
to control the error message: GHC.Tc.Errors.warnRedundantConstraints
Quite a lot of files are touched in a boring way.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit introduces a new `Severity` type constructor called
`SevIgnore`, which can be used to classify diagnostic messages which are
not meant to be displayed to the user, for example suppressed warnings.
This extra constructor allows us to get rid of a bunch of redundant
checks when emitting diagnostics, typically in the form of the pattern:
```
when (optM Opt_XXX) $
addDiagnosticTc (WarningWithFlag Opt_XXX) ...
```
Fair warning! Not all checks should be omitted/skipped, as evaluating some data
structures used to produce a diagnostic might still be expensive (e.g.
zonking, etc). Therefore, a case-by-case analysis must be conducted when
deciding if a check can be removed or not.
Last but not least, we remove the unnecessary `CmdLine.WarnReason` type, which is now
redundant with `DiagnosticReason`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit further expand on the design for #18516 by getting rid of
the `defaultReasonSeverity` in favour of a function called
`diagReasonSeverity` which correctly takes the `DynFlags` as input. The
idea is to compute the `Severity` and the `DiagnosticReason` of each
message "at birth", without doing any later re-classifications, which
are potentially error prone, as the `DynFlags` might evolve during the
course of the program.
In preparation for a proper refactoring, now `pprWarning` from the
Parser.Ppr module has been renamed to `mkParserWarn`, which now takes a
`DynFlags` as input.
We also get rid of the reclassification we were performing inside `printOrThrowWarnings`.
Last but not least, this commit removes the need for reclassify inside GHC.Tc.Errors,
and also simplifies the implementation of `maybeReportError`.
Update Haddock submodule
|
|
|
|
|
|
| |
Follow-up from !2418, see #19579
Updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Other than that:
* Fix T16167,json,json2,T7478,T10637 tests to reflect the introduction of
the `MessageClass` type
* Remove `makeIntoWarning`
* Remove `warningsToMessages`
* Refactor GHC.Tc.Errors
1. Refactors GHC.Tc.Errors so that we use `DiagnosticReason` for "choices"
(defer types errors, holes, etc);
2. We get rid of `reportWarning` and `reportError` in favour of a general
`reportDiagnostic`.
* Introduce `DiagnosticReason`, `Severity` is an enum: This big commit makes
`Severity` a simple enumeration, and introduces the concept of `DiagnosticReason`,
which classifies the /reason/ why we are emitting a particular diagnostic.
It also adds a monomorphic `DiagnosticMessage` type which is used for
generic messages.
* The `Severity` is computed (for now) from the reason, statically.
Later improvement will add a `diagReasonSeverity` function to compute
the `Severity` taking `DynFlags` into account.
* Rename `logWarnings` into `logDiagnostics`
* Add note and expand description of the `mkHoleError` function
|
|
|
|
|
|
|
|
| |
Metric Increase:
T10370
parsing001
Updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds two new methods to the Quasi class, putDoc and getDoc. They
allow Haddock documentation to be added to declarations, module headers,
function arguments and class/type family instances, as well as looked
up.
It works by building up a map of names to attach pieces of
documentation to, which are then added in the extractDocs function in
GHC.HsToCore.Docs. However because these template haskell names need to
be resolved to GHC names at the time they are added, putDoc cannot
directly add documentation to declarations that are currently being
spliced. To remedy this, withDecDoc/withDecsDoc wraps the operation with
addModFinalizer, and provides a more ergonomic interface for doing so.
Similarly, the funD_doc, dataD_doc etc. combinators provide a more
ergonomic interface for documenting functions and their arguments
simultaneously.
This also changes ArgDocMap to use an IntMap rather than an Map Int, for
efficiency.
Part of the work towards #5467
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It's surprisingly tricky to deal with 'main' (#19397). This
patch does quite bit of refactoring do to it right. Well,
more-right anyway!
The moving parts are documented in GHC.Tc.Module
Note [Dealing with main]
Some other oddments:
* Rename tcRnExports to rnExports; no typechecking here!
* rnExports now uses checkNoErrs rather than failIfErrsM;
the former fails only if rnExports itself finds errors
* Small improvements to tcTyThingCategory, which ultimately
weren't important to the patch, but I've retained as
a minor improvement.
|
|
|
|
| |
Found with ghc-debug on the ManyConstructors test
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When implementing Quick Look I'd failed to remember that overloaded
labels, like #foo, should be treated as a "head", so that they can be
instantiated with Visible Type Application. This caused #19154.
A very similar ticket covers overloaded literals: #19167.
This patch fixes both problems, but (annoyingly, albeit temporarily)
in two different ways.
Overloaded labels
I dealt with overloaded labels by buying fully into the
Rebindable Syntax approach described in GHC.Hs.Expr
Note [Rebindable syntax and HsExpansion].
There is a good overview in GHC.Rename.Expr
Note [Handling overloaded and rebindable constructs].
That module contains much of the payload for this patch.
Specifically:
* Overloaded labels are expanded in the renamer, fixing #19154.
See Note [Overloaded labels] in GHC.Rename.Expr.
* Left and right sections used to have special code paths in the
typechecker and desugarer. Now we just expand them in the
renamer. This is harder than it sounds. See GHC.Rename.Expr
Note [Left and right sections].
* Infix operator applications are expanded in the typechecker,
specifically in GHC.Tc.Gen.App.splitHsApps. See
Note [Desugar OpApp in the typechecker] in that module
* ExplicitLists are expanded in the renamer, when (and only when)
OverloadedLists is on.
* HsIf is expanded in the renamer when (and only when) RebindableSyntax
is on. Reason: the coverage checker treats HsIf specially. Maybe
we could instead expand it unconditionally, and fix up the coverage
checker, but I did not attempt that.
Overloaded literals
Overloaded literals, like numbers (3, 4.2) and strings with
OverloadedStrings, were not working correctly with explicit type
applications (see #19167). Ideally I'd also expand them in the
renamer, like the stuff above, but I drew back on that because they
can occur in HsPat as well, and I did not want to to do the HsExpanded
thing for patterns.
But they *can* now be the "head" of an application in the typechecker,
and hence something like ("foo" @T) works now. See
GHC.Tc.Gen.Head.tcInferOverLit. It's also done a bit more elegantly,
rather than by constructing a new HsExpr and re-invoking the
typechecker. There is some refactoring around tcShortCutLit.
Ultimately there is more to do here, following the Rebindable Syntax
story.
There are a lot of knock-on effects:
* HsOverLabel and ExplicitList no longer need funny (Maybe SyntaxExpr)
fields to support rebindable syntax -- good!
* HsOverLabel, OpApp, SectionL, SectionR all become impossible in the
output of the typecheker, GhcTc; so we set their extension fields to
Void. See GHC.Hs.Expr Note [Constructor cannot occur]
* Template Haskell quotes for HsExpanded is a bit tricky. See
Note [Quotation and rebindable syntax] in GHC.HsToCore.Quote.
* In GHC.HsToCore.Match.viewLExprEq, which groups equal HsExprs for the
purpose of pattern-match overlap checking, I found that dictionary
evidence for the same type could have two different names. Easily
fixed by comparing types not names.
* I did quite a bit of annoying fiddling around in GHC.Tc.Gen.Head and
GHC.Tc.Gen.App to get error message locations and contexts right,
esp in splitHsApps, and the HsExprArg type. Tiresome and not very
illuminating. But at least the tricky, higher order, Rebuilder
function is gone.
* Some refactoring in GHC.Tc.Utils.Monad around contexts and locations
for rebindable syntax.
* Incidentally fixes #19346, because we now print renamed, rather than
typechecked, syntax in error mesages about applications.
The commit removes the vestigial module GHC.Builtin.RebindableNames,
and thus triggers a 2.4% metric decrease for test MultiLayerModules
(#19293).
Metric Decrease:
MultiLayerModules
T12545
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The roughMatchTcs function enables a quick definitely-no-match test
in lookupInstEnv. Unfortunately, it didn't account for type families.
This didn't matter when type families were flattened away, but now
they aren't flattened it matters a lot.
The fix is very easy. See INVARIANT in GHC.Core.InstEnv
Note [ClsInst laziness and the rough-match fields]
Fixes #19336
The change makes compiler perf worse on two very-type-family-heavy
benchmarks, T9872{a,d}:
T9872a(normal) ghc/alloc 2172536442.7 2216337648.0 +2.0%
T9872d(normal) ghc/alloc 614584024.0 621081384.0 +1.1%
(Everything else is 0.0% or at most 0.1%.)
I think we just have to put up with this. Some cases were being
wrongly filtered out by roughMatchTcs that might actually match, which
could lead to false apartness checks. And it only affects these very
type-family-heavy cases.
Metric Increase:
T9872a
T9872d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, the only way to override GHC's default logging
behavior was to set `log_action`, `dump_action` and `trace_action`
fields in DynFlags. This patch introduces a new Logger abstraction and
stores it in HscEnv instead.
This is part of #17957 (avoid storing state in DynFlags). DynFlags are
duplicated and updated per-module (because of OPTIONS_GHC pragma), so
we shouldn't store global state in them.
This patch also fixes a race in parallel "--make" mode which updated
the `generatedDumps` IORef concurrently.
Bump haddock submodule
The increase in MultilayerModules is tracked in #19293.
Metric Increase:
MultiLayerModules
|
|
|
|
|
| |
This commit introduces a DecoratedSDoc type which replaces the old
ErrDoc, and hopefully better reflects the intent.
|
|
|
|
| |
Updates Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit boldly removes the ErrDoc and the MsgDoc from the codebase.
The former was introduced with the only purpose of classifying errors
according to their importance, but a similar result can be obtained just
by having a simple [SDoc], and placing bullets after each of them.
On top of that I have taken the perhaps controversial decision to also
banish MsgDoc, as it was merely a type alias over an SDoc and as such it wasn't
offering any extra type safety. Granted, it was perhaps making type
signatures slightly more "focused", but at the expense of cognitive
burden: if it's really just an SDoc, let's call it with its proper name.
|