summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Gen/Pat.hs
Commit message (Collapse)AuthorAgeFilesLines
* Remove TCvSubst and use Subst for both term and type-level substYiyun Liu2022-08-041-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch removes the TCvSubst data type and instead uses Subst as the environment for both term and type level substitution. This change is partially motivated by the existential type proposal, which will introduce types that contain expressions and therefore forces us to carry around an "IdSubstEnv" even when substituting for types. It also reduces the amount of code because "Subst" and "TCvSubst" share a lot of common operations. There isn't any noticeable impact on performance (geo. mean for ghc/alloc is around 0.0% but we have -94 loc and one less data type to worry abount). Currently, the "TCvSubst" data type for substitution on types is identical to the "Subst" data type except the former doesn't store "IdSubstEnv". Using "Subst" for type-level substitution means there will be a redundant field stored in the data type. However, in cases where the substitution starts from the expression, using "Subst" for type-level substitution saves us from having to project "Subst" into a "TCvSubst". This probably explains why the allocation is mostly even despite the redundant field. The patch deletes "TCvSubst" and moves "Subst" and its relevant functions from "GHC.Core.Subst" into "GHC.Core.TyCo.Subst". Substitution on expressions is still defined in "GHC.Core.Subst" so we don't have to expose the definition of "Expr" in the hs-boot file that "GHC.Core.TyCo.Subst" must import to refer to "IdSubstEnv" (whose codomain is "CoreExpr"). Most functions named fooTCvSubst are renamed into fooSubst with a few exceptions (e.g. "isEmptyTCvSubst" is a distinct function from "isEmptySubst"; the former ignores the emptiness of "IdSubstEnv"). These exceptions mainly exist for performance reasons and will go away when "Expr" and "Type" are mutually recursively defined (we won't be able to take those shortcuts if we can't make the assumption that expressions don't appear in types).
* HsToken for @-patterns and TypeApplications (#19623)Vladislav Zavialov2022-06-201-4/+4
| | | | One more step towards the new design of EPA.
* Typecheck remaining ValArgs in rebuildHsAppssheaf2022-06-091-1/+1
| | | | | | | | | | | | | | | | | This patch refactors hasFixedRuntimeRep_remainingValArgs, renaming it to tcRemainingValArgs. The logic is moved to rebuildHsApps, which ensures consistent behaviour across tcApp and quickLookArg1/tcEValArg. This patch also refactors the treatment of stupid theta for data constructors, changing the place we drop stupid theta arguments from dsConLike to mkDataConRep (now the datacon wrapper drops these arguments). We decided not to implement PHASE 2 of the FixedRuntimeRep plan for these remaining ValArgs. Future directions are outlined on the wiki: https://gitlab.haskell.org/ghc/ghc/-/wikis/Remaining-ValArgs Fixes #21544 and #21650
* Diagnostics conversions, part 6 (#20116)Aaron Allen2022-06-061-29/+18
| | | | | | Replaces uses of `TcRnUnknownMessage` with proper diagnostics constructors in `GHC.Tc.Gen.Match`, `GHC.Tc.Gen.Pat`, and `GHC.Tc.Gen.Sig`.
* TTG: Rework and improve splicesromes2022-06-011-5/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit redefines the structure of Splices in the AST. We get rid of `HsSplice` which used to represent typed and untyped splices, quasi quotes, and the result of splicing either an expression, a type or a pattern. Instead we have `HsUntypedSplice` which models an untyped splice or a quasi quoter, which works in practice just like untyped splices. The `HsExpr` constructor `HsSpliceE` which used to be constructed with an `HsSplice` is split into `HsTypedSplice` and `HsUntypedSplice`. The former is directly constructed with an `HsExpr` and the latter now takes an `HsUntypedSplice`. Both `HsType` and `Pat` constructors `HsSpliceTy` and `SplicePat` now take an `HsUntypedSplice` instead of a `HsSplice` (remember only /untyped splices/ can be spliced as types or patterns). The result of splicing an expression, type, or pattern is now comfortably stored in the extension fields `XSpliceTy`, `XSplicePat`, `XUntypedSplice` as, respectively, `HsUntypedSpliceResult (HsType GhcRn)`, `HsUntypedSpliceResult (Pat GhcRn)`, and `HsUntypedSpliceResult (HsExpr GhcRn)` Overall the TTG extension points are now better used to make invalid states unrepresentable and model the progression between stages better. See Note [Lifecycle of an untyped splice, and PendingRnSplice] and Note [Lifecycle of an typed splice, and PendingTcSplice] for more details. Updates haddock submodule Fixes #21263 ------------------------- Metric Decrease: hard_hole_fits -------------------------
* Fix several note references, part 2Krzysztof Gogolewski2022-05-051-6/+2
|
* Fix unification of ConcreteTvs, removing IsRefl#sheaf2022-04-281-8/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch fixes the unification of concrete type variables. The subtlety was that unifying concrete metavariables is more subtle than other metavariables, as decomposition is possible. See the Note [Unifying concrete metavariables], which explains how we unify a concrete type variable with a type 'ty' by concretising 'ty', using the function 'GHC.Tc.Utils.Concrete.concretise'. This can be used to perform an eager syntactic check for concreteness, allowing us to remove the IsRefl# special predicate. Instead of emitting two constraints `rr ~# concrete_tv` and `IsRefl# rr concrete_tv`, we instead concretise 'rr'. If this succeeds we can fill 'concrete_tv', and otherwise we directly emit an error message to the typechecker environment instead of deferring. We still need the error message to be passed on (instead of directly thrown), as we might benefit from further unification in which case we will need to zonk the stored types. To achieve this, we change the 'wc_holes' field of 'WantedConstraints' to 'wc_errors', which stores general delayed errors. For the moement, a delayed error is either a hole, or a syntactic equality error. hasFixedRuntimeRep_MustBeRefl is now hasFixedRuntimeRep_syntactic, and hasFixedRuntimeRep has been refactored to directly return the most useful coercion for PHASE 2 of FixedRuntimeRep. This patch also adds a field ir_frr to the InferResult datatype, holding a value of type Maybe FRROrigin. When this value is not Nothing, this means that we must fill the ir_ref field with a type which has a fixed RuntimeRep. When it comes time to fill such an ExpType, we ensure that the type has a fixed RuntimeRep by performing a representation-polymorphism check with the given FRROrigin This is similar to what we already do to ensure we fill an Infer ExpType with a type of the correct TcLevel. This allows us to properly perform representation-polymorphism checks on 'Infer' 'ExpTypes'. The fillInferResult function had to be moved to GHC.Tc.Utils.Unify to avoid a cyclic import now that it calls hasFixedRuntimeRep. This patch also changes the code in matchExpectedFunTys to make use of the coercions, which is now possible thanks to the previous change. This implements PHASE 2 of FixedRuntimeRep in some situations. For example, the test cases T13105 and T17536b are now both accepted. Fixes #21239 and #21325 ------------------------- Metric Decrease: T18223 T5631 -------------------------
* Fix isLiftedType_maybe and handle falloutsheaf2022-03-141-37/+65
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As #20837 pointed out, `isLiftedType_maybe` returned `Just False` in many situations where it should return `Nothing`, because it didn't take into account type families or type variables. In this patch, we fix this issue. We rename `isLiftedType_maybe` to `typeLevity_maybe`, which now returns a `Levity` instead of a boolean. We now return `Nothing` for types with kinds of the form `TYPE (F a1 ... an)` for a type family `F`, as well as `TYPE (BoxedRep l)` where `l` is a type variable. This fix caused several other problems, as other parts of the compiler were relying on `isLiftedType_maybe` returning a `Just` value, and were now panicking after the above fix. There were two main situations in which panics occurred: 1. Issues involving the let/app invariant. To uphold that invariant, we need to know whether something is lifted or not. If we get an answer of `Nothing` from `isLiftedType_maybe`, then we don't know what to do. As this invariant isn't particularly invariant, we can change the affected functions to not panic, e.g. by behaving the same in the `Just False` case and in the `Nothing` case (meaning: no observable change in behaviour compared to before). 2. Typechecking of data (/newtype) constructor patterns. Some programs involving patterns with unknown representations were accepted, such as T20363. Now that we are stricter, this caused further issues, culminating in Core Lint errors. However, the behaviour was incorrect the whole time; the incorrectness only being revealed by this change, not triggered by it. This patch fixes this by overhauling where the representation polymorphism involving pattern matching are done. Instead of doing it in `tcMatches`, we instead ensure that the `matchExpected` functions such as `matchExpectedFunTys`, `matchActualFunTySigma`, `matchActualFunTysRho` allow return argument pattern types which have a fixed RuntimeRep (as defined in Note [Fixed RuntimeRep]). This ensures that the pattern matching code only ever handles types with a known runtime representation. One exception was that patterns with an unknown representation type could sneak in via `tcConPat`, which points to a missing representation-polymorphism check, which this patch now adds. This means that we now reject the program in #20363, at least until we implement PHASE 2 of FixedRuntimeRep (allowing type families in RuntimeRep positions). The aforementioned refactoring, in which checks have been moved to `matchExpected` functions, is a first step in implementing PHASE 2 for patterns. Fixes #20837
* Kill derived constraintsRichard Eisenberg2022-02-231-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Co-authored by: Sam Derbyshire Previously, GHC had three flavours of constraint: Wanted, Given, and Derived. This removes Derived constraints. Though serving a number of purposes, the most important role of Derived constraints was to enable better error messages. This job has been taken over by the new RewriterSets, as explained in Note [Wanteds rewrite wanteds] in GHC.Tc.Types.Constraint. Other knock-on effects: - Various new Notes as I learned about under-described bits of GHC - A reshuffling around the AST for implicit-parameter bindings, with better integration with TTG. - Various improvements around fundeps. These were caused by the fact that, previously, fundep constraints were all Derived, and Derived constraints would get dropped. Thus, an unsolved Derived didn't stop compilation. Without Derived, this is no longer possible, and so we have to be considerably more careful around fundeps. - A nice little refactoring in GHC.Tc.Errors to center the work on a new datatype called ErrorItem. Constraints are converted into ErrorItems at the start of processing, and this allows for a little preprocessing before the main classification. - This commit also cleans up the behavior in generalisation around functional dependencies. Now, if a variable is determined by functional dependencies, it will not be quantified. This change is user facing, but it should trim down GHC's strange behavior around fundeps. - Previously, reportWanteds did quite a bit of work, even on an empty WantedConstraints. This commit adds a fast path. - Now, GHC will unconditionally re-simplify constraints during quantification. See Note [Unconditionally resimplify constraints when quantifying], in GHC.Tc.Solver. Close #18398. Close #18406. Solve the fundep-related non-confluence in #18851. Close #19131. Close #19137. Close #20922. Close #20668. Close #19665. ------------------------- Metric Decrease: LargeRecord T9872b T9872b_defer T9872d TcPlugin_RewritePerf -------------------------
* Fix some notesMatthew Pickering2022-02-081-1/+1
|
* Improve errors for non-existent labelsSimon Peyton Jones2022-02-041-8/+1
| | | | | | | | | | | | | | | | This patch fixes #17469, by improving matters when you use non-existent field names in a record construction: data T = MkT { x :: Int } f v = MkT { y = 3 } The check is now made in the renamer, in GHC.Rename.Env.lookupRecFieldOcc. That in turn led to a spurious error in T9975a, which is fixed by making GHC.Rename.Names.extendGlobalRdrEnvRn fail fast if it finds duplicate bindings. See Note [Fail fast on duplicate definitions] in that module for more details. This patch was originated and worked on by Alex D (@nineonine)
* Consistently upper-case "Note ["Ben Gamari2022-02-011-1/+1
| | | | | | This was achieved with git ls-tree --name-only HEAD -r | xargs sed -i -e 's/note \[/Note \[/g'
* Rework the handling of SkolemInfoMatthew Pickering2022-01-291-11/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The main purpose of this patch is to attach a SkolemInfo directly to each SkolemTv. This fixes the large number of bugs which have accumulated over the years where we failed to report errors due to having "no skolem info" for particular type variables. Now the origin of each type varible is stored on the type variable we can always report accurately where it cames from. Fixes #20969 #20732 #20680 #19482 #20232 #19752 #10946 #19760 #20063 #13499 #14040 The main changes of this patch are: * SkolemTv now contains a SkolemInfo field which tells us how the SkolemTv was created. Used when reporting errors. * Enforce invariants relating the SkolemInfoAnon and level of an implication (ic_info, ic_tclvl) to the SkolemInfo and level of the type variables in ic_skols. * All ic_skols are TcTyVars -- Check is currently disabled * All ic_skols are SkolemTv * The tv_lvl of the ic_skols agrees with the ic_tclvl * The ic_info agrees with the SkolInfo of the implication. These invariants are checked by a debug compiler by checkImplicationInvariants. * Completely refactor kcCheckDeclHeader_sig which kept doing my head in. Plus, it wasn't right because it wasn't skolemising the binders as it decomposed the kind signature. The new story is described in Note [kcCheckDeclHeader_sig]. The code is considerably shorter than before (roughly 240 lines turns into 150 lines). It still has the same awkward complexity around computing arity as before, but that is a language design issue. See Note [Arity inference in kcCheckDeclHeader_sig] * I added new type synonyms MonoTcTyCon and PolyTcTyCon, and used them to be clear which TcTyCons have "finished" kinds etc, and which are monomorphic. See Note [TcTyCon, MonoTcTyCon, and PolyTcTyCon] * I renamed etaExpandAlgTyCon to splitTyConKind, becuase that's a better name, and it is very useful in kcCheckDeclHeader_sig, where eta-expansion isn't an issue. * Kill off the nasty `ClassScopedTvEnv` entirely. Co-authored-by: Simon Peyton Jones <simon.peytonjones@gmail.com>
* Use diagnostic infrastructure in GHC.Tc.Errorssheaf2022-01-171-1/+1
|
* Add a warning for GADT match + NoMonoLocalBinds (#20485)Krzysztof Gogolewski2021-11-231-10/+16
| | | | | | | | | Previously, it was an error to pattern match on a GADT without GADTs or TypeFamilies. This is now allowed. Instead, we check the flag MonoLocalBinds; if it is not enabled, we issue a warning, controlled by -Wgadt-mono-local-binds. Also fixes #20485: pattern synonyms are now checked too.
* Flesh out Note [The stupid context] and reference itRyan Scott2021-11-091-1/+2
| | | | | | `Note [The stupid context]` in `GHC.Core.DataCon` talks about stupid contexts from `DatatypeContexts`, but prior to this commit, it was rather outdated. This commit spruces it up and references it from places where it is relevant.
* EPA: Get rid of bare SrcSpan's in the ParsedSourceAlan Zimmerman2021-11-021-1/+1
| | | | | | | | | | | | | The ghc-exactPrint library has had to re-introduce the relatavise phase. This is needed if you change the length of an identifier and want the layout to be preserved afterwards. It is not possible to relatavise a bare SrcSpan, so introduce `SrcAnn NoEpAnns` for them instead. Updates haddock submodule.
* Care about specificity in pattern type argsRichard Eisenberg2021-10-191-4/+6
| | | | Close #20443.
* Introduce Concrete# for representation polymorphism checkssheaf2021-10-171-5/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | PHASE 1: we never rewrite Concrete# evidence. This patch migrates all the representation polymorphism checks to the typechecker, using a new constraint form Concrete# :: forall k. k -> TupleRep '[] Whenever a type `ty` must be representation-polymorphic (e.g. it is the type of an argument to a function), we emit a new `Concrete# ty` Wanted constraint. If this constraint goes unsolved, we report a representation-polymorphism error to the user. The 'FRROrigin' datatype keeps track of the context of the representation-polymorphism check, for more informative error messages. This paves the way for further improvements, such as allowing type families in RuntimeReps and improving the soundness of typed Template Haskell. This is left as future work (PHASE 2). fixes #17907 #20277 #20330 #20423 #20426 updates haddock submodule ------------------------- Metric Decrease: T5642 -------------------------
* Reject GADT pattern matches in arrow notationsheaf2021-10-091-28/+40
| | | | | | | | | | | | Tickets #20469 and #20470 showed that the current implementation of arrows is not at all up to the task of supporting GADTs: GHC produces ill-scoped Core programs because it doesn't propagate the evidence introduced by a GADT pattern match. For the time being, we reject GADT pattern matches in arrow notation. Hopefully we are able to add proper support for GADTs in arrows in the future.
* Remove NoGhcTc usage from HsMatchContextArtyom Kuznetsov2021-09-281-5/+5
| | | | | | NoGhcTc is removed from HsMatchContext. As a result of this, HsMatchContext GhcTc is now a valid type that has Id in it, instead of Name and tcMatchesFun now takes Id instead of Name.
* Use HsExpansion for overloaded list patternssheaf2021-06-291-15/+10
| | | | Fixes #14380, #19997
* Try to simplify zoo of functions in `Tc.Utils.Monad`Alfredo Di Napoli2021-06-281-12/+21
| | | | | | | | | | | This commit tries to untangle the zoo of diagnostic-related functions in `Tc.Utils.Monad` so that we can have the interfaces mentions only `TcRnMessage`s while we push the creation of these messages upstream. It also ports TcRnMessage diagnostics to use the new API, in particular this commit switch to use TcRnMessage in the external interfaces of the diagnostic functions, and port the old SDoc to be wrapped into TcRnUnknownMessage.
* Introduce `hsExprType :: HsExpr GhcTc -> Type` in the new modulewip/hsExprTypeRyan Scott2021-06-081-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | `GHC.Hs.Syn.Type` The existing `hsPatType`, `hsLPatType` and `hsLitType` functions have also been moved to this module This is a less ambitious take on the same problem that !2182 and !3866 attempt to solve. Rather than have the `hsExprType` function attempt to efficiently compute the `Type` of every subexpression in an `HsExpr`, this simply computes the overall `Type` of a single `HsExpr`. - Explicitly forbids the `SplicePat` `HsIPVar`, `HsBracket`, `HsRnBracketOut` and `HsTcBracketOut` constructors during the typechecking phase by using `Void` as the TTG extension field - Also introduces `dataConCantHappen` as a domain specific alternative to `absurd` to handle cases where the TTG extension points forbid a constructor. - Turns HIE file generation into a pure function that doesn't need access to the `DsM` monad to compute types, but uses `hsExprType` instead. - Computes a few more types during HIE file generation - Makes GHCi's `:set +c` command also use `hsExprType` instead of going through the desugarer to compute types. Updates haddock submodule Co-authored-by: Zubin Duggal <zubin.duggal@gmail.com>
* Rip GHC.Tc.Solver.Monad asunder (only)Richard Eisenberg2021-05-291-1/+1
| | | | | | | | | | | This creates new modules GHC.Tc.Solver.InertSet and GHC.Tc.Solver.Types. The Monad module is still pretty big, but this is an improvement. Moreover, it means that GHC.HsToCore.Pmc.Solver.Types no longer depends on the constraint solver (it now depends on GHC.Tc.Solver.InertSet), making the error-messages work easier. This patch thus contributes to #18516.
* HsToken for HsPar, ParPat, HsCmdPar (#19523)Vladislav Zavialov2021-05-231-2/+2
| | | | This patch is a first step towards a simpler design for exact printing.
* Changes to HsRecField'Shayne Fletcher2021-05-191-2/+2
|
* Remove useless {-# LANGUAGE CPP #-} pragmasSylvain Henry2021-05-121-1/+1
|
* Fully remove HsVersions.hSylvain Henry2021-05-121-2/+0
| | | | | | | | | | Replace uses of WARN macro with calls to: warnPprTrace :: Bool -> SDoc -> a -> a Remove the now unused HsVersions.h Bump haddock submodule
* Replace CPP assertions with Haskell functionsSylvain Henry2021-05-121-5/+6
| | | | | | | | | | | | | | | There is no reason to use CPP. __LINE__ and __FILE__ macros are now better replaced with GHC's CallStack. As a bonus, assert error messages now contain more information (function name, column). Here is the mapping table (HasCallStack omitted): * ASSERT: assert :: Bool -> a -> a * MASSERT: massert :: Bool -> m () * ASSERTM: assertM :: m Bool -> m () * ASSERT2: assertPpr :: Bool -> SDoc -> a -> a * MASSERT2: massertPpr :: Bool -> SDoc -> m () * ASSERTM2: assertPprM :: m Bool -> SDoc -> m ()
* GHC Exactprint main commitAlan Zimmerman2021-03-201-12/+12
| | | | | | | | Metric Increase: T10370 parsing001 Updates haddock submodule
* Fix typosBrian Wignall2021-02-061-1/+1
|
* Make pattern synonyms play with CallStackSimon Peyton Jones2021-02-061-2/+27
| | | | | | | | This small patch makes pattern synonyms play nicely with CallStack constraints, using logic explained in GHC.Tc.Gen.Pat Note [Call-stack tracing of pattern synonyms] Fixes #19289
* Implement type applications in patternsCale Gibbard2020-12-141-20/+108
| | | | | The haddock submodule is also updated so that it understands the changes to patterns.
* Remove flattening variablesRichard Eisenberg2020-12-011-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch redesigns the flattener to simplify type family applications directly instead of using flattening meta-variables and skolems. The key new innovation is the CanEqLHS type and the new CEqCan constraint (Ct). A CanEqLHS is either a type variable or exactly-saturated type family application; either can now be rewritten using a CEqCan constraint in the inert set. Because the flattener no longer reduces all type family applications to variables, there was some performance degradation if a lengthy type family application is now flattened over and over (not making progress). To compensate, this patch contains some extra optimizations in the flattener, leading to a number of performance improvements. Close #18875. Close #18910. There are many extra parts of the compiler that had to be affected in writing this patch: * The family-application cache (formerly the flat-cache) sometimes stores coercions built from Given inerts. When these inerts get kicked out, we must kick out from the cache as well. (This was, I believe, true previously, but somehow never caused trouble.) Kicking out from the cache requires adding a filterTM function to TrieMap. * This patch obviates the need to distinguish "blocking" coercion holes from non-blocking ones (which, previously, arose from CFunEqCans). There is thus some simplification around coercion holes. * Extra commentary throughout parts of the code I read through, to preserve the knowledge I gained while working. * A change in the pure unifier around unifying skolems with other types. Unifying a skolem now leads to SurelyApart, not MaybeApart, as documented in Note [Binding when looking up instances] in GHC.Core.InstEnv. * Some more use of MCoercion where appropriate. * Previously, class-instance lookup automatically noticed that e.g. C Int was a "unifier" to a target [W] C (F Bool), because the F Bool was flattened to a variable. Now, a little more care must be taken around checking for unifying instances. * Previously, tcSplitTyConApp_maybe would split (Eq a => a). This is silly, because (=>) is not a tycon in Haskell. Fixed now, but there are some knock-on changes in e.g. TrieMap code and in the canonicaliser. * New function anyFreeVarsOf{Type,Co} to check whether a free variable satisfies a certain predicate. * Type synonyms now remember whether or not they are "forgetful"; a forgetful synonym drops at least one argument. This is useful when flattening; see flattenView. * The pattern-match completeness checker invokes the solver. This invocation might need to look through newtypes when checking representational equality. Thus, the desugarer needs to keep track of the in-scope variables to know what newtype constructors are in scope. I bet this bug was around before but never noticed. * Extra-constraints wildcards are no longer simplified before printing. See Note [Do not simplify ConstraintHoles] in GHC.Tc.Solver. * Whether or not there are Given equalities has become slightly subtler. See the new HasGivenEqs datatype. * Note [Type variable cycles in Givens] in GHC.Tc.Solver.Canonical explains a significant new wrinkle in the new approach. * See Note [What might match later?] in GHC.Tc.Solver.Interact, which explains the fix to #18910. * The inert_count field of InertCans wasn't actually used, so I removed it. Though I (Richard) did the implementation, Simon PJ was very involved in design and review. This updates the Haddock submodule to avoid #18932 by adding a type signature. ------------------------- Metric Decrease: T12227 T5030 T9872a T9872b T9872c Metric Increase: T9872d -------------------------
* Replace HsImplicitBndrs with HsOuterTyVarBndrsRyan Scott2020-11-061-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This refactors the GHC AST to remove `HsImplicitBndrs` and replace it with `HsOuterTyVarBndrs`, a type which records whether the outermost quantification in a type is explicit (i.e., with an outermost, invisible `forall`) or implicit. As a result of this refactoring, it is now evident in the AST where the `forall`-or-nothing rule applies: it's all the places that use `HsOuterTyVarBndrs`. See the revamped `Note [forall-or-nothing rule]` in `GHC.Hs.Type` (previously in `GHC.Rename.HsType`). Moreover, the places where `ScopedTypeVariables` brings lexically scoped type variables into scope are a subset of the places that adhere to the `forall`-or-nothing rule, so this also makes places that interact with `ScopedTypeVariables` easier to find. See the revamped `Note [Lexically scoped type variables]` in `GHC.Hs.Type` (previously in `GHC.Tc.Gen.Sig`). `HsOuterTyVarBndrs` are used in type signatures (see `HsOuterSigTyVarBndrs`) and type family equations (see `HsOuterFamEqnTyVarBndrs`). The main difference between the former and the latter is that the former cares about specificity but the latter does not. There are a number of knock-on consequences: * There is now a dedicated `HsSigType` type, which is the combination of `HsOuterSigTyVarBndrs` and `HsType`. `LHsSigType` is now an alias for an `XRec` of `HsSigType`. * Working out the details led us to a substantial refactoring of the handling of explicit (user-written) and implicit type-variable bindings in `GHC.Tc.Gen.HsType`. Instead of a confusing family of higher order functions, we now have a local data type, `SkolemInfo`, that controls how these binders are kind-checked. It remains very fiddly, not fully satisfying. But it's better than it was. Fixes #16762. Bumps the Haddock submodule. Co-authored-by: Simon Peyton Jones <simonpj@microsoft.com> Co-authored-by: Richard Eisenberg <rae@richarde.dev> Co-authored-by: Zubin Duggal <zubin@cmi.ac.in>
* Check for large tuples more thoroughlywip/T18723Ryan Scott2020-10-291-0/+2
| | | | | | | | | | | | | | | | | | | | This fixes #18723 by: * Moving the existing `GHC.Tc.Gen.HsType.bigConstraintTuple` validity check to `GHC.Rename.Utils.checkCTupSize` for consistency with `GHC.Rename.Utils.checkTupSize`, and * Using `check(C)TupSize` when checking tuple _types_, in addition to checking names, expressions, and patterns. Note that I put as many of these checks as possible in the typechecker so that GHC can properly distinguish between boxed and constraint tuples. The exception to this rule is checking names, which I perform in the renamer (in `GHC.Rename.Env`) so that we can rule out `(,, ... ,,)` and `''(,, ... ,,)` alike in one fell swoop. While I was in town, I also removed the `HsConstraintTuple` and `HsBoxedTuple` constructors of `HsTupleSort`, which are functionally unused. This requires a `haddock` submodule bump.
* Lint the compiler for extraneous LANGUAGE pragmasHécate2020-10-101-7/+6
|
* Implement Quick Look impredicativitySimon Peyton Jones2020-09-241-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements Quick Look impredicativity (#18126), sticking very closely to the design in A quick look at impredicativity, Serrano et al, ICFP 2020 The main change is that a big chunk of GHC.Tc.Gen.Expr has been extracted to two new modules GHC.Tc.Gen.App GHC.Tc.Gen.Head which deal with typechecking n-ary applications, and the head of such applications, respectively. Both contain a good deal of documentation. Three other loosely-related changes are in this patch: * I implemented (partly by accident) points (2,3)) of the accepted GHC proposal "Clean up printing of foralls", namely https://github.com/ghc-proposals/ghc-proposals/blob/ master/proposals/0179-printing-foralls.rst (see #16320). In particular, see Note [TcRnExprMode] in GHC.Tc.Module - :type instantiates /inferred/, but not /specified/, quantifiers - :type +d instantiates /all/ quantifiers - :type +v is killed off That completes the implementation of the proposal, since point (1) was done in commit df08468113ab46832b7ac0a7311b608d1b418c4d Author: Krzysztof Gogolewski <krzysztof.gogolewski@tweag.io> Date: Mon Feb 3 21:17:11 2020 +0100 Always display inferred variables using braces * HsRecFld (which the renamer introduces for record field selectors), is now preserved by the typechecker, rather than being rewritten back to HsVar. This is more uniform, and turned out to be more convenient in the new scheme of things. * The GHCi debugger uses a non-standard unification that allows the unification variables to unify with polytypes. We used to hack this by using ImpredicativeTypes, but that doesn't work anymore so I introduces RuntimeUnkTv. See Note [RuntimeUnkTv] in GHC.Runtime.Heap.Inspect Updates haddock submodule. WARNING: this patch won't validate on its own. It was too hard to fully disentangle it from the following patch, on type errors and kind generalisation. Changes to tests * Fixes #9730 (test added) * Fixes #7026 (test added) * Fixes most of #8808, except function `g2'` which uses a section (which doesn't play with QL yet -- see #18126) Test added * Fixes #1330. NB Church1.hs subsumes Church2.hs, which is now deleted * Fixes #17332 (test added) * Fixes #4295 * This patch makes typecheck/should_run/T7861 fail. But that turns out to be a pre-existing bug: #18467. So I have just made T7861 into expect_broken(18467)
* DynFlags: disentangle OutputableSylvain Henry2020-08-121-0/+1
| | | | | | | | | - put panic related functions into GHC.Utils.Panic - put trace related functions using DynFlags in GHC.Driver.Ppr One step closer making Outputable fully independent of DynFlags. Bump haddock submodule
* Improve typechecking of NPlusK patternsSimon Peyton Jones2020-07-181-17/+14
| | | | | | | | | | This patch (due to Richard Eisenberg) improves documentation of the wrapper returned by tcSubMult (see Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify). And, more substantially, it cleans up the multiplicity handling in the typechecking of NPlusKPat
* Allow multiple case branches to have a higher rank typeSimon Peyton Jones2020-07-181-6/+6
| | | | | | | | | | | | | | | | | | | | | | | As #18412 points out, it should be OK for multiple case alternatives to have a higher rank type, provided they are all the same. This patch implements that change. It sweeps away GHC.Tc.Gen.Match.tauifyMultipleBranches, and friends, replacing it with an enhanced version of fillInferResult. The basic change to fillInferResult is to permit the case in which another case alternative has already filled in the result; and in that case simply unify. It's very simple actually. See the new Note [fillInferResult] in TcMType Other refactoring: - Move all the InferResult code to one place, in GHC.Tc.Utils.TcMType (previously some of it was in Unify) - Move tcInstType and friends from TcMType to Instantiate, where it more properly belongs. (TCMType was getting very long.)
* Expunge GhcTcIdSimon Peyton Jones2020-06-251-12/+12
| | | | | | | | | | | | | GHC.Hs.Extension had type GhcPs = GhcPass 'Parsed type GhcRn = GhcPass 'Renamed type GhcTc = GhcPass 'Typechecked type GhcTcId = GhcTc The last of these, GhcTcId, is a vestige of the past. This patch expunges it from GHC.
* Linear types (#15981)Krzysztof Gogolewski2020-06-171-96/+138
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the first step towards implementation of the linear types proposal (https://github.com/ghc-proposals/ghc-proposals/pull/111). It features * A language extension -XLinearTypes * Syntax for linear functions in the surface language * Linearity checking in Core Lint, enabled with -dlinear-core-lint * Core-to-core passes are mostly compatible with linearity * Fields in a data type can be linear or unrestricted; linear fields have multiplicity-polymorphic constructors. If -XLinearTypes is disabled, the GADT syntax defaults to linear fields The following items are not yet supported: * a # m -> b syntax (only prefix FUN is supported for now) * Full multiplicity inference (multiplicities are really only checked) * Decent linearity error messages * Linear let, where, and case expressions in the surface language (each of these currently introduce the unrestricted variant) * Multiplicity-parametric fields * Syntax for annotating lambda-bound or let-bound with a multiplicity * Syntax for non-linear/multiple-field-multiplicity records * Linear projections for records with a single linear field * Linear pattern synonyms * Multiplicity coercions (test LinearPolyType) A high-level description can be found at https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation Following the link above you will find a description of the changes made to Core. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Matthew Pickering * Arnaud Spiwack With contributions from: * Mark Barbone * Alexander Vershilov Updates haddock submodule.
* Clarify leaf module names for new module hierarchyTakenobu Tani2020-06-101-1/+1
| | | | | | | | | | | | | | | | | | | | | This updates comments only. This patch replaces leaf module names according to new module hierarchy [1][2] as followings: * Expand leaf names to easily find the module path: for instance, `Id.hs` to `GHC.Types.Id`. * Modify leaf names according to new module hierarchy: for instance, `Convert.hs` to `GHC.ThToHs`. * Fix typo: for instance, `GHC.Core.TyCo.Rep.hs` to `GHC.Core.TyCo.Rep` See also !3375 [1]: https://gitlab.haskell.org/ghc/ghc/-/wikis/Make-GHC-codebase-more-modular [2]: https://gitlab.haskell.org/ghc/ghc/issues/13009
* Simple subsumptionwip/T17775Simon Peyton Jones2020-06-051-22/+30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch simplifies GHC to use simple subsumption. Ticket #17775 Implements GHC proposal #287 https://github.com/ghc-proposals/ghc-proposals/blob/master/ proposals/0287-simplify-subsumption.rst All the motivation is described there; I will not repeat it here. The implementation payload: * tcSubType and friends become noticably simpler, because it no longer uses eta-expansion when checking subsumption. * No deeplyInstantiate or deeplySkolemise That in turn means that some tests fail, by design; they can all be fixed by eta expansion. There is a list of such changes below. Implementing the patch led me into a variety of sticky corners, so the patch includes several othe changes, some quite significant: * I made String wired-in, so that "foo" :: String rather than "foo" :: [Char] This improves error messages, and fixes #15679 * The pattern match checker relies on knowing about in-scope equality constraints, andd adds them to the desugarer's environment using addTyCsDs. But the co_fn in a FunBind was missed, and for some reason simple-subsumption ends up with dictionaries there. So I added a call to addTyCsDs. This is really part of #18049. * I moved the ic_telescope field out of Implication and into ForAllSkol instead. This is a nice win; just expresses the code much better. * There was a bug in GHC.Tc.TyCl.Instance.tcDataFamInstHeader. We called checkDataKindSig inside tc_kind_sig, /before/ solveEqualities and zonking. Obviously wrong, easily fixed. * solveLocalEqualitiesX: there was a whole mess in here, around failing fast enough. I discovered a bad latent bug where we could successfully kind-check a type signature, and use it, but have unsolved constraints that could fill in coercion holes in that signature -- aargh. It's all explained in Note [Failure in local type signatures] in GHC.Tc.Solver. Much better now. * I fixed a serious bug in anonymous type holes. IN f :: Int -> (forall a. a -> _) -> Int that "_" should be a unification variable at the /outer/ level; it cannot be instantiated to 'a'. This was plain wrong. New fields mode_lvl and mode_holes in TcTyMode, and auxiliary data type GHC.Tc.Gen.HsType.HoleMode. This fixes #16292, but makes no progress towards the more ambitious #16082 * I got sucked into an enormous refactoring of the reporting of equality errors in GHC.Tc.Errors, especially in mkEqErr1 mkTyVarEqErr misMatchMsg misMatchMsgOrCND In particular, the very tricky mkExpectedActualMsg function is gone. It took me a full day. But the result is far easier to understand. (Still not easy!) This led to various minor improvements in error output, and an enormous number of test-case error wibbles. One particular point: for occurs-check errors I now just say Can't match 'a' against '[a]' rather than using the intimidating language of "occurs check". * Pretty-printing AbsBinds Tests review * Eta expansions T11305: one eta expansion T12082: one eta expansion (undefined) T13585a: one eta expansion T3102: one eta expansion T3692: two eta expansions (tricky) T2239: two eta expansions T16473: one eta determ004: two eta expansions (undefined) annfail06: two eta (undefined) T17923: four eta expansions (a strange program indeed!) tcrun035: one eta expansion * Ambiguity check at higher rank. Now that we have simple subsumption, a type like f :: (forall a. Eq a => Int) -> Int is no longer ambiguous, because we could write g :: (forall a. Eq a => Int) -> Int g = f and it'd typecheck just fine. But f's type is a bit suspicious, and we might want to consider making the ambiguity check do a check on each sub-term. Meanwhile, these tests are accepted, whereas they were previously rejected as ambiguous: T7220a T15438 T10503 T9222 * Some more interesting error message wibbles T13381: Fine: one error (Int ~ Exp Int) rather than two (Int ~ Exp Int, Exp Int ~ Int) T9834: Small change in error (improvement) T10619: Improved T2414: Small change, due to order of unification, fine T2534: A very simple case in which a change of unification order means we get tow unsolved constraints instead of one tc211: bizarre impredicative tests; just accept this for now Updates Cabal and haddock submodules. Metric Increase: T12150 T12234 T5837 haddock.base Metric Decrease: haddock.compiler haddock.Cabal haddock.base Merge note: This appears to break the `UnliftedNewtypesDifficultUnification` test. It has been marked as broken in the interest of merging. (cherry picked from commit 66b7b195cb3dce93ed5078b80bf568efae904cc5)
* Use braces with do in `SplicePat` case for consistencyJohn Ericson2020-05-211-2/+2
|
* Tiny cleaup eta-reduce away a function argumentJohn Ericson2020-05-211-2/+2
| | | | In GHC, not in the code being compiled!
* Put `PatEnv` first in `GHC.Tc.Gen.Pat.Checker`John Ericson2020-05-211-62/+65
|
* More judiciously panic in `ts_pat`John Ericson2020-05-211-3/+3
|