| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Emit an Info Table Provenance Entry (IPE) for every stack represeted info table
if -finfo-table-map is turned on.
To decode a cloned stack, lookupIPE() is used. It provides a mapping between
info tables and their source location.
Please see these notes for details:
- [Stacktraces from Info Table Provenance Entries (IPE based stack unwinding)]
- [Mapping Info Tables to Source Positions]
Metric Increase:
T12545
|
|
|
|
|
| |
this makes it possible to combine passes to compute free variables
more efficiently in a future change
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use DiagOpts for diagnostic options instead of directly querying
DynFlags (#17957).
Surprising performance improvements on CI:
T4801(normal) ghc/alloc 313236344.0 306515216.0 -2.1% GOOD
T9961(normal) ghc/alloc 384502736.0 380584384.0 -1.0% GOOD
ManyAlternatives(normal) ghc/alloc 797356128.0 786644928.0 -1.3%
ManyConstructors(normal) ghc/alloc 4389732432.0 4317740880.0 -1.6%
T783(normal) ghc/alloc 408142680.0 402812176.0 -1.3%
Metric Decrease:
T4801
T9961
T783
ManyAlternatives
ManyConstructors
Bump haddock submodule
|
|
|
|
| |
Fixes #20019
|
|
|
|
|
|
|
|
| |
Now that Outputable is independent of DynFlags, we can put tracing
functions using SDocs into their own module that doesn't transitively
depend on any GHC.Driver.* module.
A few modules needed to be moved to avoid loops in DEBUG mode.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce LogFlags as a independent subset of DynFlags used for logging.
As a consequence in many places we don't have to pass both Logger and
DynFlags anymore.
The main reason for this refactoring is that I want to refactor the
systools interfaces: for now many systools functions use DynFlags both
to use the Logger and to fetch their parameters (e.g. ldInputs for the
linker). I'm interested in refactoring the way they fetch their
parameters (i.e. use dedicated XxxOpts data types instead of DynFlags)
for #19877. But if I did this refactoring before refactoring the Logger,
we would have duplicate parameters (e.g. ldInputs from DynFlags and
linkerInputs from LinkerOpts). Hence this patch first.
Some flags don't really belong to LogFlags because they are subsystem
specific (e.g. most DumpFlags). For example -ddump-asm should better be
passed in NCGConfig somehow. This patch doesn't fix this tight coupling:
the dump flags are part of the UI but they are passed all the way down
for example to infer the file name for the dumps.
Because LogFlags are a subset of the DynFlags, we must update the former
when the latter changes (not so often). As a consequence we now use
accessors to read/write DynFlags in HscEnv instead of using `hsc_dflags`
directly.
In the process I've also made some subsystems less dependent on DynFlags:
- CmmToAsm: by passing some missing flags via NCGConfig (see new fields
in GHC.CmmToAsm.Config)
- Core.Opt.*:
- by passing -dinline-check value into UnfoldingOpts
- by fixing some Core passes interfaces (e.g. CallArity, FloatIn)
that took DynFlags argument for no good reason.
- as a side-effect GHC.Core.Opt.Pipeline.doCorePass is much less
convoluted.
|
|
|
|
|
|
|
|
|
|
| |
As #19882 pointed out, we were simply doing rubbish literals wrong.
(I'll refrain from explaining the wrong-ness here -- see the ticket.)
This patch fixes it by adding a Type (of kind RuntimeRep) as field of
LitRubbish, rather than [PrimRep].
The Note [Rubbish literals] in GHC.Types.Literal explains the details.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GHC's internal State monad benefits from oneShot annotations on its
state, allowing for more aggressive eta expansion.
We currently don't have monad transformers with the same optimisation,
so we only change uses of the pure State monad here.
See #19657 and 19380.
Metric Decrease:
hie002
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Replace uses of WARN macro with calls to:
warnPprTrace :: Bool -> SDoc -> a -> a
Remove the now unused HsVersions.h
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is no reason to use CPP. __LINE__ and __FILE__ macros are now
better replaced with GHC's CallStack. As a bonus, assert error messages
now contain more information (function name, column).
Here is the mapping table (HasCallStack omitted):
* ASSERT: assert :: Bool -> a -> a
* MASSERT: massert :: Bool -> m ()
* ASSERTM: assertM :: m Bool -> m ()
* ASSERT2: assertPpr :: Bool -> SDoc -> a -> a
* MASSERT2: massertPpr :: Bool -> SDoc -> m ()
* ASSERTM2: assertPprM :: m Bool -> SDoc -> m ()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. `text` is as efficient as `ptext . sLit` thanks to the rewrite rules
2. `text` is visually nicer than `ptext . sLit`
3. `ptext . sLit` encourages using one `ptext` for several `sLit` as in:
ptext $ case xy of
... -> sLit ...
... -> sLit ...
which may allocate SDoc's TextBeside constructors at runtime instead
of sharing them into CAFs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously Unarise would happily project lifted and unlifted fields
to lifted slots. This broke horribly in #19645, where a ByteArray# was
passed in a lifted slot and consequently entered. The simplest way to
fix this is what I've done here, distinguishing between lifted and
unlifted slots in unarise.
However, one can imagine more clever solutions, where we coerce the
binder to the correct levity with respect to the sum's tag. I doubt that
this would be worth the effort.
Fixes #19645.
|
|
|
|
|
|
|
|
| |
This patch fixes #19717, a long-standing bug in CSE for STG, which
led to a stupid loss of CSE in some situations.
It's explained in Note [Trivial case scrutinee], which I have
substantially extended.
|
|
|
|
|
| |
In the common case where the list of ticks is empty, building a thunk
just applies 'reverse' to '[]' which is quite wasteful.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit further expand on the design for #18516 by getting rid of
the `defaultReasonSeverity` in favour of a function called
`diagReasonSeverity` which correctly takes the `DynFlags` as input. The
idea is to compute the `Severity` and the `DiagnosticReason` of each
message "at birth", without doing any later re-classifications, which
are potentially error prone, as the `DynFlags` might evolve during the
course of the program.
In preparation for a proper refactoring, now `pprWarning` from the
Parser.Ppr module has been renamed to `mkParserWarn`, which now takes a
`DynFlags` as input.
We also get rid of the reclassification we were performing inside `printOrThrowWarnings`.
Last but not least, this commit removes the need for reclassify inside GHC.Tc.Errors,
and also simplifies the implementation of `maybeReportError`.
Update Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Other than that:
* Fix T16167,json,json2,T7478,T10637 tests to reflect the introduction of
the `MessageClass` type
* Remove `makeIntoWarning`
* Remove `warningsToMessages`
* Refactor GHC.Tc.Errors
1. Refactors GHC.Tc.Errors so that we use `DiagnosticReason` for "choices"
(defer types errors, holes, etc);
2. We get rid of `reportWarning` and `reportError` in favour of a general
`reportDiagnostic`.
* Introduce `DiagnosticReason`, `Severity` is an enum: This big commit makes
`Severity` a simple enumeration, and introduces the concept of `DiagnosticReason`,
which classifies the /reason/ why we are emitting a particular diagnostic.
It also adds a monomorphic `DiagnosticMessage` type which is used for
generic messages.
* The `Severity` is computed (for now) from the reason, statically.
Later improvement will add a `diagReasonSeverity` function to compute
the `Severity` taking `DynFlags` into account.
* Rename `logWarnings` into `logDiagnostics`
* Add note and expand description of the `mkHoleError` function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch cleans up the complexity around WW's `mk_absent_let` by
broadening the scope of `LitRubbish`. Rubbish literals now store the
`PrimRep` they represent and are ultimately lowered in Cmm.
This in turn allows absent literals of `VecRep` or `VoidRep`. The latter
allows absent literals for unlifted coercions, as requested in #18983.
I took the liberty to rewrite and clean up `Note [Absent fillers]` and
`Note [Rubbish values]` to account for the new implementation and to
make them more orthogonal in their description.
I didn't add a new regression test, as `T18982` already contains the
test in the ticket and its test output changes as expected.
Fixes #18983.
|
|
|
|
|
|
|
|
| |
It's used by all passes and already used as a regular field.
So I figured it would be both more consistent and performant
to make it a regular field for all constructors.
I also added a few bangs in the process.
|
|
|
|
|
|
| |
tuples and sums.
fixes #1257
|
|
|
|
|
| |
Metric Increase:
MultiLayerModules
|
|
|
|
|
| |
The 'id' type is now determined by the pass, using the XTickishId
type family.
|
|
|
|
|
|
|
|
| |
GHCi needs to know the types of all breakpoints, but it's
not possible to get the exprType of any expression in STG.
This is preparation for the upcoming change to make GHCi
bytecode from STG instead of Core.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GHC Proposal: 0265-unlifted-datatypes.rst
Discussion: https://github.com/ghc-proposals/ghc-proposals/pull/265
Issues: https://gitlab.haskell.org/ghc/ghc/-/issues/19523
Implementation Details: Note [Implementation of UnliftedDatatypes]
This patch introduces the `UnliftedDatatypes` extension. When this extension is
enabled, GHC relaxes the restrictions around what result kinds are allowed in
data declarations. This allows data types for which an unlifted or
levity-polymorphic result kind is inferred.
The most significant changes are in `GHC.Tc.TyCl`, where
`Note [Implementation of UnliftedDatatypes]` describes the details of the
implementation.
Fixes #19523.
|
|
|
|
|
|
|
|
|
|
| |
During testing it was observed that quite a few info tables were not
being given locations (due to not being assigned source locations,
because they were not enclosed by a source note). We can at least give
the module name and type for such closures even if no more accurate
source information.
Especially for constructors this helps find them in the STG dumps.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The `-fdistinct-constructor-tables` flag will generate a fresh info
table for the usage of any data constructor. This is useful for
debugging as now by inspecting the info table, you can determine which
usage of a constructor caused that allocation rather than the old
situation where the info table always mapped to the definition site of
the data constructor which is useless.
In conjunction with `-hi` and `-finfo-table-map` this gives a more fine
grained understanding of where constructor allocations arise from in a
program.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This new flag embeds a lookup table from the address of an info table
to information about that info table.
The main interface for consulting the map is the `lookupIPE` C function
> InfoProvEnt * lookupIPE(StgInfoTable *info)
The `InfoProvEnt` has the following structure:
> typedef struct InfoProv_{
> char * table_name;
> char * closure_desc;
> char * ty_desc;
> char * label;
> char * module;
> char * srcloc;
> } InfoProv;
>
> typedef struct InfoProvEnt_ {
> StgInfoTable * info;
> InfoProv prov;
> struct InfoProvEnt_ *link;
> } InfoProvEnt;
The source positions are approximated in a similar way to the source
positions for DWARF debugging information. They are only approximate but
in our experience provide a good enough hint about where the problem
might be. It is therefore recommended to use this flag in conjunction
with `-g<n>` for more accurate locations.
The lookup table is also emitted into the eventlog when it is available
as it is intended to be used with the `-hi` profiling mode.
Using this flag will significantly increase the size of the resulting
object file but only by a factor of 2-3x in our experience.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, the only way to override GHC's default logging
behavior was to set `log_action`, `dump_action` and `trace_action`
fields in DynFlags. This patch introduces a new Logger abstraction and
stores it in HscEnv instead.
This is part of #17957 (avoid storing state in DynFlags). DynFlags are
duplicated and updated per-module (because of OPTIONS_GHC pragma), so
we shouldn't store global state in them.
This patch also fixes a race in parallel "--make" mode which updated
the `generatedDumps` IORef concurrently.
Bump haddock submodule
The increase in MultilayerModules is tracked in #19293.
Metric Increase:
MultiLayerModules
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit boldly removes the ErrDoc and the MsgDoc from the codebase.
The former was introduced with the only purpose of classifying errors
according to their importance, but a similar result can be obtained just
by having a simple [SDoc], and placing bullets after each of them.
On top of that I have taken the perhaps controversial decision to also
banish MsgDoc, as it was merely a type alias over an SDoc and as such it wasn't
offering any extra type safety. Granted, it was perhaps making type
signatures slightly more "focused", but at the expense of cognitive
burden: if it's really just an SDoc, let's call it with its proper name.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
StgLam is used exclusively in the work of CoreToStg, but there's nothing
in the type of StgExpr that indicates this, so we're forced throughout
the Stg.* codebase to handle cases like:
case expr of
...
StgLam lam -> panic "Unexpected StgLam"
...
This patch removes the StgLam constructor from the base StgExpr so these
cases no longer need to be handled. Instead, we use a new intermediate
type in CoreToStg, PreStgRhs, to represent the RHS expression of a
binding.
|
|
|
|
|
|
|
|
| |
Before this patch the compiler depended on the RTS way (threaded or not)
to use atomic incrementation or not. This is wrong because the RTS is
supposed to be switchable at link time, without recompilation.
Now we always use atomic incrementation of the unique counter.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch redesigns the flattener to simplify type family applications
directly instead of using flattening meta-variables and skolems. The key new
innovation is the CanEqLHS type and the new CEqCan constraint (Ct). A CanEqLHS
is either a type variable or exactly-saturated type family application; either
can now be rewritten using a CEqCan constraint in the inert set.
Because the flattener no longer reduces all type family applications to
variables, there was some performance degradation if a lengthy type family
application is now flattened over and over (not making progress). To
compensate, this patch contains some extra optimizations in the flattener,
leading to a number of performance improvements.
Close #18875.
Close #18910.
There are many extra parts of the compiler that had to be affected in writing
this patch:
* The family-application cache (formerly the flat-cache) sometimes stores
coercions built from Given inerts. When these inerts get kicked out, we must
kick out from the cache as well. (This was, I believe, true previously, but
somehow never caused trouble.) Kicking out from the cache requires adding a
filterTM function to TrieMap.
* This patch obviates the need to distinguish "blocking" coercion holes from
non-blocking ones (which, previously, arose from CFunEqCans). There is thus
some simplification around coercion holes.
* Extra commentary throughout parts of the code I read through, to preserve
the knowledge I gained while working.
* A change in the pure unifier around unifying skolems with other types.
Unifying a skolem now leads to SurelyApart, not MaybeApart, as documented
in Note [Binding when looking up instances] in GHC.Core.InstEnv.
* Some more use of MCoercion where appropriate.
* Previously, class-instance lookup automatically noticed that e.g. C Int was
a "unifier" to a target [W] C (F Bool), because the F Bool was flattened to
a variable. Now, a little more care must be taken around checking for
unifying instances.
* Previously, tcSplitTyConApp_maybe would split (Eq a => a). This is silly,
because (=>) is not a tycon in Haskell. Fixed now, but there are some
knock-on changes in e.g. TrieMap code and in the canonicaliser.
* New function anyFreeVarsOf{Type,Co} to check whether a free variable
satisfies a certain predicate.
* Type synonyms now remember whether or not they are "forgetful"; a forgetful
synonym drops at least one argument. This is useful when flattening; see
flattenView.
* The pattern-match completeness checker invokes the solver. This invocation
might need to look through newtypes when checking representational equality.
Thus, the desugarer needs to keep track of the in-scope variables to know
what newtype constructors are in scope. I bet this bug was around before but
never noticed.
* Extra-constraints wildcards are no longer simplified before printing.
See Note [Do not simplify ConstraintHoles] in GHC.Tc.Solver.
* Whether or not there are Given equalities has become slightly subtler.
See the new HasGivenEqs datatype.
* Note [Type variable cycles in Givens] in GHC.Tc.Solver.Canonical
explains a significant new wrinkle in the new approach.
* See Note [What might match later?] in GHC.Tc.Solver.Interact, which
explains the fix to #18910.
* The inert_count field of InertCans wasn't actually used, so I removed
it.
Though I (Richard) did the implementation, Simon PJ was very involved
in design and review.
This updates the Haddock submodule to avoid #18932 by adding
a type signature.
-------------------------
Metric Decrease:
T12227
T5030
T9872a
T9872b
T9872c
Metric Increase:
T9872d
-------------------------
|
|
|
|
|
|
|
|
|
|
| |
This sets the stage for a later change, where this
algorithm will be needed from GHC.Core.InstEnv.
This commit also splits GHC.Core.Map into
GHC.Core.Map.Type and GHC.Core.Map.Expr,
in order to avoid module import cycles
with GHC.Core.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[This is @Ericson2314 writing a commit message for @hsyl20's patch.]
(Progress towards #11953, #17377, #17375)
`Int64Rep` and `Word64Rep` are currently broken on 64-bit systems. This
is because they should use "native arg rep" but instead use "large arg
rep" as they do on 32-bit systems, which is either a non-concept or a
128-bit rep depending on one's vantage point.
Now, these reps currently aren't used during 64-bit compilation, so the
brokenness isn't observed, but I don't think that constitutes reasons
not to fix it. Firstly, the linked issues there is a clearly expressed
desire to use explicit-bitwidth constructs in more places. Secondly, per
[1], there are other bugs that *do* manifest from not threading
explicit-bitwidth information all the way through the compilation
pipeline. One can therefore view this as one piece of the larger effort
to do that, improve ergnomics, and squash remaining bugs.
Also, this is needed for !3658. I could just merge this as part of that,
but I'm keen on merging fixes "as they are ready" so the fixes that
aren't ready are isolated and easier to debug.
[1]: https://mail.haskell.org/pipermail/ghc-devs/2020-October/019332.html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As outlined in #18903, interleaving usage and strictness demands not
only means a more compact demand representation, but also allows us to
express demands that we weren't easily able to express before.
Call demands are *relative* in the sense that a call demand `Cn(cd)`
on `g` says "`g` is called `n` times. *Whenever `g` is called*, the
result is used according to `cd`". Example from #18903:
```hs
h :: Int -> Int
h m =
let g :: Int -> (Int,Int)
g 1 = (m, 0)
g n = (2 * n, 2 `div` n)
{-# NOINLINE g #-}
in case m of
1 -> 0
2 -> snd (g m)
_ -> uncurry (+) (g m)
```
Without the interleaved representation, we would just get `L` for the
strictness demand on `g`. Now we are able to express that whenever
`g` is called, its second component is used strictly in denoting `g`
by `1C1(P(1P(U),SP(U)))`. This would allow Nested CPR to unbox the
division, for example.
Fixes #18903.
While fixing regressions, I also discovered and fixed #18957.
Metric Decrease:
T13253-spj
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The code that converts promoted tuple data constructors to
`IfaceType`s in `GHC.CoreToIface` was using `isTupleDataCon`, which
conflates boxed and unboxed tuple data constructors. To avoid this,
this patch introduces `isBoxedTupleDataCon`, which is like
`isTupleDataCon` but only works for _boxed_ tuple data constructors.
While I was in town, I was horribly confused by the fact that there
were separate functions named `isUnboxedTupleCon` and
`isUnboxedTupleTyCon` (similarly, `isUnboxedSumCon` and
`isUnboxedSumTyCon`). It turns out that the former only works for
data constructors, despite its very general name! I opted to rename
`isUnboxedTupleCon` to `isUnboxedTupleDataCon` (similarly, I renamed
`isUnboxedSumCon` to `isUnboxedSumDataCon`) to avoid this potential
confusion, as well as to be more consistent with
the naming convention I used for `isBoxedTupleDataCon`.
Fixes #18644.
|
|
|
|
|
| |
Move uniqFromMask from Unique.Supply to Unique.
Move the the functions that call mkUnique from Unique to Builtin.Uniques
|
|
|
|
|
|
|
| |
-ddump-stg was dumping the initial STG (just after Core-to-STG pass)
which was misleading because we want the final STG to know if a function
allocates or not. Now we have a new flag -ddump-stg-from-core for this and
-ddump-stg is deprecated.
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
| |
Platform constant wrappers took a DynFlags parameter, hence implicitly
used the target platform constants. We removed them to allow support
for several platforms at once (#14335) and to avoid having to pass
the full DynFlags to every function (#17957).
Metric Decrease:
T4801
|
|
|
|
|
|
|
|
|
| |
* add StgPprOpts datatype
* remove Outputable instances for types that need `StgPprOpts` to be
pretty-printed and explicitly call type specific ppr functions
* add default `panicStgPprOpts` for panic messages (when it's not
convenient to thread StgPprOpts or DynFlags down to the ppr function
call)
|
|
|
|
|
|
|
|
|
|
|
| |
SCC profiling was enabled in a convoluted way: if WayProf was enabled,
Opt_SccProfilingOn general flag was set (in
`GHC.Driver.Ways.wayGeneralFlags`), and then this flag was queried in
various places.
There is no need to go via general flags, so this patch defines a
`sccProfilingEnabled :: DynFlags -> Bool` helper function that just
checks whether WayProf is enabled.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This updates haddock comments only.
This patch focuses to update for hyperlinks in GHC API's haddock comments,
because broken links especially discourage newcomers.
This includes the following hierarchies:
- GHC.Hs.*
- GHC.Core.*
- GHC.Stg.*
- GHC.Cmm.*
- GHC.Types.*
- GHC.Data.*
- GHC.Builtin.*
- GHC.Parser.*
- GHC.Driver.*
- GHC top
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Thanks to ghc-bignum, the compiler can be simplified:
* Types and constructors of Integer and Natural can be wired-in. It
means that we don't have to query them from interfaces. It also means
that numeric literals don't have to carry their type with them.
* The same code is used whatever ghc-bignum backend is enabled. In
particular, conversion of bignum literals into final Core expressions
is now much more straightforward. Bignum closure inspection too.
* GHC itself doesn't depend on any integer-* package anymore
* The `integerLibrary` setting is gone.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements several general performance improvements to GHC,
to offset the effect of the linear types change.
General optimisations:
- Add a `coreFullView` function which iterates `coreView` on the
head. This avoids making function recursive solely because the
iterate `coreView` themselves. As a consequence, this functions can
be inlined, and trigger case-of-known constructor (_e.g._
`kindRep_maybe`, `isLiftedRuntimeRep`, `isMultiplicityTy`,
`getTyVar_maybe`, `splitAppTy_maybe`, `splitFunType_maybe`,
`tyConAppTyCon_maybe`). The common pattern about all these functions
is that they are almost always used as views, and immediately
consumed by a case expression. This commit also mark them asx `INLINE`.
- In `subst_ty` add a special case for nullary `TyConApp`, which avoid
allocations altogether.
- Use `mkTyConApp` in `subst_ty` for the general `TyConApp`. This
required quite a bit of module shuffling.
case. `myTyConApp` enforces crucial sharing, which was lost during
substitution. See also !2952 .
- Make `subst_ty` stricter.
- In `eqType` (specifically, in `nonDetCmpType`), add a special case,
tested first, for the very common case of nullary `TyConApp`.
`nonDetCmpType` has been made `INLINE` otherwise it is actually a
regression. This is similar to the optimisations in !2952.
Linear-type specific optimisations:
- Use `tyConAppTyCon_maybe` instead of the more complex `eqType` in
the definition of the pattern synonyms `One` and `Many`.
- Break the `hs-boot` cycles between `Multiplicity.hs` and `Type.hs`:
`Multiplicity` now import `Type` normally, rather than from the
`hs-boot`. This way `tyConAppTyCon_maybe` can inline properly in the
`One` and `Many` pattern synonyms.
- Make `updateIdTypeAndMult` strict in its type and multiplicity
- The `scaleIdBy` gets a specialised definition rather than being an
alias to `scaleVarBy`
- `splitFunTy_maybe` is given the type `Type -> Maybe (Mult, Type,
Type)` instead of `Type -> Maybe (Scaled Type, Type)`
- Remove the `MultMul` pattern synonym in favour of a view `isMultMul`
because pattern synonyms appear not to inline well.
- in `eqType`, in a `FunTy`, compare multiplicities last: they are
almost always both `Many`, so it helps failing faster.
- Cache `manyDataConTy` in `mkTyConApp`, to make sure that all the
instances of `TyConApp ManyDataConTy []` are physically the same.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Arnaud Spiwack
Metric Decrease:
haddock.base
T12227
T12545
T12990
T1969
T3064
T5030
T9872b
Metric Increase:
haddock.base
haddock.Cabal
haddock.compiler
T12150
T12234
T12425
T12707
T13035
T13056
T15164
T16190
T18304
T1969
T3064
T3294
T5631
T5642
T5837
T6048
T9020
T9233
T9675
T9872a
T9961
WWRec
|