summaryrefslogtreecommitdiff
path: root/compiler/GHC/Runtime/Heap
Commit message (Collapse)AuthorAgeFilesLines
* Misc cleanupKrzysztof Gogolewski2023-01-051-16/+0
| | | | | | | | | - Remove unused uniques and hs-boot declarations - Fix types of seq and unsafeCoerce# - Remove FastString/String roundtrip in JS - Use TTG to enforce totality - Remove enumeration in Heap/Inspect; the 'otherwise' clause serves the primitive types well.
* Type vs Constraint: finally nailedSimon Peyton Jones2022-11-111-11/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This big patch addresses the rats-nest of issues that have plagued us for years, about the relationship between Type and Constraint. See #11715/#21623. The main payload of the patch is: * To introduce CONSTRAINT :: RuntimeRep -> Type * To make TYPE and CONSTRAINT distinct throughout the compiler Two overview Notes in GHC.Builtin.Types.Prim * Note [TYPE and CONSTRAINT] * Note [Type and Constraint are not apart] This is the main complication. The specifics * New primitive types (GHC.Builtin.Types.Prim) - CONSTRAINT - ctArrowTyCon (=>) - tcArrowTyCon (-=>) - ccArrowTyCon (==>) - funTyCon FUN -- Not new See Note [Function type constructors and FunTy] and Note [TYPE and CONSTRAINT] * GHC.Builtin.Types: - New type Constraint = CONSTRAINT LiftedRep - I also stopped nonEmptyTyCon being built-in; it only needs to be wired-in * Exploit the fact that Type and Constraint are distinct throughout GHC - Get rid of tcView in favour of coreView. - Many tcXX functions become XX functions. e.g. tcGetCastedTyVar --> getCastedTyVar * Kill off Note [ForAllTy and typechecker equality], in (old) GHC.Tc.Solver.Canonical. It said that typechecker-equality should ignore the specified/inferred distinction when comparein two ForAllTys. But that wsa only weakly supported and (worse) implies that we need a separate typechecker equality, different from core equality. No no no. * GHC.Core.TyCon: kill off FunTyCon in data TyCon. There was no need for it, and anyway now we have four of them! * GHC.Core.TyCo.Rep: add two FunTyFlags to FunCo See Note [FunCo] in that module. * GHC.Core.Type. Lots and lots of changes driven by adding CONSTRAINT. The key new function is sORTKind_maybe; most other changes are built on top of that. See also `funTyConAppTy_maybe` and `tyConAppFun_maybe`. * Fix a longstanding bug in GHC.Core.Type.typeKind, and Core Lint, in kinding ForAllTys. See new tules (FORALL1) and (FORALL2) in GHC.Core.Type. (The bug was that before (forall (cv::t1 ~# t2). blah), where blah::TYPE IntRep, would get kind (TYPE IntRep), but it should be (TYPE LiftedRep). See Note [Kinding rules for types] in GHC.Core.Type. * GHC.Core.TyCo.Compare is a new module in which we do eqType and cmpType. Of course, no tcEqType any more. * GHC.Core.TyCo.FVs. I moved some free-var-like function into this module: tyConsOfType, visVarsOfType, and occCheckExpand. Refactoring only. * GHC.Builtin.Types. Compiletely re-engineer boxingDataCon_maybe to have one for each /RuntimeRep/, rather than one for each /Type/. This dramatically widens the range of types we can auto-box. See Note [Boxing constructors] in GHC.Builtin.Types The boxing types themselves are declared in library ghc-prim:GHC.Types. GHC.Core.Make. Re-engineer the treatment of "big" tuples (mkBigCoreVarTup etc) GHC.Core.Make, so that it auto-boxes unboxed values and (crucially) types of kind Constraint. That allows the desugaring for arrows to work; it gathers up free variables (including dictionaries) into tuples. See Note [Big tuples] in GHC.Core.Make. There is still work to do here: #22336. But things are better than before. * GHC.Core.Make. We need two absent-error Ids, aBSENT_ERROR_ID for types of kind Type, and aBSENT_CONSTRAINT_ERROR_ID for vaues of kind Constraint. Ditto noInlineId vs noInlieConstraintId in GHC.Types.Id.Make; see Note [inlineId magic]. * GHC.Core.TyCo.Rep. Completely refactor the NthCo coercion. It is now called SelCo, and its fields are much more descriptive than the single Int we used to have. A great improvement. See Note [SelCo] in GHC.Core.TyCo.Rep. * GHC.Core.RoughMap.roughMatchTyConName. Collapse TYPE and CONSTRAINT to a single TyCon, so that the rough-map does not distinguish them. * GHC.Core.DataCon - Mainly just improve documentation * Some significant renamings: GHC.Core.Multiplicity: Many --> ManyTy (easier to grep for) One --> OneTy GHC.Core.TyCo.Rep TyCoBinder --> GHC.Core.Var.PiTyBinder GHC.Core.Var TyCoVarBinder --> ForAllTyBinder AnonArgFlag --> FunTyFlag ArgFlag --> ForAllTyFlag GHC.Core.TyCon TyConTyCoBinder --> TyConPiTyBinder Many functions are renamed in consequence e.g. isinvisibleArgFlag becomes isInvisibleForAllTyFlag, etc * I refactored FunTyFlag (was AnonArgFlag) into a simple, flat data type data FunTyFlag = FTF_T_T -- (->) Type -> Type | FTF_T_C -- (-=>) Type -> Constraint | FTF_C_T -- (=>) Constraint -> Type | FTF_C_C -- (==>) Constraint -> Constraint * GHC.Tc.Errors.Ppr. Some significant refactoring in the TypeEqMisMatch case of pprMismatchMsg. * I made the tyConUnique field of TyCon strict, because I saw code with lots of silly eval's. That revealed that GHC.Settings.Constants.mAX_SUM_SIZE can only be 63, because we pack the sum tag into a 6-bit field. (Lurking bug squashed.) Fixes * #21530 Updates haddock submodule slightly. Performance changes ~~~~~~~~~~~~~~~~~~~ I was worried that compile times would get worse, but after some careful profiling we are down to a geometric mean 0.1% increase in allocation (in perf/compiler). That seems fine. There is a big runtime improvement in T10359 Metric Decrease: LargeRecord MultiLayerModulesTH_OneShot T13386 T13719 Metric Increase: T8095
* Scrub various partiality involving lists (again).M Farkas-Dyck2022-10-191-5/+8
| | | | Lets us avoid some use of `head` and `tail`, and some panics.
* Fix typosEric Lindblad2022-09-141-3/+3
| | | | | | | This fixes various typos and spelling mistakes in the compiler. Fixes #21891
* Remove TCvSubst and use Subst for both term and type-level substYiyun Liu2022-08-041-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch removes the TCvSubst data type and instead uses Subst as the environment for both term and type level substitution. This change is partially motivated by the existential type proposal, which will introduce types that contain expressions and therefore forces us to carry around an "IdSubstEnv" even when substituting for types. It also reduces the amount of code because "Subst" and "TCvSubst" share a lot of common operations. There isn't any noticeable impact on performance (geo. mean for ghc/alloc is around 0.0% but we have -94 loc and one less data type to worry abount). Currently, the "TCvSubst" data type for substitution on types is identical to the "Subst" data type except the former doesn't store "IdSubstEnv". Using "Subst" for type-level substitution means there will be a redundant field stored in the data type. However, in cases where the substitution starts from the expression, using "Subst" for type-level substitution saves us from having to project "Subst" into a "TCvSubst". This probably explains why the allocation is mostly even despite the redundant field. The patch deletes "TCvSubst" and moves "Subst" and its relevant functions from "GHC.Core.Subst" into "GHC.Core.TyCo.Subst". Substitution on expressions is still defined in "GHC.Core.Subst" so we don't have to expose the definition of "Expr" in the hs-boot file that "GHC.Core.TyCo.Subst" must import to refer to "IdSubstEnv" (whose codomain is "CoreExpr"). Most functions named fooTCvSubst are renamed into fooSubst with a few exceptions (e.g. "isEmptyTCvSubst" is a distinct function from "isEmptySubst"; the former ignores the emptiness of "IdSubstEnv"). These exceptions mainly exist for performance reasons and will go away when "Expr" and "Type" are mutually recursively defined (we won't be able to take those shortcuts if we can't make the assumption that expressions don't appear in types).
* Use lookupNameCache instead of lookupOrigIOBrandon Chinn2022-06-221-1/+1
|
* Reverse dependency between StgToCmm and Runtime.Heap.LayoutSylvain Henry2022-03-231-2/+34
|
* Avoid redundant imports of GHC.Driver.SessionSylvain Henry2022-03-231-2/+2
| | | | | | Remove GHC.Driver.Session imports that weren't considered as redundant because of the reexport of PlatformConstants. Also remove this reexport as modules using this datatype should import GHC.Platform instead.
* Levity-polymorphic arrays and mutable variablessheaf2022-01-261-9/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch makes the following types levity-polymorphic in their last argument: - Array# a, SmallArray# a, Weak# b, StablePtr# a, StableName# a - MutableArray# s a, SmallMutableArray# s a, MutVar# s a, TVar# s a, MVar# s a, IOPort# s a The corresponding primops are also made levity-polymorphic, e.g. `newArray#`, `readArray#`, `writeMutVar#`, `writeIOPort#`, etc. Additionally, exception handling functions such as `catch#`, `raise#`, `maskAsyncExceptions#`,... are made levity/representation-polymorphic. Now that Array# and MutableArray# also work with unlifted types, we can simply re-define ArrayArray# and MutableArrayArray# in terms of them. This means that ArrayArray# and MutableArrayArray# are no longer primitive types, but simply unlifted newtypes around Array# and MutableArrayArray#. This completes the implementation of the Pointer Rep proposal https://github.com/ghc-proposals/ghc-proposals/pull/203 Fixes #20911 ------------------------- Metric Increase: T12545 ------------------------- ------------------------- Metric Decrease: T12545 -------------------------
* Perf: avoid using (replicateM . length) when possibleSylvain Henry2021-12-171-2/+1
| | | | Extracted from !6622
* GHCi Debugger - Improve RTTIRoland Senn2021-11-251-0/+3
| | | | | | | When processing the heap, use also `APClosures` to create additional type constraints. This adds more equations and therefore improves the unification process to infer the correct type of values at breakpoints. (Fix the `incr` part of #19559)
* Use Info Table Provenances to decode cloned stack (#18163)Sven Tennie2021-09-231-0/+4
| | | | | | | | | | | | | | | | Emit an Info Table Provenance Entry (IPE) for every stack represeted info table if -finfo-table-map is turned on. To decode a cloned stack, lookupIPE() is used. It provides a mapping between info tables and their source location. Please see these notes for details: - [Stacktraces from Info Table Provenance Entries (IPE based stack unwinding)] - [Mapping Info Tables to Source Positions] Metric Increase: T12545
* Move `/includes` to `/rts/include`, sort per package betterJohn Ericson2021-08-091-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | In order to make the packages in this repo "reinstallable", we need to associate source code with a specific packages. Having a top level `/includes` dir that mixes concerns (which packages' includes?) gets in the way of this. To start, I have moved everything to `rts/`, which is mostly correct. There are a few things however that really don't belong in the rts (like the generated constants haskell type, `CodeGen.Platform.h`). Those needed to be manually adjusted. Things of note: - No symlinking for sake of windows, so we hard-link at configure time. - `CodeGen.Platform.h` no longer as `.hs` extension (in addition to being moved to `compiler/`) so as not to confuse anyone, since it is next to Haskell files. - Blanket `-Iincludes` is gone in both build systems, include paths now more strictly respect per-package dependencies. - `deriveConstants` has been taught to not require a `--target-os` flag when generating the platform-agnostic Haskell type. Make takes advantage of this, but Hadrian has yet to.
* Follow up #12449: Improve function `Inspect.hs:check2`Roland Senn2021-06-031-20/+64
| | | | | | | | | * Add a Note to clarify RttiTypes. * Don't call `quantifyType` at all the call sites of `check2`. * Simplyfy arguments of functions `Inspect.hs:check1` and `Inspect.hs:check2`. - `check1` only uses the two lists of type variables, but not the types. - `check2` only uses the two types, but not the lists of type variables. * In `Inspect.hs:check2` send only the tau part of the type to `tcSplitTyConApp_maybe`.
* Use pprSigmaType to print GHCi debugger Suspension Terms (Fix #19355)Roland Senn2021-05-201-3/+2
| | | | | | | | In the GHCi debugger use the function `pprSigmaType` to print out Suspension Terms. The function `pprSigmaType` respect the flag `-f(no-)print-explicit-foralls` and so it fixes #19355. Switch back output of existing tests to default mode (no explicit foralls).
* Remove useless {-# LANGUAGE CPP #-} pragmasSylvain Henry2021-05-122-2/+3
|
* Fully remove HsVersions.hSylvain Henry2021-05-121-2/+0
| | | | | | | | | | Replace uses of WARN macro with calls to: warnPprTrace :: Bool -> SDoc -> a -> a Remove the now unused HsVersions.h Bump haddock submodule
* Replace CPP assertions with Haskell functionsSylvain Henry2021-05-121-4/+5
| | | | | | | | | | | | | | | There is no reason to use CPP. __LINE__ and __FILE__ macros are now better replaced with GHC's CallStack. As a bonus, assert error messages now contain more information (function name, column). Here is the mapping table (HasCallStack omitted): * ASSERT: assert :: Bool -> a -> a * MASSERT: massert :: Bool -> m () * ASSERTM: assertM :: m Bool -> m () * ASSERT2: assertPpr :: Bool -> SDoc -> a -> a * MASSERT2: massertPpr :: Bool -> SDoc -> m () * ASSERTM2: assertPprM :: m Bool -> SDoc -> m ()
* Tweak function `quantifyType` to fix #12449Roland Senn2021-05-041-21/+9
| | | | | | | | | | | In function `compiler/GHC/Runtime/Heap/Inspect.hs:quantifyType` replace `tcSplitForAllInvisTyVars` by `tcSplitNestedSigmaTys`. This will properly split off the nested foralls in examples like `:print fmap`. Do not remove the `forall`s from the `snd` part of the tuple returned by `quantifyType`. It's not necessary and the reason for the bug in #12449. Some code simplifications at the calling sites of `quantifyTypes`.
* Make GHC.Runtime.Interpreter independent of GHC.DriverSylvain Henry2021-04-301-1/+2
|
* Replace (ptext .. sLit) with `text`Sylvain Henry2021-04-292-6/+5
| | | | | | | | | | | | | | | 1. `text` is as efficient as `ptext . sLit` thanks to the rewrite rules 2. `text` is visually nicer than `ptext . sLit` 3. `ptext . sLit` encourages using one `ptext` for several `sLit` as in: ptext $ case xy of ... -> sLit ... ... -> sLit ... which may allocate SDoc's TextBeside constructors at runtime instead of sharing them into CAFs.
* Re-export GHC.Bits from GHC.Prelude with custom shift implementation.Andreas Klebinger2021-04-092-2/+1
| | | | | | | This allows us to use the unsafe shifts in non-debug builds for performance. For older versions of base we instead export Data.Bits See also #19618
* Move loader state into InterpSylvain Henry2021-03-231-5/+9
| | | | | | | | | | | | | | | | | | The loader state was stored into HscEnv. As we need to have two interpreters and one loader state per interpreter in #14335, it's natural to make the loader state a field of the Interp type. As a side effect, many functions now only require a Interp parameter instead of HscEnv. Sadly we can't fully free GHC.Linker.Loader of HscEnv yet because the loader is initialised lazily from the HscEnv the first time it is used. This is left as future work. HscEnv may not contain an Interp value (i.e. hsc_interp :: Maybe Interp). So a side effect of the previous side effect is that callers of the modified functions now have to provide an Interp. It is satisfying as it pushes upstream the handling of the case where HscEnv doesn't contain an Interpreter. It is better than raising a panic (less partial functions, "parse, don't validate", etc.).
* Add explicit import lists to Data.List importsOleg Grenrus2021-01-291-1/+1
| | | | | | | | | | | | | Related to a future change in Data.List, https://downloads.haskell.org/ghc/8.10.3/docs/html/users_guide/using-warnings.html?highlight=wcompat#ghc-flag--Wcompat-unqualified-imports Companion pull&merge requests: - https://github.com/judah/haskeline/pull/153 - https://github.com/haskell/containers/pull/762 - https://gitlab.haskell.org/ghc/packages/hpc/-/merge_requests/9 After these the actual change in Data.List should be easy to do.
* Kill floatEqualities completelySimon Peyton Jones2020-12-201-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch delivers on #17656, by entirel killing off the complex floatEqualities mechanism. Previously, floatEqualities would float an equality out of an implication, so that it could be solved at an outer level. But now we simply do unification in-place, without floating the constraint, relying on level numbers to determine untouchability. There are a number of important new Notes: * GHC.Tc.Utils.Unify Note [Unification preconditions] describes the preconditions for unification, including both skolem-escape and touchability. * GHC.Tc.Solver.Interact Note [Solve by unification] describes what we do when we do unify * GHC.Tc.Solver.Monad Note [The Unification Level Flag] describes how we control solver iteration under this new scheme * GHC.Tc.Solver.Monad Note [Tracking Given equalities] describes how we track when we have Given equalities * GHC.Tc.Types.Constraint Note [HasGivenEqs] is a new explanation of the ic_given_eqs field of an implication A big raft of subtle Notes in Solver, concerning floatEqualities, disappears. Main code changes: * GHC.Tc.Solver.floatEqualities disappears entirely * GHC.Tc.Solver.Monad: new fields in InertCans, inert_given_eq_lvl and inert_given_eq, updated by updateGivenEqs See Note [Tracking Given equalities]. * In exchange for updateGivenEqa, GHC.Tc.Solver.Monad.getHasGivenEqs is much simpler and more efficient * I found I could kill of metaTyVarUpdateOK entirely One test case T14683 showed a 5.1% decrease in compile-time allocation; and T5631 was down 2.2%. Other changes were small. Metric Decrease: T14683 T5631
* [Sized Cmm] properly retain sizes.Moritz Angermann2020-11-261-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | This replaces all Word<N> = W<N># Word# and Int<N> = I<N># Int# with Word<N> = W<N># Word<N># and Int<N> = I<N># Int<N>#, thus providing us with properly sized primitives in the codegenerator instead of pretending they are all full machine words. This came up when implementing darwinpcs for arm64. The darwinpcs reqires us to pack function argugments in excess of registers on the stack. While most procedure call standards (pcs) assume arguments are just passed in 8 byte slots; and thus the caller does not know the exact signature to make the call, darwinpcs requires us to adhere to the prototype, and thus have the correct sizes. If we specify CInt in the FFI call, it should correspond to the C int, and not just be Word sized, when it's only half the size. This does change the expected output of T16402 but the new result is no less correct as it eliminates the narrowing (instead of the `and` as was previously done). Bumps the array, bytestring, text, and binary submodules. Co-Authored-By: Ben Gamari <ben@well-typed.com> Metric Increase: T13701 T14697
* Use tcSplitForAllInvisTyVars (not tcSplitForAllTyVars) in more placesRyan Scott2020-11-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The use of `tcSplitForAllTyVars` in `tcDataFamInstHeader` was the immediate cause of #18939, and replacing it with a new `tcSplitForAllInvisTyVars` function (which behaves like `tcSplitForAllTyVars` but only splits invisible type variables) fixes the issue. However, this led me to realize that _most_ uses of `tcSplitForAllTyVars` in GHC really ought to be `tcSplitForAllInvisTyVars` instead. While I was in town, I opted to replace most uses of `tcSplitForAllTys` with `tcSplitForAllTysInvis` to reduce the likelihood of such bugs in the future. I say "most uses" above since there is one notable place where we _do_ want to use `tcSplitForAllTyVars`: in `GHC.Tc.Validity.forAllTyErr`, which produces the "`Illegal polymorphic type`" error message if you try to use a higher-rank `forall` without having `RankNTypes` enabled. Here, we really do want to split all `forall`s, not just invisible ones, or we run the risk of giving an inaccurate error message in the newly added `T18939_Fail` test case. I debated at some length whether I wanted to name the new function `tcSplitForAllInvisTyVars` or `tcSplitForAllTyVarsInvisible`, but in the end, I decided that I liked the former better. For consistency's sake, I opted to rename the existing `splitPiTysInvisible` and `splitPiTysInvisibleN` functions to `splitInvisPiTys` and `splitPiTysInvisN`, respectively, so that they use the same naming convention. As a consequence, this ended up requiring a `haddock` submodule bump. Fixes #18939.
* Name (tc)SplitForAll- functions more consistentlyRyan Scott2020-11-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is a zoo of `splitForAll-` functions in `GHC.Core.Type` (as well as `tcSplitForAll-` functions in `GHC.Tc.Utils.TcType`) that all do very similar things, but vary in the particular form of type variable that they return. To make things worse, the names of these functions are often quite misleading. Some particularly egregious examples: * `splitForAllTys` returns `TyCoVar`s, but `splitSomeForAllTys` returns `VarBndr`s. * `splitSomeForAllTys` returns `VarBndr`s, but `tcSplitSomeForAllTys` returns `TyVar`s. * `splitForAllTys` returns `TyCoVar`s, but `splitForAllTysInvis` returns `InvisTVBinder`s. (This in particular arose in the context of #18939, and this finally motivated me to bite the bullet and improve the status quo vis-à-vis how we name these functions.) In an attempt to bring some sanity to how these functions are named, I have opted to rename most of these functions en masse to use consistent suffixes that describe the particular form of type variable that each function returns. In concrete terms, this amounts to: * Functions that return a `TyVar` now use the suffix `-TyVar`. This caused the following functions to be renamed: * `splitTyVarForAllTys` -> `splitForAllTyVars` * `splitForAllTy_ty_maybe` -> `splitForAllTyVar_maybe` * `tcSplitForAllTys` -> `tcSplitForAllTyVars` * `tcSplitSomeForAllTys` -> `tcSplitSomeForAllTyVars` * Functions that return a `CoVar` now use the suffix `-CoVar`. This caused the following functions to be renamed: * `splitForAllTy_co_maybe` -> `splitForAllCoVar_maybe` * Functions that return a `TyCoVar` now use the suffix `-TyCoVar`. This caused the following functions to be renamed: * `splitForAllTy` -> `splitForAllTyCoVar` * `splitForAllTys` -> `splitForAllTyCoVars` * `splitForAllTys'` -> `splitForAllTyCoVars'` * `splitForAllTy_maybe` -> `splitForAllTyCoVar_maybe` * Functions that return a `VarBndr` now use the suffix corresponding to the most relevant type synonym. This caused the following functions to be renamed: * `splitForAllVarBndrs` -> `splitForAllTyCoVarBinders` * `splitForAllTysInvis` -> `splitForAllInvisTVBinders` * `splitForAllTysReq` -> `splitForAllReqTVBinders` * `splitSomeForAllTys` -> `splitSomeForAllTyCoVarBndrs` * `tcSplitForAllVarBndrs` -> `tcSplitForAllTyVarBinders` * `tcSplitForAllTysInvis` -> `tcSplitForAllInvisTVBinders` * `tcSplitForAllTysReq` -> `tcSplitForAllReqTVBinders` * `tcSplitForAllTy_maybe` -> `tcSplitForAllTyVarBinder_maybe` Note that I left the following functions alone: * Functions that split apart things besides `ForAllTy`s, such as `splitFunTys` or `splitPiTys`. Thankfully, there are far fewer of these functions than there are functions that split apart `ForAllTy`s, so there isn't much of a pressing need to apply the new naming convention elsewhere. * Functions that split apart `ForAllCo`s in `Coercion`s, such as `GHC.Core.Coercion.splitForAllCo_maybe`. We could theoretically apply the new naming convention here, but then we'd have to figure out how to disambiguate `Type`-splitting functions from `Coercion`-splitting functions. Ultimately, the `Coercion`-splitting functions aren't used nearly as much as the `Type`-splitting functions, so I decided to leave the former alone. This is purely refactoring and should cause no change in behavior.
* Add the proper HLint rules and remove redundant keywords from compilerHécate2020-11-011-1/+1
|
* Split GHC.Driver.TypesSylvain Henry2020-10-291-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I was working on making DynFlags stateless (#17957), especially by storing loaded plugins into HscEnv instead of DynFlags. It turned out to be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I didn't feel like introducing yet another hs-boot file to break the loop. Additionally I remember that while we introduced the module hierarchy (#13009) we talked about splitting GHC.Driver.Types because it contained various unrelated types and functions, but we never executed. I didn't feel like making GHC.Driver.Types bigger with more unrelated Plugins related types, so finally I bit the bullet and split GHC.Driver.Types. As a consequence this patch moves a lot of things. I've tried to put them into appropriate modules but nothing is set in stone. Several other things moved to avoid loops. * Removed Binary instances from GHC.Utils.Binary for random compiler things * Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they import a lot of things that users of GHC.Utils.Binary don't want to depend on. * put everything related to Units/Modules under GHC.Unit: GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.} * Created several modules under GHC.Types: GHC.Types.Fixity, SourceText, etc. * Split GHC.Utils.Error (into GHC.Types.Error) * Finally removed GHC.Driver.Types Note that this patch doesn't put loaded plugins into HscEnv. It's left for another patch. Bump haddock submodule
* Implement Quick Look impredicativitySimon Peyton Jones2020-09-241-2/+48
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements Quick Look impredicativity (#18126), sticking very closely to the design in A quick look at impredicativity, Serrano et al, ICFP 2020 The main change is that a big chunk of GHC.Tc.Gen.Expr has been extracted to two new modules GHC.Tc.Gen.App GHC.Tc.Gen.Head which deal with typechecking n-ary applications, and the head of such applications, respectively. Both contain a good deal of documentation. Three other loosely-related changes are in this patch: * I implemented (partly by accident) points (2,3)) of the accepted GHC proposal "Clean up printing of foralls", namely https://github.com/ghc-proposals/ghc-proposals/blob/ master/proposals/0179-printing-foralls.rst (see #16320). In particular, see Note [TcRnExprMode] in GHC.Tc.Module - :type instantiates /inferred/, but not /specified/, quantifiers - :type +d instantiates /all/ quantifiers - :type +v is killed off That completes the implementation of the proposal, since point (1) was done in commit df08468113ab46832b7ac0a7311b608d1b418c4d Author: Krzysztof Gogolewski <krzysztof.gogolewski@tweag.io> Date: Mon Feb 3 21:17:11 2020 +0100 Always display inferred variables using braces * HsRecFld (which the renamer introduces for record field selectors), is now preserved by the typechecker, rather than being rewritten back to HsVar. This is more uniform, and turned out to be more convenient in the new scheme of things. * The GHCi debugger uses a non-standard unification that allows the unification variables to unify with polytypes. We used to hack this by using ImpredicativeTypes, but that doesn't work anymore so I introduces RuntimeUnkTv. See Note [RuntimeUnkTv] in GHC.Runtime.Heap.Inspect Updates haddock submodule. WARNING: this patch won't validate on its own. It was too hard to fully disentangle it from the following patch, on type errors and kind generalisation. Changes to tests * Fixes #9730 (test added) * Fixes #7026 (test added) * Fixes most of #8808, except function `g2'` which uses a section (which doesn't play with QL yet -- see #18126) Test added * Fixes #1330. NB Church1.hs subsumes Church2.hs, which is now deleted * Fixes #17332 (test added) * Fixes #4295 * This patch makes typecheck/should_run/T7861 fail. But that turns out to be a pre-existing bug: #18467. So I have just made T7861 into expect_broken(18467)
* DynFlags: disentangle OutputableSylvain Henry2020-08-122-1/+5
| | | | | | | | | - put panic related functions into GHC.Utils.Panic - put trace related functions using DynFlags in GHC.Driver.Ppr One step closer making Outputable fully independent of DynFlags. Bump haddock submodule
* Remove platform constant wrappersSylvain Henry2020-07-251-89/+94
| | | | | | | | | | Platform constant wrappers took a DynFlags parameter, hence implicitly used the target platform constants. We removed them to allow support for several platforms at once (#14335) and to avoid having to pass the full DynFlags to every function (#17957). Metric Decrease: T4801
* Fix GHCi :print on big-endian platformsStefan Schulze Frielinghaus2020-07-091-14/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On big-endian platforms executing import GHC.Exts data Foo = Foo Float# deriving Show foo = Foo 42.0# foo :print foo results in an arithmetic overflow exception which is caused by function index where moveBytes equals word_size - (r + item_size_b) * 8 Here we have a mixture of units. Both, word_size and item_size_b have unit bytes whereas r has unit bits. On 64-bit platforms moveBytes equals then 8 - (0 + 4) * 8 which results in a negative and therefore invalid second parameter for a shiftL operation. In order to make things more clear the expression (word .&. (mask `shiftL` moveBytes)) `shiftR` moveBytes is equivalent to (word `shiftR` moveBytes) .&. mask On big-endian platforms the shift must be a left shift instead of a right shift. For symmetry reasons not a mask is used but two shifts in order to zero out bits. Thus the fixed version equals case endian of BigEndian -> (word `shiftL` moveBits) `shiftR` zeroOutBits `shiftL` zeroOutBits LittleEndian -> (word `shiftR` moveBits) `shiftL` zeroOutBits `shiftR` zeroOutBits Fixes #16548 and #14455
* Replace Opt_SccProfilingOn flag with sccProfilingEnabled helper functionSylvain Henry2020-07-021-2/+2
| | | | | | | | | | | SCC profiling was enabled in a convoluted way: if WayProf was enabled, Opt_SccProfilingOn general flag was set (in `GHC.Driver.Ways.wayGeneralFlags`), and then this flag was queried in various places. There is no need to go via general flags, so this patch defines a `sccProfilingEnabled :: DynFlags -> Bool` helper function that just checks whether WayProf is enabled.
* Clean up haddock hyperlinks of GHC.* (part2)Takenobu Tani2020-06-251-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | This updates haddock comments only. This patch focuses to update for hyperlinks in GHC API's haddock comments, because broken links especially discourage newcomers. This includes the following hierarchies: - GHC.Iface.* - GHC.Llvm.* - GHC.Rename.* - GHC.Tc.* - GHC.HsToCore.* - GHC.StgToCmm.* - GHC.CmmToAsm.* - GHC.Runtime.* - GHC.Unit.* - GHC.Utils.* - GHC.SysTools.*
* Update compilerSylvain Henry2020-06-171-70/+48
| | | | | | | | | | | | | | | | Thanks to ghc-bignum, the compiler can be simplified: * Types and constructors of Integer and Natural can be wired-in. It means that we don't have to query them from interfaces. It also means that numeric literals don't have to carry their type with them. * The same code is used whatever ghc-bignum backend is enabled. In particular, conversion of bignum literals into final Core expressions is now much more straightforward. Bignum closure inspection too. * GHC itself doesn't depend on any integer-* package anymore * The `integerLibrary` setting is gone.
* Various performance improvementsKrzysztof Gogolewski2020-06-171-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This implements several general performance improvements to GHC, to offset the effect of the linear types change. General optimisations: - Add a `coreFullView` function which iterates `coreView` on the head. This avoids making function recursive solely because the iterate `coreView` themselves. As a consequence, this functions can be inlined, and trigger case-of-known constructor (_e.g._ `kindRep_maybe`, `isLiftedRuntimeRep`, `isMultiplicityTy`, `getTyVar_maybe`, `splitAppTy_maybe`, `splitFunType_maybe`, `tyConAppTyCon_maybe`). The common pattern about all these functions is that they are almost always used as views, and immediately consumed by a case expression. This commit also mark them asx `INLINE`. - In `subst_ty` add a special case for nullary `TyConApp`, which avoid allocations altogether. - Use `mkTyConApp` in `subst_ty` for the general `TyConApp`. This required quite a bit of module shuffling. case. `myTyConApp` enforces crucial sharing, which was lost during substitution. See also !2952 . - Make `subst_ty` stricter. - In `eqType` (specifically, in `nonDetCmpType`), add a special case, tested first, for the very common case of nullary `TyConApp`. `nonDetCmpType` has been made `INLINE` otherwise it is actually a regression. This is similar to the optimisations in !2952. Linear-type specific optimisations: - Use `tyConAppTyCon_maybe` instead of the more complex `eqType` in the definition of the pattern synonyms `One` and `Many`. - Break the `hs-boot` cycles between `Multiplicity.hs` and `Type.hs`: `Multiplicity` now import `Type` normally, rather than from the `hs-boot`. This way `tyConAppTyCon_maybe` can inline properly in the `One` and `Many` pattern synonyms. - Make `updateIdTypeAndMult` strict in its type and multiplicity - The `scaleIdBy` gets a specialised definition rather than being an alias to `scaleVarBy` - `splitFunTy_maybe` is given the type `Type -> Maybe (Mult, Type, Type)` instead of `Type -> Maybe (Scaled Type, Type)` - Remove the `MultMul` pattern synonym in favour of a view `isMultMul` because pattern synonyms appear not to inline well. - in `eqType`, in a `FunTy`, compare multiplicities last: they are almost always both `Many`, so it helps failing faster. - Cache `manyDataConTy` in `mkTyConApp`, to make sure that all the instances of `TyConApp ManyDataConTy []` are physically the same. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Arnaud Spiwack Metric Decrease: haddock.base T12227 T12545 T12990 T1969 T3064 T5030 T9872b Metric Increase: haddock.base haddock.Cabal haddock.compiler T12150 T12234 T12425 T12707 T13035 T13056 T15164 T16190 T18304 T1969 T3064 T3294 T5631 T5642 T5837 T6048 T9020 T9233 T9675 T9872a T9961 WWRec
* Linear types (#15981)Krzysztof Gogolewski2020-06-171-7/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the first step towards implementation of the linear types proposal (https://github.com/ghc-proposals/ghc-proposals/pull/111). It features * A language extension -XLinearTypes * Syntax for linear functions in the surface language * Linearity checking in Core Lint, enabled with -dlinear-core-lint * Core-to-core passes are mostly compatible with linearity * Fields in a data type can be linear or unrestricted; linear fields have multiplicity-polymorphic constructors. If -XLinearTypes is disabled, the GADT syntax defaults to linear fields The following items are not yet supported: * a # m -> b syntax (only prefix FUN is supported for now) * Full multiplicity inference (multiplicities are really only checked) * Decent linearity error messages * Linear let, where, and case expressions in the surface language (each of these currently introduce the unrestricted variant) * Multiplicity-parametric fields * Syntax for annotating lambda-bound or let-bound with a multiplicity * Syntax for non-linear/multiple-field-multiplicity records * Linear projections for records with a single linear field * Linear pattern synonyms * Multiplicity coercions (test LinearPolyType) A high-level description can be found at https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation Following the link above you will find a description of the changes made to Core. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Matthew Pickering * Arnaud Spiwack With contributions from: * Mark Barbone * Alexander Vershilov Updates haddock submodule.
* Cross-module LambdaFormInfo passingÖmer Sinan Ağacan2020-06-101-30/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Store LambdaFormInfos of exported Ids in interface files - Use them in importing modules This is for optimization purposes: if we know LambdaFormInfo of imported Ids we can generate more efficient calling code, see `getCallMethod`. Exporting (putting them in interface files or in ModDetails) and importing (reading them from interface files) are both optional. We don't assume known LambdaFormInfos anywhere and do not change how we call Ids with unknown LambdaFormInfos. Runtime, allocation, and residency numbers when building Cabal-the-library (commit 0d4ee7ba3): (Log and .hp files are in the MR: !2842) | | GHC HEAD | This patch | Diff | |-----|----------|------------|----------------| | -O0 | 0:35.89 | 0:34.10 | -1.78s, -4.98% | | -O1 | 2:24.01 | 2:23.62 | -0.39s, -0.27% | | -O2 | 2:52.23 | 2:51.35 | -0.88s, -0.51% | | | GHC HEAD | This patch | Diff | |-----|-----------------|-----------------|----------------------------| | -O0 | 54,843,608,416 | 54,878,769,544 | +35,161,128 bytes, +0.06% | | -O1 | 227,136,076,400 | 227,569,045,168 | +432,968,768 bytes, +0.19% | | -O2 | 266,147,063,296 | 266,749,643,440 | +602,580,144 bytes, +0.22% | NOTE: Residency is measured with extra runtime args: `-i0 -h` which effectively turn all GCs into major GCs, and do GC more often. | | GHC HEAD | This patch | Diff | |-----|----------------------------|------------------------------|----------------------------| | -O0 | 410,284,000 (910 samples) | 411,745,008 (906 samples) | +1,461,008 bytes, +0.35% | | -O1 | 928,580,856 (2109 samples) | 943,506,552 (2103 samples) | +14,925,696 bytes, +1.60% | | -O2 | 993,951,352 (2549 samples) | 1,010,156,328 (2545 samples) | +16,204,9760 bytes, +1.63% | NoFib results: -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- CS 0.0% 0.0% +0.0% +0.0% +0.0% CSD 0.0% 0.0% 0.0% +0.0% +0.0% FS 0.0% 0.0% +0.0% +0.0% +0.0% S 0.0% 0.0% +0.0% +0.0% +0.0% VS 0.0% 0.0% +0.0% +0.0% +0.0% VSD 0.0% 0.0% +0.0% +0.0% +0.1% VSM 0.0% 0.0% +0.0% +0.0% +0.0% anna 0.0% 0.0% -0.3% -0.8% -0.0% ansi 0.0% 0.0% -0.0% -0.0% 0.0% atom 0.0% 0.0% -0.0% -0.0% 0.0% awards 0.0% 0.0% -0.1% -0.3% 0.0% banner 0.0% 0.0% -0.0% -0.0% -0.0% bernouilli 0.0% 0.0% -0.0% -0.0% -0.0% binary-trees 0.0% 0.0% -0.0% -0.0% +0.0% boyer 0.0% 0.0% -0.0% -0.0% 0.0% boyer2 0.0% 0.0% -0.0% -0.0% 0.0% bspt 0.0% 0.0% -0.0% -0.2% 0.0% cacheprof 0.0% 0.0% -0.1% -0.4% +0.0% calendar 0.0% 0.0% -0.0% -0.0% 0.0% cichelli 0.0% 0.0% -0.9% -2.4% 0.0% circsim 0.0% 0.0% -0.0% -0.0% 0.0% clausify 0.0% 0.0% -0.1% -0.3% 0.0% comp_lab_zift 0.0% 0.0% -0.0% -0.0% +0.0% compress 0.0% 0.0% -0.0% -0.0% -0.0% compress2 0.0% 0.0% -0.0% -0.0% 0.0% constraints 0.0% 0.0% -0.1% -0.2% -0.0% cryptarithm1 0.0% 0.0% -0.0% -0.0% 0.0% cryptarithm2 0.0% 0.0% -1.4% -4.1% -0.0% cse 0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e1 0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e2 0.0% 0.0% -0.0% -0.0% -0.0% dom-lt 0.0% 0.0% -0.1% -0.2% 0.0% eliza 0.0% 0.0% -0.5% -1.5% 0.0% event 0.0% 0.0% -0.0% -0.0% -0.0% exact-reals 0.0% 0.0% -0.1% -0.3% +0.0% exp3_8 0.0% 0.0% -0.0% -0.0% -0.0% expert 0.0% 0.0% -0.3% -1.0% -0.0% fannkuch-redux 0.0% 0.0% +0.0% +0.0% +0.0% fasta 0.0% 0.0% -0.0% -0.0% +0.0% fem 0.0% 0.0% -0.0% -0.0% 0.0% fft 0.0% 0.0% -0.0% -0.0% 0.0% fft2 0.0% 0.0% -0.0% -0.0% 0.0% fibheaps 0.0% 0.0% -0.0% -0.0% +0.0% fish 0.0% 0.0% 0.0% -0.0% +0.0% fluid 0.0% 0.0% -0.4% -1.2% +0.0% fulsom 0.0% 0.0% -0.0% -0.0% 0.0% gamteb 0.0% 0.0% -0.1% -0.3% 0.0% gcd 0.0% 0.0% -0.0% -0.0% 0.0% gen_regexps 0.0% 0.0% -0.0% -0.0% -0.0% genfft 0.0% 0.0% -0.0% -0.0% 0.0% gg 0.0% 0.0% -0.0% -0.0% +0.0% grep 0.0% 0.0% -0.0% -0.0% -0.0% hidden 0.0% 0.0% -0.1% -0.4% -0.0% hpg 0.0% 0.0% -0.2% -0.5% +0.0% ida 0.0% 0.0% -0.0% -0.0% +0.0% infer 0.0% 0.0% -0.3% -0.8% -0.0% integer 0.0% 0.0% -0.0% -0.0% +0.0% integrate 0.0% 0.0% -0.0% -0.0% 0.0% k-nucleotide 0.0% 0.0% -0.0% -0.0% +0.0% kahan 0.0% 0.0% -0.0% -0.0% +0.0% knights 0.0% 0.0% -2.2% -5.4% 0.0% lambda 0.0% 0.0% -0.6% -1.8% 0.0% last-piece 0.0% 0.0% -0.0% -0.0% 0.0% lcss 0.0% 0.0% -0.0% -0.1% 0.0% life 0.0% 0.0% -0.0% -0.1% 0.0% lift 0.0% 0.0% -0.2% -0.6% +0.0% linear 0.0% 0.0% -0.0% -0.0% -0.0% listcompr 0.0% 0.0% -0.0% -0.0% 0.0% listcopy 0.0% 0.0% -0.0% -0.0% 0.0% maillist 0.0% 0.0% -0.1% -0.3% +0.0% mandel 0.0% 0.0% -0.0% -0.0% 0.0% mandel2 0.0% 0.0% -0.0% -0.0% -0.0% mate +0.0% 0.0% -0.0% -0.0% -0.0% minimax 0.0% 0.0% -0.2% -1.0% 0.0% mkhprog 0.0% 0.0% -0.1% -0.2% -0.0% multiplier 0.0% 0.0% -0.0% -0.0% -0.0% n-body 0.0% 0.0% -0.0% -0.0% +0.0% nucleic2 0.0% 0.0% -0.1% -0.2% 0.0% para 0.0% 0.0% -0.0% -0.0% -0.0% paraffins 0.0% 0.0% -0.0% -0.0% 0.0% parser 0.0% 0.0% -0.2% -0.7% 0.0% parstof 0.0% 0.0% -0.0% -0.0% +0.0% pic 0.0% 0.0% -0.0% -0.0% 0.0% pidigits 0.0% 0.0% +0.0% +0.0% +0.0% power 0.0% 0.0% -0.2% -0.6% +0.0% pretty 0.0% 0.0% -0.0% -0.0% -0.0% primes 0.0% 0.0% -0.0% -0.0% 0.0% primetest 0.0% 0.0% -0.0% -0.0% -0.0% prolog 0.0% 0.0% -0.3% -1.1% 0.0% puzzle 0.0% 0.0% -0.0% -0.0% 0.0% queens 0.0% 0.0% -0.0% -0.0% +0.0% reptile 0.0% 0.0% -0.0% -0.0% 0.0% reverse-complem 0.0% 0.0% -0.0% -0.0% +0.0% rewrite 0.0% 0.0% -0.7% -2.5% -0.0% rfib 0.0% 0.0% -0.0% -0.0% 0.0% rsa 0.0% 0.0% -0.0% -0.0% 0.0% scc 0.0% 0.0% -0.1% -0.2% -0.0% sched 0.0% 0.0% -0.0% -0.0% -0.0% scs 0.0% 0.0% -1.0% -2.6% +0.0% simple 0.0% 0.0% +0.0% -0.0% +0.0% solid 0.0% 0.0% -0.0% -0.0% 0.0% sorting 0.0% 0.0% -0.6% -1.6% 0.0% spectral-norm 0.0% 0.0% +0.0% 0.0% +0.0% sphere 0.0% 0.0% -0.0% -0.0% -0.0% symalg 0.0% 0.0% -0.0% -0.0% +0.0% tak 0.0% 0.0% -0.0% -0.0% 0.0% transform 0.0% 0.0% -0.0% -0.0% 0.0% treejoin 0.0% 0.0% -0.0% -0.0% 0.0% typecheck 0.0% 0.0% -0.0% -0.0% +0.0% veritas +0.0% 0.0% -0.2% -0.4% +0.0% wang 0.0% 0.0% -0.0% -0.0% 0.0% wave4main 0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve1 0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve2 0.0% 0.0% -0.0% -0.0% +0.0% x2n1 0.0% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min 0.0% 0.0% -2.2% -5.4% -0.0% Max +0.0% 0.0% +0.0% +0.0% +0.1% Geometric Mean -0.0% -0.0% -0.1% -0.3% +0.0% Metric increases micro benchmarks tracked in #17686: Metric Increase: T12150 T12234 T12425 T13035 T5837 T6048 T9233 Co-authored-by: Andreas Klebinger <klebinger.andreas@gmx.at>
* Explicit SpecificityGert-Jan Bottu2020-05-211-1/+1
| | | | | | | | | | | | | | | | | | | | Implementation for Ticket #16393. Explicit specificity allows users to manually create inferred type variables, by marking them with braces. This way, the user determines which variables can be instantiated through visible type application. The additional syntax is included in the parser, allowing users to write braces in type variable binders (type signatures, data constructors etc). This information is passed along through the renamer and verified in the type checker. The AST for type variable binders, data constructors, pattern synonyms, partial signatures and Template Haskell has been updated to include the specificity of type variables. Minor notes: - Bumps haddock submodule - Disables pattern match checking in GHC.Iface.Type with GHC 8.8
* Unit: split and rename modulesSylvain Henry2020-04-301-1/+1
| | | | | | | Introduce GHC.Unit.* hierarchy for everything concerning units, packages and modules. Update Haddock submodule
* Refactoring unit management codeSylvain Henry2020-04-301-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Over the years the unit management code has been modified a lot to keep up with changes in Cabal (e.g. support for several library components in the same package), to integrate BackPack, etc. I found it very hard to understand as the terminology wasn't consistent, was referring to past concepts, etc. The terminology is now explained as clearly as I could in the Note "About Units" and the code is refactored to reflect it. ------------------- Many names were misleading: UnitId is not an Id but could be a virtual unit (an indefinite one instantiated on the fly), IndefUnitId constructor may contain a definite instantiated unit, etc. * Rename IndefUnitId into InstantiatedUnit * Rename IndefModule into InstantiatedModule * Rename UnitId type into Unit * Rename IndefiniteUnitId constructor into VirtUnit * Rename DefiniteUnitId constructor into RealUnit * Rename packageConfigId into mkUnit * Rename getPackageDetails into unsafeGetUnitInfo * Rename InstalledUnitId into UnitId Remove references to misleading ComponentId: a ComponentId is just an indefinite unit-id to be instantiated. * Rename ComponentId into IndefUnitId * Rename ComponentDetails into UnitPprInfo * Fix display of UnitPprInfo with empty version: this is now used for units dynamically generated by BackPack Generalize several types (Module, Unit, etc.) so that they can be used with different unit identifier types: UnitKey, UnitId, Unit, etc. * GenModule: Module, InstantiatedModule and InstalledModule are now instances of this type * Generalize DefUnitId, IndefUnitId, Unit, InstantiatedUnit, PackageDatabase Replace BackPack fake "hole" UnitId by a proper HoleUnit constructor. Add basic support for UnitKey. They should be used more in the future to avoid mixing them up with UnitId as we do now. Add many comments. Update Haddock submodule
* Modules: Utils and Data (#13009)Sylvain Henry2020-04-262-6/+6
| | | | | | | Update Haddock submodule Metric Increase: haddock.compiler
* GHC.Runtime: avoid DynFlags (#17957)Sylvain Henry2020-04-211-1/+1
| | | | | * add `getPlatform :: TcM Platform` helper * remove unused `DynFlags` parameter from `emptyPLS`
* Modules (#13009)Sylvain Henry2020-04-181-3/+3
| | | | | | | | | | | | | | * SysTools * Parser * GHC.Builtin * GHC.Iface.Recomp * Settings Update Haddock submodule Metric Decrease: Naperian parsing001
* Modules: type-checker (#13009)Sylvain Henry2020-04-071-7/+7
| | | | Update Haddock submodule
* Kill wORDS_BIGENDIAN and replace it with platformByteOrder (#17957)Sylvain Henry2020-04-011-9/+8
| | | | | | Metric Decrease: T13035 T1969
* Modules: Types (#13009)Sylvain Henry2020-03-292-7/+7
| | | | | | | Update Haddock submodule Metric Increase: haddock.compiler
* DynFlags refactoring IIISylvain Henry2020-03-251-3/+5
| | | | | | | | | | | | | Use Platform instead of DynFlags when possible: * `tARGET_MIN_INT` et al. replaced with `platformMinInt` et al. * no more DynFlags in PreRules: added a new `RuleOpts` datatype * don't use `wORD_SIZE` in the compiler * make `wordAlignment` use `Platform` * make `dOUBLE_SIZE` a constant Metric Decrease: T13035 T1969