| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instead of a boolean flag for `CDictCan.cc_pend_sc`.
Pending givens get a fuel of 3 while Wanted and quantified constraints get a fuel of 1.
This helps pending given constraints to keep up with pending wanted constraints in case of
`UndecidableSuperClasses` and superclass expansions while simplifying the infered type.
Adds 3 dynamic flags for controlling the fuels for each type of constraints
`-fgivens-expansion-fuel` for givens `-fwanteds-expansion-fuel` for wanteds and `-fqcs-expansion-fuel` for quantified constraints
Fixes #21909
Added Tests T21909, T21909b
Added Note [Expanding Recursive Superclasses and ExpansionFuel]
|
| |
|
|
|
|
|
|
|
| |
As noted in #22561, it is important that GHC's toolchain look
first for its own headers and libraries to ensure that the
system's are not found instead. If this happens things can
break in surprising ways (e.g. see #22561).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This big patch addresses the rats-nest of issues that have plagued
us for years, about the relationship between Type and Constraint.
See #11715/#21623.
The main payload of the patch is:
* To introduce CONSTRAINT :: RuntimeRep -> Type
* To make TYPE and CONSTRAINT distinct throughout the compiler
Two overview Notes in GHC.Builtin.Types.Prim
* Note [TYPE and CONSTRAINT]
* Note [Type and Constraint are not apart]
This is the main complication.
The specifics
* New primitive types (GHC.Builtin.Types.Prim)
- CONSTRAINT
- ctArrowTyCon (=>)
- tcArrowTyCon (-=>)
- ccArrowTyCon (==>)
- funTyCon FUN -- Not new
See Note [Function type constructors and FunTy]
and Note [TYPE and CONSTRAINT]
* GHC.Builtin.Types:
- New type Constraint = CONSTRAINT LiftedRep
- I also stopped nonEmptyTyCon being built-in; it only needs to be wired-in
* Exploit the fact that Type and Constraint are distinct throughout GHC
- Get rid of tcView in favour of coreView.
- Many tcXX functions become XX functions.
e.g. tcGetCastedTyVar --> getCastedTyVar
* Kill off Note [ForAllTy and typechecker equality], in (old)
GHC.Tc.Solver.Canonical. It said that typechecker-equality should ignore
the specified/inferred distinction when comparein two ForAllTys. But
that wsa only weakly supported and (worse) implies that we need a separate
typechecker equality, different from core equality. No no no.
* GHC.Core.TyCon: kill off FunTyCon in data TyCon. There was no need for it,
and anyway now we have four of them!
* GHC.Core.TyCo.Rep: add two FunTyFlags to FunCo
See Note [FunCo] in that module.
* GHC.Core.Type. Lots and lots of changes driven by adding CONSTRAINT.
The key new function is sORTKind_maybe; most other changes are built
on top of that.
See also `funTyConAppTy_maybe` and `tyConAppFun_maybe`.
* Fix a longstanding bug in GHC.Core.Type.typeKind, and Core Lint, in
kinding ForAllTys. See new tules (FORALL1) and (FORALL2) in GHC.Core.Type.
(The bug was that before (forall (cv::t1 ~# t2). blah), where
blah::TYPE IntRep, would get kind (TYPE IntRep), but it should be
(TYPE LiftedRep). See Note [Kinding rules for types] in GHC.Core.Type.
* GHC.Core.TyCo.Compare is a new module in which we do eqType and cmpType.
Of course, no tcEqType any more.
* GHC.Core.TyCo.FVs. I moved some free-var-like function into this module:
tyConsOfType, visVarsOfType, and occCheckExpand. Refactoring only.
* GHC.Builtin.Types. Compiletely re-engineer boxingDataCon_maybe to
have one for each /RuntimeRep/, rather than one for each /Type/.
This dramatically widens the range of types we can auto-box.
See Note [Boxing constructors] in GHC.Builtin.Types
The boxing types themselves are declared in library ghc-prim:GHC.Types.
GHC.Core.Make. Re-engineer the treatment of "big" tuples (mkBigCoreVarTup
etc) GHC.Core.Make, so that it auto-boxes unboxed values and (crucially)
types of kind Constraint. That allows the desugaring for arrows to work;
it gathers up free variables (including dictionaries) into tuples.
See Note [Big tuples] in GHC.Core.Make.
There is still work to do here: #22336. But things are better than
before.
* GHC.Core.Make. We need two absent-error Ids, aBSENT_ERROR_ID for types of
kind Type, and aBSENT_CONSTRAINT_ERROR_ID for vaues of kind Constraint.
Ditto noInlineId vs noInlieConstraintId in GHC.Types.Id.Make;
see Note [inlineId magic].
* GHC.Core.TyCo.Rep. Completely refactor the NthCo coercion. It is now called
SelCo, and its fields are much more descriptive than the single Int we used to
have. A great improvement. See Note [SelCo] in GHC.Core.TyCo.Rep.
* GHC.Core.RoughMap.roughMatchTyConName. Collapse TYPE and CONSTRAINT to
a single TyCon, so that the rough-map does not distinguish them.
* GHC.Core.DataCon
- Mainly just improve documentation
* Some significant renamings:
GHC.Core.Multiplicity: Many --> ManyTy (easier to grep for)
One --> OneTy
GHC.Core.TyCo.Rep TyCoBinder --> GHC.Core.Var.PiTyBinder
GHC.Core.Var TyCoVarBinder --> ForAllTyBinder
AnonArgFlag --> FunTyFlag
ArgFlag --> ForAllTyFlag
GHC.Core.TyCon TyConTyCoBinder --> TyConPiTyBinder
Many functions are renamed in consequence
e.g. isinvisibleArgFlag becomes isInvisibleForAllTyFlag, etc
* I refactored FunTyFlag (was AnonArgFlag) into a simple, flat data type
data FunTyFlag
= FTF_T_T -- (->) Type -> Type
| FTF_T_C -- (-=>) Type -> Constraint
| FTF_C_T -- (=>) Constraint -> Type
| FTF_C_C -- (==>) Constraint -> Constraint
* GHC.Tc.Errors.Ppr. Some significant refactoring in the TypeEqMisMatch case
of pprMismatchMsg.
* I made the tyConUnique field of TyCon strict, because I
saw code with lots of silly eval's. That revealed that
GHC.Settings.Constants.mAX_SUM_SIZE can only be 63, because
we pack the sum tag into a 6-bit field. (Lurking bug squashed.)
Fixes
* #21530
Updates haddock submodule slightly.
Performance changes
~~~~~~~~~~~~~~~~~~~
I was worried that compile times would get worse, but after
some careful profiling we are down to a geometric mean 0.1%
increase in allocation (in perf/compiler). That seems fine.
There is a big runtime improvement in T10359
Metric Decrease:
LargeRecord
MultiLayerModulesTH_OneShot
T13386
T13719
Metric Increase:
T8095
|
|
|
|
|
|
|
|
|
| |
Since 2011 the object-joining implementation has had a hack to pass
`--build-id=none` to `ld` when supported, seemingly to work around a
linker bug. This hack is now unnecessary and may break downstream users
who expect objects to have valid build-ids. Remove it.
Closes #22060.
|
|
|
|
|
|
|
|
|
|
| |
Here we introduce proper support for compilation of C++ objects. This
includes:
* logic in `configure` to detect the C++ toolchain and propagating this
information into the `settings` file
* logic in the driver to use the C++ toolchain when compiling C++
sources
|
|
|
|
|
| |
GHC no longers uses libtool for linking and therefore this is no longer
necessary.
|
|
|
|
| |
Since there may be .o files which are in fact archives.
|
|
|
|
|
|
|
| |
On Windows we don't have a linker which supports object joining (i.e.
the `-r` flag). Consequently, `-pgmlm` is now a `Maybe`.
See #21068.
|
|
|
|
|
|
|
| |
Get rid of `USE_INPLACE_MINGW_TOOLCHAIN` and use a settings file entry
instead.
The CPP setting was originally introduced in f065b6b012.
|
|
|
|
|
|
|
|
|
|
|
|
| |
- RTS and libdw
- SMP
- RTS ways
I am leaving them in the settings file because `--info` currently prints
all the fields in there, but in the future I do believe we should
separate the info GHC actually needs from "extra metadata". The latter
could go in `+RTS --info` and/or a separate file that ships with the RTS
for compile-time inspection instead.
|
|
|
|
| |
The compiler should be independent of the target.
|
|
|
|
| |
There was no point in doing this as indicated by the TODO.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Replace uses of WARN macro with calls to:
warnPprTrace :: Bool -> SDoc -> a -> a
Remove the now unused HsVersions.h
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this patch we switch from reading the globally installed
platformConstants file to reading the DerivedConstants.h header file
that is bundled in the RTS unit. When we build the RTS unit itself, we
get it from its includes directories.
The new parser is more efficient and strict than the Read instance for
PlatformConstants and we get about 2.2MB less allocations in every
cases. However it only really shows in tests that don't allocate much,
hence the following metric decreases.
Metric Decrease:
Naperian
T10421
T10547
T12150
T12234
T12425
T13035
T18304
T18923
T5837
T6048
T18140
|
|
|
|
|
|
|
|
|
|
|
|
| |
To correctly perform a linking hack for Windows we need to link with the
RTS GHC is currently using. We used to query the RTS ways via the
"settings" file but it is fragile (#18651). The hack hasn't been fixed
to take into account all the ways (Tracing) and it makes linking of GHC
with another RTS more difficult (we need to link with another RTS and to
regenerate the settings file).
So this patch uses the ways reported by the RTS itself
(GHC.Platform.Ways.hostWays) instead of the "settings" file.
|
|
|
|
| |
As well a ctuples and sums.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In b592bd98ff25730bbe3c13d6f62a427df8c78e28 we started using
-dead_strip_dylib on macOS when lining dynamic libraries and binaries.
The underlying reason being the Load Command Size Limit in macOS
Sierra (10.14) and later.
GHC will produce @rpath/libHS... dependency entries together with a
corresponding RPATH entry pointing to the location of the libHS...
library. Thus for every library we produce two Load Commands. One to
specify the dependent library, and one with the path where to find it.
This makes relocating libraries and binaries easier, as we just need to
update the RPATH entry with the install_name_tool. The dynamic linker
will then subsitute each @rpath with the RPATH entries it finds in the
libraries load commands or the environement, when looking up @rpath
relative libraries.
-dead_strip_dylibs intructs the linker to drop unused libraries. This in
turn help us reduce the number of referenced libraries, and subsequently
the size of the load commands. This however does not remove the RPATH
entries. Subsequently we can end up (in extreme cases) with only a
single @rpath/libHS... entry, but 100s or more RPATH entries in the Load
Commands.
This patch rectifies this (slighly unorthodox) by passing *no* -rpath
arguments to the linker at link time, but -headerpad 8000. The
headerpad argument is in hexadecimal and the maxium 32k of the load
command size. This tells the linker to pad the load command section
enough for us to inject the RPATHs later. We then proceed to link the
library or binary with -dead_strip_dylibs, and *after* the linking
inspect the library to find the left over (non-dead-stripped)
dependencies (using otool). We find the corresponding RPATHs for each
@rpath relative dependency, and inject them into the library or binary
using the install_name_tool. Thus achieving a deadstripped dylib (and
rpaths) build product.
We can not do this in GHC, without starting to reimplement a dynamic
linker as we do not know which symbols and subsequently libraries are
necessary.
Commissioned-by: Mercury Technologies, Inc. (mercury.com)
|
|
|
|
|
|
|
| |
The fix to #17962 ended up regressing on Windows as it failed to
replicate the logic responsible for overriding the toolchain paths on
Windows. This resulted in a hard-coded path to a directory that likely
doesn't exist on the user's system (#18550).
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
| |
Previously to merge a set of object files we would invoke the linker as
usual, adding -r to the command-line. However, this can result in
non-sensical command-lines which causes lld to balk (#17962).
To avoid this we introduce a new tool setting into GHC, -pgmlm, which is
the linker which we use to merge object files.
|
|
|
|
|
|
|
| |
Previously it was in ghc-boot so that ghc-pkg could use it. However it
wasn't necessary because ghc-pkg only uses a subset of it: reading
target arch and OS from the settings file. This is now done via
GHC.Platform.ArchOS (was called PlatformMini before).
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Represent backends with a `Backend` datatype in GHC.Driver.Backend
* Don't detect the default backend to use for the target platform at
compile time in Hadrian/make but at runtime. It makes "Settings"
simpler and it is a step toward making GHC multi-target.
* The latter change also fixes hadrian which has not been updated to
take into account that the NCG now supports AIX and PPC64 (cf
df26b95559fd467abc0a3a4151127c95cb5011b9 and
d3c1dda60d0ec07fc7f593bfd83ec9457dfa7984)
* Also we don't treat iOS specifically anymore (cf
cb4878ffd18a3c70f98bdbb413cd3c4d1f054e1f)
|
|
|
|
|
|
|
| |
tablesNextToCode is a platform setting and doesn't belong into DynFlags
(#17957). Doing this is also a prerequisite to fix #14335 where we deal
with two platforms (target and host) that may have different platform
settings.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Thanks to ghc-bignum, the compiler can be simplified:
* Types and constructors of Integer and Natural can be wired-in. It
means that we don't have to query them from interfaces. It also means
that numeric literals don't have to carry their type with them.
* The same code is used whatever ghc-bignum backend is enabled. In
particular, conversion of bignum literals into final Core expressions
is now much more straightforward. Bignum closure inspection too.
* GHC itself doesn't depend on any integer-* package anymore
* The `integerLibrary` setting is gone.
|
| |
|
|
|
|
|
| |
Avoid direct use of DynFlags to know if symbols must be prefixed by an
underscore.
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
* SysTools
* Parser
* GHC.Builtin
* GHC.Iface.Recomp
* Settings
Update Haddock submodule
Metric Decrease:
Naperian
parsing001
|