| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
| |
- Remove unused uniques and hs-boot declarations
- Fix types of seq and unsafeCoerce#
- Remove FastString/String roundtrip in JS
- Use TTG to enforce totality
- Remove enumeration in Heap/Inspect; the 'otherwise' clause
serves the primitive types well.
|
|
|
|
|
|
|
| |
See the updated `Note [Data-con worker strictness]`
and the new `Note [Demand transformer for data constructors]`.
Fixes #22475.
|
|
|
|
|
|
|
| |
Unboxed sums might store a Int8# value as Int64#. This patch
makes sure we keep track of the actual value type.
See Note [Casting slot arguments] for the details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add JS backend adapted from the GHCJS project by Luite Stegeman.
Some features haven't been ported or implemented yet. Tests for these
features have been disabled with an associated gitlab ticket.
Bump array submodule
Work funded by IOG.
Co-authored-by: Jeffrey Young <jeffrey.young@iohk.io>
Co-authored-by: Luite Stegeman <stegeman@gmail.com>
Co-authored-by: Josh Meredith <joshmeredith2008@gmail.com>
|
| |
|
|
|
|
| |
Fixes #22402.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This big patch addresses the rats-nest of issues that have plagued
us for years, about the relationship between Type and Constraint.
See #11715/#21623.
The main payload of the patch is:
* To introduce CONSTRAINT :: RuntimeRep -> Type
* To make TYPE and CONSTRAINT distinct throughout the compiler
Two overview Notes in GHC.Builtin.Types.Prim
* Note [TYPE and CONSTRAINT]
* Note [Type and Constraint are not apart]
This is the main complication.
The specifics
* New primitive types (GHC.Builtin.Types.Prim)
- CONSTRAINT
- ctArrowTyCon (=>)
- tcArrowTyCon (-=>)
- ccArrowTyCon (==>)
- funTyCon FUN -- Not new
See Note [Function type constructors and FunTy]
and Note [TYPE and CONSTRAINT]
* GHC.Builtin.Types:
- New type Constraint = CONSTRAINT LiftedRep
- I also stopped nonEmptyTyCon being built-in; it only needs to be wired-in
* Exploit the fact that Type and Constraint are distinct throughout GHC
- Get rid of tcView in favour of coreView.
- Many tcXX functions become XX functions.
e.g. tcGetCastedTyVar --> getCastedTyVar
* Kill off Note [ForAllTy and typechecker equality], in (old)
GHC.Tc.Solver.Canonical. It said that typechecker-equality should ignore
the specified/inferred distinction when comparein two ForAllTys. But
that wsa only weakly supported and (worse) implies that we need a separate
typechecker equality, different from core equality. No no no.
* GHC.Core.TyCon: kill off FunTyCon in data TyCon. There was no need for it,
and anyway now we have four of them!
* GHC.Core.TyCo.Rep: add two FunTyFlags to FunCo
See Note [FunCo] in that module.
* GHC.Core.Type. Lots and lots of changes driven by adding CONSTRAINT.
The key new function is sORTKind_maybe; most other changes are built
on top of that.
See also `funTyConAppTy_maybe` and `tyConAppFun_maybe`.
* Fix a longstanding bug in GHC.Core.Type.typeKind, and Core Lint, in
kinding ForAllTys. See new tules (FORALL1) and (FORALL2) in GHC.Core.Type.
(The bug was that before (forall (cv::t1 ~# t2). blah), where
blah::TYPE IntRep, would get kind (TYPE IntRep), but it should be
(TYPE LiftedRep). See Note [Kinding rules for types] in GHC.Core.Type.
* GHC.Core.TyCo.Compare is a new module in which we do eqType and cmpType.
Of course, no tcEqType any more.
* GHC.Core.TyCo.FVs. I moved some free-var-like function into this module:
tyConsOfType, visVarsOfType, and occCheckExpand. Refactoring only.
* GHC.Builtin.Types. Compiletely re-engineer boxingDataCon_maybe to
have one for each /RuntimeRep/, rather than one for each /Type/.
This dramatically widens the range of types we can auto-box.
See Note [Boxing constructors] in GHC.Builtin.Types
The boxing types themselves are declared in library ghc-prim:GHC.Types.
GHC.Core.Make. Re-engineer the treatment of "big" tuples (mkBigCoreVarTup
etc) GHC.Core.Make, so that it auto-boxes unboxed values and (crucially)
types of kind Constraint. That allows the desugaring for arrows to work;
it gathers up free variables (including dictionaries) into tuples.
See Note [Big tuples] in GHC.Core.Make.
There is still work to do here: #22336. But things are better than
before.
* GHC.Core.Make. We need two absent-error Ids, aBSENT_ERROR_ID for types of
kind Type, and aBSENT_CONSTRAINT_ERROR_ID for vaues of kind Constraint.
Ditto noInlineId vs noInlieConstraintId in GHC.Types.Id.Make;
see Note [inlineId magic].
* GHC.Core.TyCo.Rep. Completely refactor the NthCo coercion. It is now called
SelCo, and its fields are much more descriptive than the single Int we used to
have. A great improvement. See Note [SelCo] in GHC.Core.TyCo.Rep.
* GHC.Core.RoughMap.roughMatchTyConName. Collapse TYPE and CONSTRAINT to
a single TyCon, so that the rough-map does not distinguish them.
* GHC.Core.DataCon
- Mainly just improve documentation
* Some significant renamings:
GHC.Core.Multiplicity: Many --> ManyTy (easier to grep for)
One --> OneTy
GHC.Core.TyCo.Rep TyCoBinder --> GHC.Core.Var.PiTyBinder
GHC.Core.Var TyCoVarBinder --> ForAllTyBinder
AnonArgFlag --> FunTyFlag
ArgFlag --> ForAllTyFlag
GHC.Core.TyCon TyConTyCoBinder --> TyConPiTyBinder
Many functions are renamed in consequence
e.g. isinvisibleArgFlag becomes isInvisibleForAllTyFlag, etc
* I refactored FunTyFlag (was AnonArgFlag) into a simple, flat data type
data FunTyFlag
= FTF_T_T -- (->) Type -> Type
| FTF_T_C -- (-=>) Type -> Constraint
| FTF_C_T -- (=>) Constraint -> Type
| FTF_C_C -- (==>) Constraint -> Constraint
* GHC.Tc.Errors.Ppr. Some significant refactoring in the TypeEqMisMatch case
of pprMismatchMsg.
* I made the tyConUnique field of TyCon strict, because I
saw code with lots of silly eval's. That revealed that
GHC.Settings.Constants.mAX_SUM_SIZE can only be 63, because
we pack the sum tag into a 6-bit field. (Lurking bug squashed.)
Fixes
* #21530
Updates haddock submodule slightly.
Performance changes
~~~~~~~~~~~~~~~~~~~
I was worried that compile times would get worse, but after
some careful profiling we are down to a geometric mean 0.1%
increase in allocation (in perf/compiler). That seems fine.
There is a big runtime improvement in T10359
Metric Decrease:
LargeRecord
MultiLayerModulesTH_OneShot
T13386
T13719
Metric Increase:
T8095
|
|
|
|
|
| |
Introduces GHC.Prelude.Basic which can be used in modules which are a
dependency of the ppr code.
|
|
|
|
|
|
|
|
|
|
|
| |
* Rename pprCLabel to pprCLabelStyle, and use the name pprCLabel
for a function using CStyle (analogous to pprAsmLabel)
* Move LabelStyle to the CLabel module, it no longer needs to be in Outputable.
* Move calls to 'text' right next to literals, to make sure the text/str
rule is triggered.
* Remove FastString/String roundtrip in Tc.Deriv.Generate
* Introduce showSDocForUser', which abstracts over a pattern in
GHCi.UI
|
|
|
|
|
|
|
| |
It now properly lints cases where sums end up distributed
over multiple args after unarise.
Fixes #22026.
|
|
|
|
|
|
|
|
|
| |
This patch adds the missing `VecRep` case to `primRepSlot` function and
all the necessary machinery to carry this new `VecSlot` through code
generation. This allows programs involving unboxed sums of SIMD vectors
to be written and compiled.
Fixes #22187
|
|
|
|
| |
functions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I had assumed that wrappers were not inlined in interactive mode.
Meaning we would always execute the compiled wrapper which properly
takes care of upholding the strict field invariant.
This turned out to be wrong. So instead we now run tag inference even
when we generate bytecode. In that case only for correctness not
performance reasons although it will be still beneficial for runtime
in some cases.
I further fixed a bug where GHCi didn't tag nullary constructors
properly when used as arguments. Which caused segfaults when calling
into compiled functions which expect the strict field invariant to
be upheld.
Fixes #22042 and #21083
-------------------------
Metric Increase:
T4801
Metric Decrease:
T13035
-------------------------
|
|
|
|
|
|
|
|
|
| |
The function GHC.Stg.InferTags.Rewrite.isTagged can be given
the Id of a join point, which might be representation polymorphic.
This would cause the call to isUnliftedType to crash. It's better
to use typeLevity_maybe instead.
Fixes #22212
|
| |
|
|
|
|
|
|
|
|
|
|
| |
For an expression like:
case x of y
Con z -> z
If we also retain the tag sig for z we can generate code to immediately return
it rather than calling out to stg_ap_0_fast.
|
| |
|
|
|
|
|
|
|
| |
This fixes various typos and spelling mistakes
in the compiler.
Fixes #21891
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR adds diagnostic codes, assigning unique numeric codes to
error and warnings, e.g.
error: [GHC-53633]
Pattern match is redundant
This is achieved as follows:
- a type family GhcDiagnosticCode that gives the diagnostic code
for each diagnostic constructor,
- a type family ConRecursInto that specifies whether to recur into
an argument of the constructor to obtain a more fine-grained code
(e.g. different error codes for different 'deriving' errors),
- generics machinery to generate the value-level function assigning
each diagnostic its error code; see Note [Diagnostic codes using generics]
in GHC.Types.Error.Codes.
The upshot is that, to add a new diagnostic code, contributors only need
to modify the two type families mentioned above. All logic relating to
diagnostic codes is thus contained to the GHC.Types.Error.Codes module,
with no code duplication.
This MR also refactors error message datatypes a bit, ensuring we can
derive Generic for them, and cleans up the logic around constraint
solver reports by splitting up 'TcSolverReportInfo' into separate
datatypes (see #20772).
Fixes #21684
|
| |
|
|
|
|
| |
This addresses one part of #21710.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The former behaviour of adding cost centres after optimization but
before unfoldings are created is not available via the flag
`prof-late-inline` instead.
I also reduced the overhead of -fprof-late* by pushing the cost centres
into lambdas. This means the cost centres will only account for
execution of functions and not their partial application.
Further I made LATE_CC cost centres it's own CC flavour so they now
won't clash with user defined ones if a user uses the same string for
a custom scc.
LateCC: Don't put cost centres inside constructor workers.
With -fprof-late they are rarely useful as the worker is usually
inlined. Even if the worker is not inlined or we use -fprof-late-linline
they are generally not helpful but bloat compile and run time
significantly. So we just don't add sccs inside constructor workers.
-------------------------
Metric Decrease:
T13701
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Removed references to driver from GHC.Core.LateCC, GHC.Core.Simplify
namespace and GHC.Core.Opt.Stats.
Also removed services from configuration records.
* Renamed GHC.Core.Opt.Simplify to GHC.Core.Opt.Simplify.Iteration.
* Inlined `simplifyPgm` and renamed `simplifyPgmIO` to `simplifyPgm`
and moved the Simplify driver to GHC.Core.Opt.Simplify.
* Moved `SimplMode` and `FloatEnable` to GHC.Core.Opt.Simplify.Env.
* Added a configuration record `TopEnvConfig` for the `SimplTopEnv` environment
in GHC.Core.Opt.Simplify.Monad.
* Added `SimplifyOpts` and `SimplifyExprOpts`. Provide initialization functions
for those in a new module GHC.Driver.Config.Core.Opt.Simplify.
Also added initialization functions for `SimplMode` to that module.
* Moved `CoreToDo` and friends to a new module GHC.Core.Pipeline.Types
and the counting types and functions (`SimplCount` and `Tick`) to new
module GHC.Core.Opt.Stats.
* Added getter functions for the fields of `SimplMode`. The pedantic bottoms
option and the platform are retrieved from the ArityOpts and RuleOpts and the
getter functions allow us to retrieve values from `SpecEnv` without the
knowledge where the data is stored exactly.
* Moved the coercion optimization options from the top environment to
`SimplMode`. This way the values left in the top environment are those
dealing with monadic functionality, namely logging, IO related stuff and
counting. Added a note "The environments of the Simplify pass".
* Removed `CoreToDo` from GHC.Core.Lint and GHC.CoreToStg.Prep and got rid of
`CoreDoSimplify`. Pass `SimplifyOpts` in the `CoreToDo` type instead.
* Prep work before removing `InteractiveContext` from `HscEnv`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We used to put OtherCon unfoldings on lambda binders of workers
and sometimes also join points/specializations with with the
assumption that since the wrapper would force these arguments
once we execute the RHS they would indeed be in WHNF.
This was wrong for reasons detailed in #21472. So now we purge
evaluated unfoldings from *all* lambda binders.
This fixes #21472, but at the cost of sometimes not using as efficient a
calling convention. It can also change inlining behaviour as some
occurances will no longer look like value arguments when they did
before.
As consequence we also change how we compute CBV information for
arguments slightly. We now *always* determine the CBV convention
for arguments during tidy. Earlier in the pipeline we merely mark
functions as candidates for having their arguments treated as CBV.
As before the process is described in the relevant notes:
Note [CBV Function Ids]
Note [Attaching CBV Marks to ids]
Note [Never put `OtherCon` unfoldigns on lambda binders]
-------------------------
Metric Decrease:
T12425
T13035
T18223
T18223
T18923
MultiLayerModulesTH_OneShot
Metric Increase:
WWRec
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LlvmConfig contains information read from llvm-passes and llvm-targets
files in GHC's top directory. Reading these files is done only when
needed (i.e. when the LLVM backend is used) and cached for the whole
compiler session. This patch changes the way this is done:
- Split LlvmConfig into LlvmConfig and LlvmConfigCache
- Store LlvmConfigCache in HscEnv instead of DynFlags: there is no
good reason to store it in DynFlags. As it is fixed per session, we
store it in the session state instead (HscEnv).
- Initializing LlvmConfigCache required some changes to driver functions
such as newHscEnv. I've used the opportunity to untangle initHscEnv
from initGhcMonad (in top-level GHC module) and to move it to
GHC.Driver.Main, close to newHscEnv.
- I've also made `cmmPipeline` independent of HscEnv in order to remove
the call to newHscEnv in regalloc_unit_tests.
|
|
|
|
|
|
|
|
| |
- Remove groupWithName (unused)
- Use the RuntimeRepType synonym where possible
- Replace getUniqueM + mkSysLocalOrCoVar with mkSysLocalOrCoVarM
No functional changes.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
See the new `Note [SubDemand denotes at least one evaluation]`.
A demand `n :* sd` on a let binder `x=e` now means
> "`x` was evaluated `n` times and in any program trace it is evaluated, `e` is
> evaluated deeply in sub-demand `sd`."
The "any time it is evaluated" premise is what this patch adds. As a result,
we get better nested strictness. For example (T21081)
```hs
f :: (Bool, Bool) -> (Bool, Bool)
f pr = (case pr of (a,b) -> a /= b, True)
-- before: <MP(L,L)>
-- after: <MP(SL,SL)>
g :: Int -> (Bool, Bool)
g x = let y = let z = odd x in (z,z) in f y
```
The change in demand signature "before" to "after" allows us to case-bind `z`
here.
Similarly good things happen for the `sd` in call sub-demands `Cn(sd)`, which
allows for more eta-reduction (which is only sound with `-fno-pedantic-bottoms`,
albeit).
We also fix #21085, a surprising inconsistency with `Poly` to `Call` sub-demand
expansion.
In an attempt to fix a regression caused by less inlining due to eta-reduction
in T15426, I eta-expanded the definition of `elemIndex` and `elemIndices`, thus
fixing #21345 on the go.
The main point of this patch is that it fixes #21081 and #21133.
Annoyingly, I discovered that more precise demand signatures for join points can
transform a program into a lazier program if that join point gets floated to the
top-level, see #21392. There is no simple fix at the moment, but !5349 might.
Thus, we accept a ~5% regression in `MultiLayerModulesTH_OneShot`, where #21392
bites us in `addListToUniqDSet`. T21392 reliably reproduces the issue.
Surprisingly, ghc/alloc perf on Windows improves much more than on other jobs, by
0.4% in the geometric mean and by 2% in T16875.
Metric Increase:
MultiLayerModulesTH_OneShot
Metric Decrease:
T16875
|
|
|
|
|
| |
We use compatibleRep to compare reps, and avoid checking functions with
levity polymorphic types because of #21399.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* In CoreToStg, the application 'RUBBISH[rep] x' was simplified
to 'RUBBISH[rep]'. But it is possible that the result of the function
is represented differently than the function.
* In Unarise, 'LitRubbish (primRepToType prep)'
is incorrect: LitRubbish takes a RuntimeRep such as IntRep,
while primRepToType returns a type such as Any @(TYPE IntRep). Use
primRepToRuntimeRep instead.
This code is never run in the testsuite.
* In StgToByteCode, all rubbish literals were assumed to be boxed.
This code predates representation-polymorphic RubbishLit and I think
it was not updated.
I don't have a testcase for any of those issues, but the code looks
wrong.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For I assume performance reasons we don't record no-op replacements
during unarise. This lead to problems with code like this:
f = \(Eta_B0 :: VoidType) x1 x2 ->
... let foo = \(Eta_B0 :: LiftedType) -> g x y Eta_B0
in ...
Here we would record the outer Eta_B0 as void rep, but would not
shadow Eta_B0 inside `foo` because this arg is single-rep and so
doesn't need to replaced. But this means when looking at occurence
sites we would check the env and assume it's void rep based on the
entry we made for the (no longer in scope) outer `Eta_B0`.
Fixes #21396 and the ticket has a few more details.
|
|
|
|
|
|
|
| |
This will mean T9208 when run with lint will return a lint error instead
of resulting in a panic.
Fixes #21117
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
previously, GHC had the "let/app-invariant" which said that the RHS of a
let or the argument of an application must be of lifted type or ok for
speculation. We want this on let to freely float them around, and we
wanted that on app to freely convert between the two (e.g. in
beta-reduction or inlining).
However, the app invariant meant that simple code didn't stay simple and
this got in the way of rules matching. By removing the app invariant,
this thus fixes #20554.
The new invariant is now called "let-can-float invariant", which is
hopefully easier to guess its meaning correctly.
Dropping the app invariant means that everywhere where we effectively do
beta-reduction (in the two simplifiers, but also in `exprIsConApp_maybe`
and other innocent looking places) we now have to check if the argument
must be evaluated (unlifted and side-effecting), and analyses have to be
adjusted to the new semantics of `App`.
Also, `LetFloats` in the simplifier can now also carry such non-floating
bindings.
The fix for DmdAnal, refine by Sebastian, makes functions with unlifted
arguments strict in these arguments, which changes some signatures.
This causes some extra calls to `exprType` and `exprOkForSpeculation`,
so some perf benchmarks regress a bit (while others improve).
Metric Decrease:
T9020
Metric Increase:
LargeRecord
T12545
T15164
T16577
T18223
T5642
T9961
Co-authored-by: Sebastian Graf <sebastian.graf@kit.edu>
|
|
|
|
| |
Fixes #20935 and #20924
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As #20837 pointed out, `isLiftedType_maybe` returned `Just False` in
many situations where it should return `Nothing`, because it didn't
take into account type families or type variables.
In this patch, we fix this issue. We rename `isLiftedType_maybe` to
`typeLevity_maybe`, which now returns a `Levity` instead of a boolean.
We now return `Nothing` for types with kinds of the form
`TYPE (F a1 ... an)` for a type family `F`, as well as
`TYPE (BoxedRep l)` where `l` is a type variable.
This fix caused several other problems, as other parts of the compiler
were relying on `isLiftedType_maybe` returning a `Just` value, and were
now panicking after the above fix. There were two main situations in
which panics occurred:
1. Issues involving the let/app invariant. To uphold that invariant,
we need to know whether something is lifted or not. If we get an
answer of `Nothing` from `isLiftedType_maybe`, then we don't know
what to do. As this invariant isn't particularly invariant, we
can change the affected functions to not panic, e.g. by behaving
the same in the `Just False` case and in the `Nothing` case
(meaning: no observable change in behaviour compared to before).
2. Typechecking of data (/newtype) constructor patterns. Some programs
involving patterns with unknown representations were accepted, such
as T20363. Now that we are stricter, this caused further issues,
culminating in Core Lint errors. However, the behaviour was
incorrect the whole time; the incorrectness only being revealed by
this change, not triggered by it.
This patch fixes this by overhauling where the representation
polymorphism involving pattern matching are done. Instead of doing
it in `tcMatches`, we instead ensure that the `matchExpected`
functions such as `matchExpectedFunTys`, `matchActualFunTySigma`,
`matchActualFunTysRho` allow return argument pattern types which
have a fixed RuntimeRep (as defined in Note [Fixed RuntimeRep]).
This ensures that the pattern matching code only ever handles types
with a known runtime representation. One exception was that
patterns with an unknown representation type could sneak in via
`tcConPat`, which points to a missing representation-polymorphism
check, which this patch now adds.
This means that we now reject the program in #20363, at least until
we implement PHASE 2 of FixedRuntimeRep (allowing type families in
RuntimeRep positions). The aforementioned refactoring, in which
checks have been moved to `matchExpected` functions, is a first
step in implementing PHASE 2 for patterns.
Fixes #20837
|
|
|
|
|
| |
FUN closures don't get tagged when evaluated. So no point in checking their
tags.
|
|
|
|
|
|
| |
As the `hlint` executable is only available in the linters image.
Fixes #21146.
|
|
|
|
|
| |
I've added an explicit mention of the invariants surrounding those. As well as adding
more direct cross references to the Strict Field Invariant.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit alters GenStgAlt from a type synonym to a Record with field
accessors. In pursuit of #21078, this is not a required change but cleans
up several areas for nicer code in the upcoming js-backend, and in GHC
itself.
GenStgAlt: 3-tuple -> record
Stg.Utils: GenStgAlt 3-tuple -> record
Stg.Stats: StgAlt 3-tuple --> record
Stg.InferTags.Rewrite: StgAlt 3-tuple -> record
Stg.FVs: GenStgAlt 3-tuple -> record
Stg.CSE: GenStgAlt 3-tuple -> record
Stg.InferTags: GenStgAlt 3-tuple --> record
Stg.Debug: GenStgAlt 3-tuple --> record
Stg.Lift.Analysis: GenStgAlt 3-tuple --> record
Stg.Lift: GenStgAlt 3-tuple --> record
ByteCode.Instr: GenStgAlt 3-tuple --> record
Stg.Syntax: add GenStgAlt helper functions
Stg.Unarise: GenStgAlt 3-tuple --> record
Stg.BcPrep: GenStgAlt 3-tuple --> record
CoreToStg: GenStgAlt 3-tuple --> record
StgToCmm.Expr: GenStgAlt 3-tuple --> record
StgToCmm.Bind: GenStgAlt 3-tuple --> record
StgToByteCode: GenStgAlt 3-tuple --> record
Stg.Lint: GenStgAlt 3-tuple --> record
Stg.Syntax: strictify GenStgAlt
GenStgAlt: add haddock, some cleanup
fixup: remove calls to pure, single ViewPattern
StgToByteCode: use case over viewpatterns
|
|
|
|
|
| |
It turns out this job hasn't been running for quite a while (perhaps
ever) so there are quite a few failures when running the linter locally.
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are some situations where we end up with no source notes in useful
positions in an expression. In this case we currently fail to provide
any source information about where an expression came from.
This patch improves the initial estimate by using the position from the
top-binder as the guess for the location of the whole inner expression.
It provides quite a course estimate but it's better than nothing.
Ticket #20847
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This does three major things:
* Enforce the invariant that all strict fields must contain tagged
pointers.
* Try to predict the tag on bindings in order to omit tag checks.
* Allows functions to pass arguments unlifted (call-by-value).
The former is "simply" achieved by wrapping any constructor allocations with
a case which will evaluate the respective strict bindings.
The prediction is done by a new data flow analysis based on the STG
representation of a program. This also helps us to avoid generating
redudant cases for the above invariant.
StrictWorkers are created by W/W directly and SpecConstr indirectly.
See the Note [Strict Worker Ids]
Other minor changes:
* Add StgUtil module containing a few functions needed by, but
not specific to the tag analysis.
-------------------------
Metric Decrease:
T12545
T18698b
T18140
T18923
LargeRecord
Metric Increase:
LargeRecord
ManyAlternatives
ManyConstructors
T10421
T12425
T12707
T13035
T13056
T13253
T13253-spj
T13379
T15164
T18282
T18304
T18698a
T1969
T20049
T3294
T4801
T5321FD
T5321Fun
T783
T9233
T9675
T9961
T19695
WWRec
-------------------------
|
|
|
|
|
| |
Also derive some more instances. GHC doesn't need them, but downstream
consumers may need to e.g. put stuff in maps.
|
|
|
|
|
|
| |
This was achieved with
git ls-tree --name-only HEAD -r | xargs sed -i -e 's/note \[/Note \[/g'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
StgToCmm: add Config, remove CgInfoDownwards
StgToCmm: runC api change to take StgToCmmConfig
StgToCmm: CgInfoDownad -> StgToCmmConfig
StgToCmm.Monad: update getters/setters/withers
StgToCmm: remove CallOpts in StgToCmm.Closure
StgToCmm: remove dynflag references
StgToCmm: PtrOpts removed
StgToCmm: add TMap to config, Prof - dynflags
StgToCmm: add omit yields to config
StgToCmm.ExtCode: remove redundant import
StgToCmm.Heap: remove references to dynflags
StgToCmm: codeGen api change, DynFlags -> Config
StgToCmm: remove dynflags in Env and StgToCmm
StgToCmm.DataCon: remove dynflags references
StgToCmm: remove dynflag references in DataCon
StgToCmm: add backend avx flags to config
StgToCmm.Prim: remove dynflag references
StgToCmm.Expr: remove dynflag references
StgToCmm.Bind: remove references to dynflags
StgToCmm: move DoAlignSanitisation to Cmm.Type
StgToCmm: remove PtrOpts in Cmm.Parser.y
DynFlags: update ipInitCode api
StgToCmm: Config Module is single source of truth
StgToCmm: Lazy config breaks IORef deadlock
testsuite: bump countdeps threshold
StgToCmm.Config: strictify fields except UpdFrame
Strictifying UpdFrameOffset causes the RTS build with stage1 to
deadlock. Additionally, before the deadlock performance of the RTS
is noticeably slower.
StgToCmm.Config: add field descriptions
StgToCmm: revert strictify on Module in config
testsuite: update CountDeps tests
StgToCmm: update comment, fix exports
Specifically update comment about loopification passed into dynflags
then stored into stgToCmmConfig. And remove getDynFlags from
Monad.hs exports
Types.Name: add pprFullName function
StgToCmm.Ticky: use pprFullname, fixup ExtCode imports
Cmm.Info: revert cmmGetClosureType removal
StgToCmm.Bind: use pprFullName, Config update comments
StgToCmm: update closureDescription api
StgToCmm: SAT altHeapCheck
StgToCmm: default render for Info table, ticky
Use default rendering contexts for info table and ticky ticky, which should be independent of command line input.
testsuite: bump count deps
pprFullName: flag for ticky vs normal style output
convertInfoProvMap: remove unused parameter
StgToCmm.Config: add backend flags to config
StgToCmm.Config: remove Backend from Config
StgToCmm.Prim: refactor Backend call sites
StgToCmm.Prim: remove redundant imports
StgToCmm.Config: refactor vec compatibility check
StgToCmm.Config: add allowQuotRem2 flag
StgToCmm.Ticky: print internal names with parens
StgToCmm.Bind: dispatch ppr based on externality
StgToCmm: Add pprTickyname, Fix ticky naming
Accidently removed the ctx for ticky SDoc output. The only relevant flag
is sdocPprDebug which was accidental set to False due to using
defaultSDocContext without altering the flag.
StgToCmm: remove stateful fields in config
fixup: config: remove redundant imports
StgToCmm: move Sequel type to its own module
StgToCmm: proliferate getCallMethod updated api
StgToCmm.Monad: add FCodeState to Monad Api
StgToCmm: add second reader monad to FCode
fixup: Prim.hs: missed a merge conflict
fixup: Match countDeps tests to HEAD
StgToCmm.Monad: withState -> withCgState
To disambiguate it from mtl withState. This withState shouldn't be
returning the new state as a value. However, fixing this means tackling
the knot tying in CgState and so is very difficult since it changes when
the thunk of the knot is forced which either leads to deadlock or to
compiler panic.
|
|
|
|
| |
This makes it more similar to pprTrace, pprPanic etc.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously we would traverse the STG AST twice looking for free variables.
* Once in `annTopBindingsDeps` which considers top level and imported ids free.
Its output is used to put bindings in dependency order. The pass happens
in STG pipeline.
* Once in `annTopBindingsFreeVars` which only considers non-top level ids free.
Its output is used by the code generator to compute offsets into closures.
This happens in Cmm (CodeGen) pipeline.
Now these two traversal operations are merged into one - `FVs.depSortWithAnnotStgPgm`.
The pass happens right at the end of STG pipeline. Some type signatures had to be
updated due to slight shifts of StgPass boundaries (for example, top-level CodeGen
handler now directly works with CodeGen flavoured Stg AST instead of Vanilla).
Due to changed order of bindings, a few debugger type reconstruction bugs
have resurfaced again (see tests break018, break021) - work item #18004 tracks this
investigation.
authors: simonpj, nineonine
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes #20541 by making mkTyConApp do more sharing of types.
In particular, replace
* BoxedRep Lifted ==> LiftedRep
* BoxedRep Unlifted ==> UnliftedRep
* TupleRep '[] ==> ZeroBitRep
* TYPE ZeroBitRep ==> ZeroBitType
In each case, the thing on the right is a type synonym
for the thing on the left, declared in ghc-prim:GHC.Types.
See Note [Using synonyms to compress types] in GHC.Core.Type.
The synonyms for ZeroBitRep and ZeroBitType are new, but absolutely
in the same spirit as the other ones. (These synonyms are mainly
for internal use, though the programmer can use them too.)
I also renamed GHC.Core.Ty.Rep.isVoidTy to isZeroBitTy, to be
compatible with the "zero-bit" nomenclature above. See discussion
on !6806.
There is a tricky wrinkle: see GHC.Core.Types
Note [Care using synonyms to compress types]
Compiler allocation decreases by up to 0.8%.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Emit an Info Table Provenance Entry (IPE) for every stack represeted info table
if -finfo-table-map is turned on.
To decode a cloned stack, lookupIPE() is used. It provides a mapping between
info tables and their source location.
Please see these notes for details:
- [Stacktraces from Info Table Provenance Entries (IPE based stack unwinding)]
- [Mapping Info Tables to Source Positions]
Metric Increase:
T12545
|