| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
This patch tracks the type of Cmm global registers. This is needed
in order to lint uses of polymorphic registers, such as SIMD vector
registers that can be used both for floating-point and integer values.
This changes allows us to refactor VanillaReg to not store VGcPtr,
as that information is instead stored in the type of the usage of the
register.
Fixes #22297
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Here we refactor the representation of info table provenance information
in object code to significantly reduce its size and link-time impact.
Specifically, we deduplicate strings and represent them as 32-bit
offsets into a common string table.
In addition, we rework the registration logic to eliminate allocation
from the registration path, which is run from a static initializer where
things like allocation are technically undefined behavior (although it
did previously seem to work). For similar reasons we eliminate lock
usage from registration path, instead relying on atomic CAS.
Closes #22077.
|
|
|
|
|
|
|
|
| |
In preparation for moving the UTF-8 codecs into `base`:
* Move them to GHC.Utils.Encoding.UTF8
* Make names more consistent
* Add some Haddocks
|
|
|
|
|
| |
`DynFlags` is gone, but let's move a few trivial things around to get
rid of its module too.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
StgToCmm: add Config, remove CgInfoDownwards
StgToCmm: runC api change to take StgToCmmConfig
StgToCmm: CgInfoDownad -> StgToCmmConfig
StgToCmm.Monad: update getters/setters/withers
StgToCmm: remove CallOpts in StgToCmm.Closure
StgToCmm: remove dynflag references
StgToCmm: PtrOpts removed
StgToCmm: add TMap to config, Prof - dynflags
StgToCmm: add omit yields to config
StgToCmm.ExtCode: remove redundant import
StgToCmm.Heap: remove references to dynflags
StgToCmm: codeGen api change, DynFlags -> Config
StgToCmm: remove dynflags in Env and StgToCmm
StgToCmm.DataCon: remove dynflags references
StgToCmm: remove dynflag references in DataCon
StgToCmm: add backend avx flags to config
StgToCmm.Prim: remove dynflag references
StgToCmm.Expr: remove dynflag references
StgToCmm.Bind: remove references to dynflags
StgToCmm: move DoAlignSanitisation to Cmm.Type
StgToCmm: remove PtrOpts in Cmm.Parser.y
DynFlags: update ipInitCode api
StgToCmm: Config Module is single source of truth
StgToCmm: Lazy config breaks IORef deadlock
testsuite: bump countdeps threshold
StgToCmm.Config: strictify fields except UpdFrame
Strictifying UpdFrameOffset causes the RTS build with stage1 to
deadlock. Additionally, before the deadlock performance of the RTS
is noticeably slower.
StgToCmm.Config: add field descriptions
StgToCmm: revert strictify on Module in config
testsuite: update CountDeps tests
StgToCmm: update comment, fix exports
Specifically update comment about loopification passed into dynflags
then stored into stgToCmmConfig. And remove getDynFlags from
Monad.hs exports
Types.Name: add pprFullName function
StgToCmm.Ticky: use pprFullname, fixup ExtCode imports
Cmm.Info: revert cmmGetClosureType removal
StgToCmm.Bind: use pprFullName, Config update comments
StgToCmm: update closureDescription api
StgToCmm: SAT altHeapCheck
StgToCmm: default render for Info table, ticky
Use default rendering contexts for info table and ticky ticky, which should be independent of command line input.
testsuite: bump count deps
pprFullName: flag for ticky vs normal style output
convertInfoProvMap: remove unused parameter
StgToCmm.Config: add backend flags to config
StgToCmm.Config: remove Backend from Config
StgToCmm.Prim: refactor Backend call sites
StgToCmm.Prim: remove redundant imports
StgToCmm.Config: refactor vec compatibility check
StgToCmm.Config: add allowQuotRem2 flag
StgToCmm.Ticky: print internal names with parens
StgToCmm.Bind: dispatch ppr based on externality
StgToCmm: Add pprTickyname, Fix ticky naming
Accidently removed the ctx for ticky SDoc output. The only relevant flag
is sdocPprDebug which was accidental set to False due to using
defaultSDocContext without altering the flag.
StgToCmm: remove stateful fields in config
fixup: config: remove redundant imports
StgToCmm: move Sequel type to its own module
StgToCmm: proliferate getCallMethod updated api
StgToCmm.Monad: add FCodeState to Monad Api
StgToCmm: add second reader monad to FCode
fixup: Prim.hs: missed a merge conflict
fixup: Match countDeps tests to HEAD
StgToCmm.Monad: withState -> withCgState
To disambiguate it from mtl withState. This withState shouldn't be
returning the new state as a value. However, fixing this means tackling
the knot tying in CgState and so is very difficult since it changes when
the thunk of the knot is forced which either leads to deadlock or to
compiler panic.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Emit an Info Table Provenance Entry (IPE) for every stack represeted info table
if -finfo-table-map is turned on.
To decode a cloned stack, lookupIPE() is used. It provides a mapping between
info tables and their source location.
Please see these notes for details:
- [Stacktraces from Info Table Provenance Entries (IPE based stack unwinding)]
- [Mapping Info Tables to Source Positions]
Metric Increase:
T12545
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Using a hash map reduces the complexity of lookupIPE(), making it non linear.
On registration each IPE list is added to a temporary IPE lists buffer, reducing
registration time. The hash map is built lazily on first lookup.
IPE event output to stderr is added with tests.
For details, please see
Note [The Info Table Provenance Entry (IPE) Map].
A performance test for IPE registration and lookup can be found here:
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/5724#note_370806
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch cleans up the complexity around WW's `mk_absent_let` by
broadening the scope of `LitRubbish`. Rubbish literals now store the
`PrimRep` they represent and are ultimately lowered in Cmm.
This in turn allows absent literals of `VecRep` or `VoidRep`. The latter
allows absent literals for unlifted coercions, as requested in #18983.
I took the liberty to rewrite and clean up `Note [Absent fillers]` and
`Note [Rubbish values]` to account for the new implementation and to
make them more orthogonal in their description.
I didn't add a new regression test, as `T18982` already contains the
test in the ticket and its test output changes as expected.
Fixes #18983.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This new flag embeds a lookup table from the address of an info table
to information about that info table.
The main interface for consulting the map is the `lookupIPE` C function
> InfoProvEnt * lookupIPE(StgInfoTable *info)
The `InfoProvEnt` has the following structure:
> typedef struct InfoProv_{
> char * table_name;
> char * closure_desc;
> char * ty_desc;
> char * label;
> char * module;
> char * srcloc;
> } InfoProv;
>
> typedef struct InfoProvEnt_ {
> StgInfoTable * info;
> InfoProv prov;
> struct InfoProvEnt_ *link;
> } InfoProvEnt;
The source positions are approximated in a similar way to the source
positions for DWARF debugging information. They are only approximate but
in our experience provide a good enough hint about where the problem
might be. It is therefore recommended to use this flag in conjunction
with `-g<n>` for more accurate locations.
The lookup table is also emitted into the eventlog when it is available
as it is intended to be used with the `-hi` profiling mode.
Using this flag will significantly increase the size of the resulting
object file but only by a factor of 2-3x in our experience.
|
| |
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
| |
Platform constant wrappers took a DynFlags parameter, hence implicitly
used the target platform constants. We removed them to allow support
for several platforms at once (#14335) and to avoid having to pass
the full DynFlags to every function (#17957).
Metric Decrease:
T4801
|
|
|
|
|
|
|
|
|
|
|
| |
SCC profiling was enabled in a convoluted way: if WayProf was enabled,
Opt_SccProfilingOn general flag was set (in
`GHC.Driver.Ways.wayGeneralFlags`), and then this flag was queried in
various places.
There is no need to go via general flags, so this patch defines a
`sccProfilingEnabled :: DynFlags -> Bool` helper function that just
checks whether WayProf is enabled.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, if a .cmm file *not in the RTS* contained something like:
```cmm
section "rodata" { msg : bits8[] "Test\n"; }
```
It would get compiled by CmmToC into:
```c
ERW_(msg);
const char msg[] = "Test\012";
```
and fail with:
```
/tmp/ghc32129_0/ghc_4.hc:5:12: error:
error: conflicting types for \u2018msg\u2019
const char msg[] = "Test\012";
^~~
In file included from /tmp/ghc32129_0/ghc_4.hc:3:0: error:
/tmp/ghc32129_0/ghc_4.hc:4:6: error:
note: previous declaration of \u2018msg\u2019 was here
ERW_(msg);
^
/builds/hsyl20/ghc/_build/install/lib/ghc-8.11.0.20200605/lib/../lib/x86_64-linux-ghc-8.11.0.20200605/rts-1.0/include/Stg.h:253:46: error:
note: in definition of macro \u2018ERW_\u2019
#define ERW_(X) extern StgWordArray (X)
^
```
See the rationale for this on https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/backends/ppr-c#prototypes
Now we don't generate these extern declarations (ERW_, etc.) for
top-level data. It shouldn't change anything for the RTS (the only place
we use .cmm files) as it is already special cased in
`GHC.Cmm.CLabel.needsCDecl`. And hand-written Cmm can use explicit
extern declarations when needed.
Note that it allows `cgrun069` test to pass with CmmToC (cf #15467).
|
|
|
|
|
|
|
| |
Introduce GHC.Unit.* hierarchy for everything concerning units, packages
and modules.
Update Haddock submodule
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
|
|
|
|
|
|
|
|
| |
In !2959 we noticed that there was some redundant code (in GHC.Cmm.Utils
and GHC.Cmm.StgToCmm.Utils) used to deal with `CmmStatics` datatype
(before SRT generation) and `RawCmmStatics` datatype (after SRT
generation).
This patch removes this redundant code by using a single GADT for
(Raw)CmmStatics.
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
|
|
|
|
|
|
| |
Metric Decrease:
ManyConstructors
T12707
T13035
T1969
|
|
|
|
| |
submodule updates: nofib, haddock
|
|
|
|
| |
Update haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes all CafInfo predictions and various hacks to preserve
predicted CafInfos from the compiler and assigns final CafInfos to
interface Ids after code generation. SRT analysis is extended to support
static data, and Cmm generator is modified to allow generating
static_link fields after SRT analysis.
This also fixes `-fcatch-bottoms`, which introduces error calls in case
expressions in CorePrep, which runs *after* CoreTidy (which is where we
decide on CafInfos) and turns previously non-CAFFY things into CAFFY.
Fixes #17648
Fixes #9718
Evaluation
==========
NoFib
-----
Boot with: `make boot mode=fast`
Run: `make mode=fast EXTRA_RUNTEST_OPTS="-cachegrind" NoFibRuns=1`
--------------------------------------------------------------------------------
Program Size Allocs Instrs Reads Writes
--------------------------------------------------------------------------------
CS -0.0% 0.0% -0.0% -0.0% -0.0%
CSD -0.0% 0.0% -0.0% -0.0% -0.0%
FS -0.0% 0.0% -0.0% -0.0% -0.0%
S -0.0% 0.0% -0.0% -0.0% -0.0%
VS -0.0% 0.0% -0.0% -0.0% -0.0%
VSD -0.0% 0.0% -0.0% -0.0% -0.5%
VSM -0.0% 0.0% -0.0% -0.0% -0.0%
anna -0.1% 0.0% -0.0% -0.0% -0.0%
ansi -0.0% 0.0% -0.0% -0.0% -0.0%
atom -0.0% 0.0% -0.0% -0.0% -0.0%
awards -0.0% 0.0% -0.0% -0.0% -0.0%
banner -0.0% 0.0% -0.0% -0.0% -0.0%
bernouilli -0.0% 0.0% -0.0% -0.0% -0.0%
binary-trees -0.0% 0.0% -0.0% -0.0% -0.0%
boyer -0.0% 0.0% -0.0% -0.0% -0.0%
boyer2 -0.0% 0.0% -0.0% -0.0% -0.0%
bspt -0.0% 0.0% -0.0% -0.0% -0.0%
cacheprof -0.0% 0.0% -0.0% -0.0% -0.0%
calendar -0.0% 0.0% -0.0% -0.0% -0.0%
cichelli -0.0% 0.0% -0.0% -0.0% -0.0%
circsim -0.0% 0.0% -0.0% -0.0% -0.0%
clausify -0.0% 0.0% -0.0% -0.0% -0.0%
comp_lab_zift -0.0% 0.0% -0.0% -0.0% -0.0%
compress -0.0% 0.0% -0.0% -0.0% -0.0%
compress2 -0.0% 0.0% -0.0% -0.0% -0.0%
constraints -0.0% 0.0% -0.0% -0.0% -0.0%
cryptarithm1 -0.0% 0.0% -0.0% -0.0% -0.0%
cryptarithm2 -0.0% 0.0% -0.0% -0.0% -0.0%
cse -0.0% 0.0% -0.0% -0.0% -0.0%
digits-of-e1 -0.0% 0.0% -0.0% -0.0% -0.0%
digits-of-e2 -0.0% 0.0% -0.0% -0.0% -0.0%
dom-lt -0.0% 0.0% -0.0% -0.0% -0.0%
eliza -0.0% 0.0% -0.0% -0.0% -0.0%
event -0.0% 0.0% -0.0% -0.0% -0.0%
exact-reals -0.0% 0.0% -0.0% -0.0% -0.0%
exp3_8 -0.0% 0.0% -0.0% -0.0% -0.0%
expert -0.0% 0.0% -0.0% -0.0% -0.0%
fannkuch-redux -0.0% 0.0% -0.0% -0.0% -0.0%
fasta -0.0% 0.0% -0.0% -0.0% -0.0%
fem -0.0% 0.0% -0.0% -0.0% -0.0%
fft -0.0% 0.0% -0.0% -0.0% -0.0%
fft2 -0.0% 0.0% -0.0% -0.0% -0.0%
fibheaps -0.0% 0.0% -0.0% -0.0% -0.0%
fish -0.0% 0.0% -0.0% -0.0% -0.0%
fluid -0.1% 0.0% -0.0% -0.0% -0.0%
fulsom -0.0% 0.0% -0.0% -0.0% -0.0%
gamteb -0.0% 0.0% -0.0% -0.0% -0.0%
gcd -0.0% 0.0% -0.0% -0.0% -0.0%
gen_regexps -0.0% 0.0% -0.0% -0.0% -0.0%
genfft -0.0% 0.0% -0.0% -0.0% -0.0%
gg -0.0% 0.0% -0.0% -0.0% -0.0%
grep -0.0% 0.0% -0.0% -0.0% -0.0%
hidden -0.0% 0.0% -0.0% -0.0% -0.0%
hpg -0.1% 0.0% -0.0% -0.0% -0.0%
ida -0.0% 0.0% -0.0% -0.0% -0.0%
infer -0.0% 0.0% -0.0% -0.0% -0.0%
integer -0.0% 0.0% -0.0% -0.0% -0.0%
integrate -0.0% 0.0% -0.0% -0.0% -0.0%
k-nucleotide -0.0% 0.0% -0.0% -0.0% -0.0%
kahan -0.0% 0.0% -0.0% -0.0% -0.0%
knights -0.0% 0.0% -0.0% -0.0% -0.0%
lambda -0.0% 0.0% -0.0% -0.0% -0.0%
last-piece -0.0% 0.0% -0.0% -0.0% -0.0%
lcss -0.0% 0.0% -0.0% -0.0% -0.0%
life -0.0% 0.0% -0.0% -0.0% -0.0%
lift -0.0% 0.0% -0.0% -0.0% -0.0%
linear -0.1% 0.0% -0.0% -0.0% -0.0%
listcompr -0.0% 0.0% -0.0% -0.0% -0.0%
listcopy -0.0% 0.0% -0.0% -0.0% -0.0%
maillist -0.0% 0.0% -0.0% -0.0% -0.0%
mandel -0.0% 0.0% -0.0% -0.0% -0.0%
mandel2 -0.0% 0.0% -0.0% -0.0% -0.0%
mate -0.0% 0.0% -0.0% -0.0% -0.0%
minimax -0.0% 0.0% -0.0% -0.0% -0.0%
mkhprog -0.0% 0.0% -0.0% -0.0% -0.0%
multiplier -0.0% 0.0% -0.0% -0.0% -0.0%
n-body -0.0% 0.0% -0.0% -0.0% -0.0%
nucleic2 -0.0% 0.0% -0.0% -0.0% -0.0%
para -0.0% 0.0% -0.0% -0.0% -0.0%
paraffins -0.0% 0.0% -0.0% -0.0% -0.0%
parser -0.1% 0.0% -0.0% -0.0% -0.0%
parstof -0.1% 0.0% -0.0% -0.0% -0.0%
pic -0.0% 0.0% -0.0% -0.0% -0.0%
pidigits -0.0% 0.0% -0.0% -0.0% -0.0%
power -0.0% 0.0% -0.0% -0.0% -0.0%
pretty -0.0% 0.0% -0.3% -0.4% -0.4%
primes -0.0% 0.0% -0.0% -0.0% -0.0%
primetest -0.0% 0.0% -0.0% -0.0% -0.0%
prolog -0.0% 0.0% -0.0% -0.0% -0.0%
puzzle -0.0% 0.0% -0.0% -0.0% -0.0%
queens -0.0% 0.0% -0.0% -0.0% -0.0%
reptile -0.0% 0.0% -0.0% -0.0% -0.0%
reverse-complem -0.0% 0.0% -0.0% -0.0% -0.0%
rewrite -0.0% 0.0% -0.0% -0.0% -0.0%
rfib -0.0% 0.0% -0.0% -0.0% -0.0%
rsa -0.0% 0.0% -0.0% -0.0% -0.0%
scc -0.0% 0.0% -0.3% -0.5% -0.4%
sched -0.0% 0.0% -0.0% -0.0% -0.0%
scs -0.0% 0.0% -0.0% -0.0% -0.0%
simple -0.1% 0.0% -0.0% -0.0% -0.0%
solid -0.0% 0.0% -0.0% -0.0% -0.0%
sorting -0.0% 0.0% -0.0% -0.0% -0.0%
spectral-norm -0.0% 0.0% -0.0% -0.0% -0.0%
sphere -0.0% 0.0% -0.0% -0.0% -0.0%
symalg -0.0% 0.0% -0.0% -0.0% -0.0%
tak -0.0% 0.0% -0.0% -0.0% -0.0%
transform -0.0% 0.0% -0.0% -0.0% -0.0%
treejoin -0.0% 0.0% -0.0% -0.0% -0.0%
typecheck -0.0% 0.0% -0.0% -0.0% -0.0%
veritas -0.0% 0.0% -0.0% -0.0% -0.0%
wang -0.0% 0.0% -0.0% -0.0% -0.0%
wave4main -0.0% 0.0% -0.0% -0.0% -0.0%
wheel-sieve1 -0.0% 0.0% -0.0% -0.0% -0.0%
wheel-sieve2 -0.0% 0.0% -0.0% -0.0% -0.0%
x2n1 -0.0% 0.0% -0.0% -0.0% -0.0%
--------------------------------------------------------------------------------
Min -0.1% 0.0% -0.3% -0.5% -0.5%
Max -0.0% 0.0% -0.0% -0.0% -0.0%
Geometric Mean -0.0% -0.0% -0.0% -0.0% -0.0%
--------------------------------------------------------------------------------
Program Size Allocs Instrs Reads Writes
--------------------------------------------------------------------------------
circsim -0.1% 0.0% -0.0% -0.0% -0.0%
constraints -0.0% 0.0% -0.0% -0.0% -0.0%
fibheaps -0.0% 0.0% -0.0% -0.0% -0.0%
gc_bench -0.0% 0.0% -0.0% -0.0% -0.0%
hash -0.0% 0.0% -0.0% -0.0% -0.0%
lcss -0.0% 0.0% -0.0% -0.0% -0.0%
power -0.0% 0.0% -0.0% -0.0% -0.0%
spellcheck -0.0% 0.0% -0.0% -0.0% -0.0%
--------------------------------------------------------------------------------
Min -0.1% 0.0% -0.0% -0.0% -0.0%
Max -0.0% 0.0% -0.0% -0.0% -0.0%
Geometric Mean -0.0% +0.0% -0.0% -0.0% -0.0%
Manual inspection of programs in testsuite/tests/programs
---------------------------------------------------------
I built these programs with a bunch of dump flags and `-O` and compared
STG, Cmm, and Asm dumps and file sizes.
(Below the numbers in parenthesis show number of modules in the program)
These programs have identical compiler (same .hi and .o sizes, STG, and
Cmm and Asm dumps):
- Queens (1), andre_monad (1), cholewo-eval (2), cvh_unboxing (3),
andy_cherry (7), fun_insts (1), hs-boot (4), fast2haskell (2),
jl_defaults (1), jq_readsPrec (1), jules_xref (1), jtod_circint (4),
jules_xref2 (1), lennart_range (1), lex (1), life_space_leak (1),
bargon-mangler-bug (7), record_upd (1), rittri (1), sanders_array (1),
strict_anns (1), thurston-module-arith (2), okeefe_neural (1),
joao-circular (6), 10queens (1)
Programs with different compiler outputs:
- jl_defaults (1): For some reason GHC HEAD marks a lot of top-level
`[Int]` closures as CAFFY for no reason. With this patch we no longer
make them CAFFY and generate less SRT entries. For some reason Main.o
is slightly larger with this patch (1.3%) and the executable sizes are
the same. (I'd expect both to be smaller)
- launchbury (1): Same as jl_defaults: top-level `[Int]` closures marked
as CAFFY for no reason. Similarly `Main.o` is 1.4% larger but the
executable sizes are the same.
- galois_raytrace (13): Differences are in the Parse module. There are a
lot, but some of the changes are caused by the fact that for some
reason (I think a bug) GHC HEAD marks the dictionary for `Functor
Identity` as CAFFY. Parse.o is 0.4% larger, the executable size is the
same.
- north_array: We now generate less SRT entries because some of array
primops used in this program like `NewArrayOp` get eliminated during
Stg-to-Cmm and turn some CAFFY things into non-CAFFY. Main.o gets 24%
larger (9224 bytes from 9000 bytes), executable sizes are the same.
- seward-space-leak: Difference in this program is better shown by this
smaller example:
module Lib where
data CDS
= Case [CDS] [(Int, CDS)]
| Call CDS CDS
instance Eq CDS where
Case sels1 rets1 == Case sels2 rets2 =
sels1 == sels2 && rets1 == rets2
Call a1 b1 == Call a2 b2 =
a1 == a2 && b1 == b2
_ == _ =
False
In this program GHC HEAD builds a new SRT for the recursive group of
`(==)`, `(/=)` and the dictionary closure. Then `/=` points to `==`
in its SRT field, and `==` uses the SRT object as its SRT. With this
patch we use the closure for `/=` as the SRT and add `==` there. Then
`/=` gets an empty SRT field and `==` points to `/=` in its SRT
field.
This change looks fine to me.
Main.o gets 0.07% larger, executable sizes are identical.
head.hackage
------------
head.hackage's CI script builds 428 packages from Hackage using this
patch with no failures.
Compiler performance
--------------------
The compiler perf tests report that the compiler allocates slightly more
(worst case observed so far is 4%). However most programs in the test
suite are small, single file programs. To benchmark compiler performance
on something more realistic I build Cabal (the library, 236 modules)
with different optimisation levels. For the "max residency" row I run
GHC with `+RTS -s -A100k -i0 -h` for more accurate numbers. Other rows
are generated with just `-s`. (This is because `-i0` causes running GC
much more frequently and as a result "bytes copied" gets inflated by
more than 25x in some cases)
* -O0
| | GHC HEAD | This MR | Diff |
| --------------- | -------------- | -------------- | ------ |
| Bytes allocated | 54,413,350,872 | 54,701,099,464 | +0.52% |
| Bytes copied | 4,926,037,184 | 4,990,638,760 | +1.31% |
| Max residency | 421,225,624 | 424,324,264 | +0.73% |
* -O1
| | GHC HEAD | This MR | Diff |
| --------------- | --------------- | --------------- | ------ |
| Bytes allocated | 245,849,209,992 | 246,562,088,672 | +0.28% |
| Bytes copied | 26,943,452,560 | 27,089,972,296 | +0.54% |
| Max residency | 982,643,440 | 991,663,432 | +0.91% |
* -O2
| | GHC HEAD | This MR | Diff |
| --------------- | --------------- | --------------- | ------ |
| Bytes allocated | 291,044,511,408 | 291,863,910,912 | +0.28% |
| Bytes copied | 37,044,237,616 | 36,121,690,472 | -2.49% |
| Max residency | 1,071,600,328 | 1,086,396,256 | +1.38% |
Extra compiler allocations
--------------------------
Runtime allocations of programs are as reported above (NoFib section).
The compiler now allocates more than before. Main source of allocation
in this patch compared to base commit is the new SRT algorithm
(GHC.Cmm.Info.Build). Below is some of the extra work we do with this
patch, numbers generated by profiled stage 2 compiler when building a
pathological case (the test 'ManyConstructors') with '-O2':
- We now sort the final STG for a module, which means traversing the
entire program, generating free variable set for each top-level
binding, doing SCC analysis, and re-ordering the program. In
ManyConstructors this step allocates 97,889,952 bytes.
- We now do SRT analysis on static data, which in a program like
ManyConstructors causes analysing 10,000 bindings that we would
previously just skip. This step allocates 70,898,352 bytes.
- We now maintain an SRT map for the entire module as we compile Cmm
groups:
data ModuleSRTInfo = ModuleSRTInfo
{ ...
, moduleSRTMap :: SRTMap
}
(SRTMap is just a strict Map from the 'containers' library)
This map gets an entry for most bindings in a module (exceptions are
THUNKs and CAFFY static functions). For ManyConstructors this map
gets 50015 entries.
- Once we're done with code generation we generate a NameSet from SRTMap
for the non-CAFFY names in the current module. This set gets the same
number of entries as the SRTMap.
- Finally we update CafInfos in ModDetails for the non-CAFFY Ids, using
the NameSet generated in the previous step. This usually does the
least amount of allocation among the work listed here.
Only place with this patch where we do less work in the CAF analysis in
the tidying pass (CoreTidy). However that doesn't save us much, as the
pass still needs to traverse the whole program and update IdInfos for
other reasons. Only thing we don't here do is the `hasCafRefs` pass over
the RHS of bindings, which is a stateless pass that returns a boolean
value, so it doesn't allocate much.
(Metric changes blow are all increased allocations)
Metric changes
--------------
Metric Increase:
ManyAlternatives
ManyConstructors
T13035
T14683
T1969
T9961
|
| |
|
| |
|
|
Add StgToCmm module hierarchy. Platform modules that are used in several
other places (NCG, LLVM codegen, Cmm transformations) are put into
GHC.Platform.
|