| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The GlobalRdrEnv of a GHCI session changes in odd ways: New bindings are
not just added "to the end", but also "in the middle", namely when
changing the set of imports: These are treated as if they happened
before all bindings from the prompt, even those that happened earlier.
Previously, this meant that the `ic_rn_gbl_env` is recalculated from the
`ic_tythings`. But this wasteful if `ic_tythings` has many entries that
define the same unqualified name. By separately keeping track of a
`GlobalRdrEnv` of all the locally defined things we can speed this
operation up significantly.
This change improves `T14052Type` by 60% (It used to be 70%, but it
looks that !6723 already reaped some of the rewards).
But more importantly, it hopefully unblocks #20455, becaues with this
smarter caching, the change needed to fix that issue will no longer make
`T14052` explode. I hope.
It does regress `T14052` by 30%; caching isn’t free. Oh well.
Metric Decrease:
T14052Type
Metric Increase:
T14052
|
|
|
|
|
|
|
|
|
|
| |
while working on GHCi stuff, e.g. `GHC.Runtime.Eval.Types`, I observed a
fair amount of modules being recompiled that I didn’t expect to depend
on this, from byte code interpreters to linkers. Turns out that the
rather simple `BreakInfo` type is all these modules need from the
`GHC.Runtime.Eval.*` hierarchy, so by moving that into its own file we
make the dependency tree wider and shallower, which is probably worth
it.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There were two problems around `mkDictErr`:
1. An outdated call to `flattenTys` meant that we missed out on some
instances. As we no longer flatten type-family applications,
the logic is obsolete and can be removed.
2. We reported "out of scope" errors in a poly-kinded situation
because `BoxedRep` and `Lifted` were considered out of scope.
We fix this by using `pretendNameIsInScope`.
fixes #20465
|
|
|
|
|
|
|
|
| |
Now that Outputable is independent of DynFlags, we can put tracing
functions using SDocs into their own module that doesn't transitively
depend on any GHC.Driver.* module.
A few modules needed to be moved to avoid loops in DEBUG mode.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce LogFlags as a independent subset of DynFlags used for logging.
As a consequence in many places we don't have to pass both Logger and
DynFlags anymore.
The main reason for this refactoring is that I want to refactor the
systools interfaces: for now many systools functions use DynFlags both
to use the Logger and to fetch their parameters (e.g. ldInputs for the
linker). I'm interested in refactoring the way they fetch their
parameters (i.e. use dedicated XxxOpts data types instead of DynFlags)
for #19877. But if I did this refactoring before refactoring the Logger,
we would have duplicate parameters (e.g. ldInputs from DynFlags and
linkerInputs from LinkerOpts). Hence this patch first.
Some flags don't really belong to LogFlags because they are subsystem
specific (e.g. most DumpFlags). For example -ddump-asm should better be
passed in NCGConfig somehow. This patch doesn't fix this tight coupling:
the dump flags are part of the UI but they are passed all the way down
for example to infer the file name for the dumps.
Because LogFlags are a subset of the DynFlags, we must update the former
when the latter changes (not so often). As a consequence we now use
accessors to read/write DynFlags in HscEnv instead of using `hsc_dflags`
directly.
In the process I've also made some subsystems less dependent on DynFlags:
- CmmToAsm: by passing some missing flags via NCGConfig (see new fields
in GHC.CmmToAsm.Config)
- Core.Opt.*:
- by passing -dinline-check value into UnfoldingOpts
- by fixing some Core passes interfaces (e.g. CallArity, FloatIn)
that took DynFlags argument for no good reason.
- as a side-effect GHC.Core.Opt.Pipeline.doCorePass is much less
convoluted.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch comprises of four different but closely related ideas. The
net result is fixing a large number of open issues with the driver
whilst making it simpler to understand.
1. Use the hash of the source file to determine whether the source file
has changed or not. This makes the recompilation checking more robust to
modern build systems which are liable to copy files around changing
their modification times.
2. Remove the concept of a "stable module", a stable module was one
where the object file was older than the source file, and all transitive
dependencies were also stable. Now we don't rely on the modification
time of the source file, the notion of stability is moot.
3. Fix TH/plugin recompilation after the removal of stable modules. The
TH recompilation check used to rely on stable modules. Now there is a
uniform and simple way, we directly track the linkables which were
loaded into the interpreter whilst compiling a module. This is an
over-approximation but more robust wrt package dependencies changing.
4. Fix recompilation checking for dynamic object files. Now we actually
check if the dynamic object file exists when compiling with -dynamic-too
Fixes #19774 #19771 #19758 #17434 #11556 #9121 #8211 #16495 #7277 #16093
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Replace uses of WARN macro with calls to:
warnPprTrace :: Bool -> SDoc -> a -> a
Remove the now unused HsVersions.h
Bump haddock submodule
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds GhcMessage and ancillary (PsMessage, TcRnMessage, ..)
types.
These types will be expanded to represent more errors generated
by different subsystems within GHC. Right now, they are underused,
but more will come in the glorious future.
See
https://gitlab.haskell.org/ghc/ghc/-/wikis/Errors-as-(structured)-values
for a design overview.
Along the way, lots of other things had to happen:
* Adds Semigroup and Monoid instance for Bag
* Fixes #19746 by parsing OPTIONS_GHC pragmas into Located Strings.
See GHC.Parser.Header.toArgs (moved from GHC.Utils.Misc, where it
didn't belong anyway).
* Addresses (but does not completely fix) #19709, now reporting
desugarer warnings and errors appropriately for TH splices.
Not done: reporting type-checker warnings for TH splices.
* Some small refactoring around Safe Haskell inference, in order
to keep separate classes of messages separate.
* Some small refactoring around initDsTc, in order to keep separate
classes of messages separate.
* Separate out the generation of messages (that is, the construction
of the text block) from the wrapping of messages (that is, assigning
a SrcSpan). This is more modular than the previous design, which
mixed the two.
Close #19746.
This was a collaborative effort by Alfredo di Napoli and
Richard Eisenberg, with a key assist on #19746 by Iavor
Diatchki.
Metric Increase:
MultiLayerModules
|
|
|
|
|
| |
This commit adds the `lint:compiler` Hadrian target to the CI runner.
It does also fixes hints in the compiler/ and libraries/base/ codebases.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The loader state was stored into HscEnv. As we need to have two
interpreters and one loader state per interpreter in #14335, it's
natural to make the loader state a field of the Interp type.
As a side effect, many functions now only require a Interp parameter
instead of HscEnv. Sadly we can't fully free GHC.Linker.Loader of HscEnv
yet because the loader is initialised lazily from the HscEnv the first
time it is used. This is left as future work.
HscEnv may not contain an Interp value (i.e. hsc_interp :: Maybe Interp).
So a side effect of the previous side effect is that callers of the
modified functions now have to provide an Interp. It is satisfying as it
pushes upstream the handling of the case where HscEnv doesn't contain an
Interpreter. It is better than raising a panic (less partial functions,
"parse, don't validate", etc.).
|
|
|
|
|
|
| |
tuples and sums.
fixes #1257
|
|
|
|
|
|
|
|
| |
Metric Increase:
T10370
parsing001
Updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Implement new debugger command `:ignore` to set an `ignore count`
for a specified breakpoint.
* Allow new optional parameter on `:continue` command to set an
`ignore count` for the current breakpoint.
* In the Interpreter replace the current `Word8` BreakArray with
an `Int` array.
* Change semantics of values in `BreakArray` to:
n < 0 : Breakpoint is disabled.
n == 0 : Breakpoint is enabled.
n > 0 : Breakpoint is enabled, but ignore next `n` iterations.
* Rewrite `:enable`/`:disable` processing as a special case of `:ignore`.
* Remove references to `BreakArray` from `ghc/UI.hs`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds two new methods to the Quasi class, putDoc and getDoc. They
allow Haddock documentation to be added to declarations, module headers,
function arguments and class/type family instances, as well as looked
up.
It works by building up a map of names to attach pieces of
documentation to, which are then added in the extractDocs function in
GHC.HsToCore.Docs. However because these template haskell names need to
be resolved to GHC names at the time they are added, putDoc cannot
directly add documentation to declarations that are currently being
spliced. To remedy this, withDecDoc/withDecsDoc wraps the operation with
addModFinalizer, and provides a more ergonomic interface for doing so.
Similarly, the funD_doc, dataD_doc etc. combinators provide a more
ergonomic interface for documenting functions and their arguments
simultaneously.
This also changes ArgDocMap to use an IntMap rather than an Map Int, for
efficiency.
Part of the work towards #5467
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, the only way to override GHC's default logging
behavior was to set `log_action`, `dump_action` and `trace_action`
fields in DynFlags. This patch introduces a new Logger abstraction and
stores it in HscEnv instead.
This is part of #17957 (avoid storing state in DynFlags). DynFlags are
duplicated and updated per-module (because of OPTIONS_GHC pragma), so
we shouldn't store global state in them.
This patch also fixes a race in parallel "--make" mode which updated
the `generatedDumps` IORef concurrently.
Bump haddock submodule
The increase in MultilayerModules is tracked in #19293.
Metric Increase:
MultiLayerModules
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mode backpack edges
Backpack instantiations need to be typechecked to make sure that the
arguments fit the parameters. `tcRnInstantiateSignature` checks
instantiations with concrete modules, while `tcRnCheckUnit` checks
instantiations with free holes (signatures in the current modules).
Before this change, it worked that `tcRnInstantiateSignature` was called
after typechecking the argument module, see `HscMain.hsc_typecheck`,
while `tcRnCheckUnit` was called in `unsweep'` where-bound in
`GhcMake.upsweep`. `tcRnCheckUnit` was called once per each
instantiation once all the argument sigs were processed. This was done
with simple "to do" and "already done" accumulators in the fold.
`parUpsweep` did not implement the change.
With this change, `tcRnCheckUnit` instead is associated with its own
node in the `ModuleGraph`. Nodes are now:
```haskell
data ModuleGraphNode
-- | Instantiation nodes track the instantiation of other units
-- (backpack dependencies) with the holes (signatures) of the current package.
= InstantiationNode InstantiatedUnit
-- | There is a module summary node for each module, signature, and boot module being built.
| ModuleNode ExtendedModSummary
```
instead of just `ModSummary`; the `InstantiationNode` case is the
instantiation of a unit to be checked. The dependencies of such nodes
are the same "free holes" as was checked with the accumulator before.
Both versions of upsweep on such a node call `tcRnCheckUnit`.
There previously was an `implicitRequirements` function which would
crawl through every non-current-unit module dep to look for all free
holes (signatures) to add as dependencies in `GHC.Driver.Make`. But this
is no good: we shouldn't be looking for transitive anything when
building the graph: the graph should only have immediate edges and the
scheduler takes care that all transitive requirements are met.
So `GHC.Driver.Make` stopped using `implicitRequirements`, and instead
uses a new `implicitRequirementsShallow`, which just returns the
outermost instantiation node (or module name if the immediate dependency
is itself a signature). The signature dependencies are just treated like
any other imported module, but the module ones then go in a list stored
in the `ModuleNode` next to the `ModSummary` as the "extra backpack
dependencies". When `downsweep` creates the mod summaries, it adds this
information too.
------
There is one code quality, and possible correctness thing left: In
addition to `implicitRequirements` there is `findExtraSigImports`, which
says something like "if you are an instantiation argument (you are
substituted or a signature), you need to import its things too". This
is a little non-local so I am not quite sure how to get rid of it in
`GHC.Driver.Make`, but we probably should eventually.
First though, let's try to make a test case that observes that we don't
do this, lest it actually be unneeded. Until then, I'm happy to leave it
as is.
------
Beside the ability to use `-j`, the other major user-visibile side
effect of this change is that that the --make progress log now includes
"Instantiating" messages for these new nodes. Those also are numbered
like module nodes and count towards the total.
------
Fixes #17188
Updates hackage submomdule
Metric Increase:
T12425
T13035
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch significantly refactors key renamer datastructures (primarily Avail
and GlobalRdrElt) in order to treat DuplicateRecordFields in a more robust way.
In particular it allows the extension to be used with pattern synonyms (fixes
where mangled record selector names could be printed instead of field labels
(e.g. with -Wpartial-fields or hole fits, see new tests).
The key idea is the introduction of a new type GreName for names that may
represent either normal entities or field labels. This is then used in
GlobalRdrElt and AvailInfo, in place of the old way of representing fields
using FldParent (yuck) and an extra list in AvailTC.
Updates the haddock submodule.
|
|
|
|
| |
Move code unrelated to runtime evaluation out of GHC.Runtime.Eval
|
|
|
|
|
|
|
|
|
|
| |
Loaded plugins have nothing to do in DynFlags so this patch moves them
into HscEnv (session state).
"DynFlags plugins" become "Driver plugins" to still be able to register
static plugins.
Bump haddock submodule
|
|
|
|
|
|
|
| |
Move linker related code into GHC.Linker. Previously it was scattered
into GHC.Unit.State, GHC.Driver.Pipeline, GHC.Runtime.Linker, etc.
Add documentation in GHC.Linker
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was working on making DynFlags stateless (#17957), especially by
storing loaded plugins into HscEnv instead of DynFlags. It turned out to
be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin
isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I
didn't feel like introducing yet another hs-boot file to break the loop.
Additionally I remember that while we introduced the module hierarchy
(#13009) we talked about splitting GHC.Driver.Types because it contained
various unrelated types and functions, but we never executed. I didn't
feel like making GHC.Driver.Types bigger with more unrelated Plugins
related types, so finally I bit the bullet and split GHC.Driver.Types.
As a consequence this patch moves a lot of things. I've tried to put
them into appropriate modules but nothing is set in stone.
Several other things moved to avoid loops.
* Removed Binary instances from GHC.Utils.Binary for random compiler
things
* Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they
import a lot of things that users of GHC.Utils.Binary don't want to
depend on.
* put everything related to Units/Modules under GHC.Unit:
GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.}
* Created several modules under GHC.Types: GHC.Types.Fixity, SourceText,
etc.
* Split GHC.Utils.Error (into GHC.Types.Error)
* Finally removed GHC.Driver.Types
Note that this patch doesn't put loaded plugins into HscEnv. It's left
for another patch.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements two related warnings:
-Woperator-whitespace-ext-conflict
warns on uses of infix operators that would be parsed
differently were a particular GHC extension enabled
-Woperator-whitespace
warns on prefix, suffix, and tight infix uses of infix
operators
Updates submodules: haddock, containers.
|
|
|
|
|
| |
Instead of recreating the HomeUnit from the DynFlags every time we need
it, we store it in the HscEnv.
|
|
|
|
| |
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements Quick Look impredicativity (#18126), sticking
very closely to the design in
A quick look at impredicativity, Serrano et al, ICFP 2020
The main change is that a big chunk of GHC.Tc.Gen.Expr has been
extracted to two new modules
GHC.Tc.Gen.App
GHC.Tc.Gen.Head
which deal with typechecking n-ary applications, and the head of
such applications, respectively. Both contain a good deal of
documentation.
Three other loosely-related changes are in this patch:
* I implemented (partly by accident) points (2,3)) of the accepted GHC
proposal "Clean up printing of foralls", namely
https://github.com/ghc-proposals/ghc-proposals/blob/
master/proposals/0179-printing-foralls.rst
(see #16320).
In particular, see Note [TcRnExprMode] in GHC.Tc.Module
- :type instantiates /inferred/, but not /specified/, quantifiers
- :type +d instantiates /all/ quantifiers
- :type +v is killed off
That completes the implementation of the proposal,
since point (1) was done in
commit df08468113ab46832b7ac0a7311b608d1b418c4d
Author: Krzysztof Gogolewski <krzysztof.gogolewski@tweag.io>
Date: Mon Feb 3 21:17:11 2020 +0100
Always display inferred variables using braces
* HsRecFld (which the renamer introduces for record field selectors),
is now preserved by the typechecker, rather than being rewritten
back to HsVar. This is more uniform, and turned out to be more
convenient in the new scheme of things.
* The GHCi debugger uses a non-standard unification that allows the
unification variables to unify with polytypes. We used to hack
this by using ImpredicativeTypes, but that doesn't work anymore
so I introduces RuntimeUnkTv. See Note [RuntimeUnkTv] in
GHC.Runtime.Heap.Inspect
Updates haddock submodule.
WARNING: this patch won't validate on its own. It was too
hard to fully disentangle it from the following patch, on
type errors and kind generalisation.
Changes to tests
* Fixes #9730 (test added)
* Fixes #7026 (test added)
* Fixes most of #8808, except function `g2'` which uses a
section (which doesn't play with QL yet -- see #18126)
Test added
* Fixes #1330. NB Church1.hs subsumes Church2.hs, which is now deleted
* Fixes #17332 (test added)
* Fixes #4295
* This patch makes typecheck/should_run/T7861 fail.
But that turns out to be a pre-existing bug: #18467.
So I have just made T7861 into expect_broken(18467)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we pretty-print a UnitId for the user, we try to map it back to its
origin package name, version and component to print
"package-version:component" instead of some hash.
The UnitId type doesn't carry these information, so we have to look into
a UnitState to find them. This is why the Outputable instance of
UnitId used `sdocWithDynFlags` in order to access the `unitState` field
of DynFlags.
This is wrong for several reasons:
1. The DynFlags are accessed when the message is printed, not when it is
generated. So we could imagine that the unitState may have changed
in-between. Especially if we want to allow unit unloading.
2. We want GHC to support several independent sessions at once, hence
several UnitState. The current approach supposes there is a unique
UnitState as a UnitId doesn't indicate which UnitState to use.
See the Note [Pretty-printing UnitId] in GHC.Unit for the new approach
implemented by this patch.
One step closer to remove `sdocDynFlags` field from `SDocContext`
(#10143).
Fix #18124.
Also fix some Backpack code to use SDoc instead of String.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since Backpack the "home unit" is much more involved than what it was
before (just an identifier obtained with `-this-unit-id`). Now it is
used in conjunction with `-component-id` and `-instantiated-with` to
configure module instantiations and to detect if we are type-checking an
indefinite unit or compiling a definite one.
This patch introduces a new HomeUnit datatype which is much easier to
understand. Moreover to make GHC support several packages in the same
instances, we will need to handle several HomeUnits so having a
dedicated (documented) type is helpful.
Finally in #14335 we will also need to handle the case where we have no
HomeUnit at all because we are only loading existing interfaces for
plugins which live in a different space compared to units used to
produce target code. Several functions will have to be refactored to
accept "Maybe HomeUnit" parameters instead of implicitly querying the
HomeUnit fields in DynFlags. Having a dedicated type will make this
easier.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
| |
They both have the same role and Backend name is more explicit.
Metric Decrease:
T3064
Update Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Zonk residual constraints in checkForExistence to reveal user type
errors.
Previously when `:instances` was used with instances that have TypeError
constraints the result would look something like:
instance [safe] s0 => Err 'A -- Defined at ../Bug2.hs:8:10
whereas after zonking, `:instances` now sees the `TypeError` and
properly eliminates the constraint from the results.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements several general performance improvements to GHC,
to offset the effect of the linear types change.
General optimisations:
- Add a `coreFullView` function which iterates `coreView` on the
head. This avoids making function recursive solely because the
iterate `coreView` themselves. As a consequence, this functions can
be inlined, and trigger case-of-known constructor (_e.g._
`kindRep_maybe`, `isLiftedRuntimeRep`, `isMultiplicityTy`,
`getTyVar_maybe`, `splitAppTy_maybe`, `splitFunType_maybe`,
`tyConAppTyCon_maybe`). The common pattern about all these functions
is that they are almost always used as views, and immediately
consumed by a case expression. This commit also mark them asx `INLINE`.
- In `subst_ty` add a special case for nullary `TyConApp`, which avoid
allocations altogether.
- Use `mkTyConApp` in `subst_ty` for the general `TyConApp`. This
required quite a bit of module shuffling.
case. `myTyConApp` enforces crucial sharing, which was lost during
substitution. See also !2952 .
- Make `subst_ty` stricter.
- In `eqType` (specifically, in `nonDetCmpType`), add a special case,
tested first, for the very common case of nullary `TyConApp`.
`nonDetCmpType` has been made `INLINE` otherwise it is actually a
regression. This is similar to the optimisations in !2952.
Linear-type specific optimisations:
- Use `tyConAppTyCon_maybe` instead of the more complex `eqType` in
the definition of the pattern synonyms `One` and `Many`.
- Break the `hs-boot` cycles between `Multiplicity.hs` and `Type.hs`:
`Multiplicity` now import `Type` normally, rather than from the
`hs-boot`. This way `tyConAppTyCon_maybe` can inline properly in the
`One` and `Many` pattern synonyms.
- Make `updateIdTypeAndMult` strict in its type and multiplicity
- The `scaleIdBy` gets a specialised definition rather than being an
alias to `scaleVarBy`
- `splitFunTy_maybe` is given the type `Type -> Maybe (Mult, Type,
Type)` instead of `Type -> Maybe (Scaled Type, Type)`
- Remove the `MultMul` pattern synonym in favour of a view `isMultMul`
because pattern synonyms appear not to inline well.
- in `eqType`, in a `FunTy`, compare multiplicities last: they are
almost always both `Many`, so it helps failing faster.
- Cache `manyDataConTy` in `mkTyConApp`, to make sure that all the
instances of `TyConApp ManyDataConTy []` are physically the same.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Arnaud Spiwack
Metric Decrease:
haddock.base
T12227
T12545
T12990
T1969
T3064
T5030
T9872b
Metric Increase:
haddock.base
haddock.Cabal
haddock.compiler
T12150
T12234
T12425
T12707
T13035
T13056
T15164
T16190
T18304
T1969
T3064
T3294
T5631
T5642
T5837
T6048
T9020
T9233
T9675
T9872a
T9961
WWRec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first step towards implementation of the linear types proposal
(https://github.com/ghc-proposals/ghc-proposals/pull/111).
It features
* A language extension -XLinearTypes
* Syntax for linear functions in the surface language
* Linearity checking in Core Lint, enabled with -dlinear-core-lint
* Core-to-core passes are mostly compatible with linearity
* Fields in a data type can be linear or unrestricted; linear fields
have multiplicity-polymorphic constructors.
If -XLinearTypes is disabled, the GADT syntax defaults to linear fields
The following items are not yet supported:
* a # m -> b syntax (only prefix FUN is supported for now)
* Full multiplicity inference (multiplicities are really only checked)
* Decent linearity error messages
* Linear let, where, and case expressions in the surface language
(each of these currently introduce the unrestricted variant)
* Multiplicity-parametric fields
* Syntax for annotating lambda-bound or let-bound with a multiplicity
* Syntax for non-linear/multiple-field-multiplicity records
* Linear projections for records with a single linear field
* Linear pattern synonyms
* Multiplicity coercions (test LinearPolyType)
A high-level description can be found at
https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation
Following the link above you will find a description of the changes made to Core.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Matthew Pickering
* Arnaud Spiwack
With contributions from:
* Mark Barbone
* Alexander Vershilov
Updates haddock submodule.
|
|
|
|
|
| |
* rename thisPackage into homeUnit
* document and refactor several Backpack things
|
|
|
|
|
|
|
|
| |
Run the core linter on candidate instances to ensure they are
well-kinded.
Better handle quantified constraints by using a CtWanted to avoid
having unsolved constraints thrown away at the end by the solver.
|
|
|
|
| |
accordingly)
|
|
|
|
|
|
|
| |
Introduce GHC.Unit.* hierarchy for everything concerning units, packages
and modules.
Update Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Over the years the unit management code has been modified a lot to keep
up with changes in Cabal (e.g. support for several library components in
the same package), to integrate BackPack, etc. I found it very hard to
understand as the terminology wasn't consistent, was referring to past
concepts, etc.
The terminology is now explained as clearly as I could in the Note
"About Units" and the code is refactored to reflect it.
-------------------
Many names were misleading: UnitId is not an Id but could be a virtual
unit (an indefinite one instantiated on the fly), IndefUnitId
constructor may contain a definite instantiated unit, etc.
* Rename IndefUnitId into InstantiatedUnit
* Rename IndefModule into InstantiatedModule
* Rename UnitId type into Unit
* Rename IndefiniteUnitId constructor into VirtUnit
* Rename DefiniteUnitId constructor into RealUnit
* Rename packageConfigId into mkUnit
* Rename getPackageDetails into unsafeGetUnitInfo
* Rename InstalledUnitId into UnitId
Remove references to misleading ComponentId: a ComponentId is just an
indefinite unit-id to be instantiated.
* Rename ComponentId into IndefUnitId
* Rename ComponentDetails into UnitPprInfo
* Fix display of UnitPprInfo with empty version: this is now used for
units dynamically generated by BackPack
Generalize several types (Module, Unit, etc.) so that they can be used
with different unit identifier types: UnitKey, UnitId, Unit, etc.
* GenModule: Module, InstantiatedModule and InstalledModule are now
instances of this type
* Generalize DefUnitId, IndefUnitId, Unit, InstantiatedUnit,
PackageDatabase
Replace BackPack fake "hole" UnitId by a proper HoleUnit constructor.
Add basic support for UnitKey. They should be used more in the future to
avoid mixing them up with UnitId as we do now.
Add many comments.
Update Haddock submodule
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
|
|
|
|
| |
Instead of passing `DynFlags` to functions such as `isStmt` and
`hasImport` in `GHC.Runtime.Eval` we pass `ParserFlags`. It's a much
simpler structure that can be created purely with `mkParserFlags'`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* SysTools
* Parser
* GHC.Builtin
* GHC.Iface.Recomp
* Settings
Update Haddock submodule
Metric Decrease:
Naperian
parsing001
|
| |
|
|
|
|
| |
Update Haddock submodule
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
|
|
| |
Update submodule: haddock
|
|
|
|
|
|
|
|
| |
* `interpreterDynamic` and `interpreterProfiled` now take `Interp`
parameters instead of DynFlags
* slight refactoring of `ExternalInterp` so that we can read the iserv
configuration (which is pure) without reading an MVar.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If ImpredicativeTypes is not enabled, then `:print <term>` will fail if the
type of <term> has nested `forall`s or `=>`s.
This is because the GHCi debugger's internals will attempt to unify a
metavariable with the type of <term> and then display the result, but if the
type has nested `forall`s or `=>`s, then unification will fail.
As a result, `:print` will bail out and the unhelpful result will be
`<term> = (_t1::t1)` (where `t1` is a metavariable).
Beware: <term> can have nested `forall`s even if its definition doesn't use
RankNTypes! Here is an example from #14828:
class Functor f where
fmap :: (a -> b) -> f a -> f b
Somewhat surprisingly, `:print fmap` considers the type of fmap to have
nested foralls. This is because the GHCi debugger sees the type
`fmap :: forall f. Functor f => forall a b. (a -> b) -> f a -> f b`.
We could envision deeply instantiating this type to get the type
`forall f a b. Functor f => (a -> b) -> f a -> f b`,
but this trick wouldn't work for higher-rank types.
Instead, we adopt a simpler fix: enable `ImpredicativeTypes` when using
`:print` and friends in the GHCi debugger. This is allows metavariables
to unify with types that have nested (or higher-rank) `forall`s/`=>`s,
which makes `:print fmap` display as
`fmap = (_t1::forall a b. Functor f => (a -> b) -> f a -> f b)`, as expected.
Although ImpredicativeTypes is a somewhat unpredictable from a type inference
perspective, there is no danger in using it in the GHCi debugger, since all
of the terms that the GHCi debugger deals with have already been typechecked.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(#2950)
GHCi is split up into 2 major parts: The user-interface (UI)
and the byte-code interpreter. With `-fexternal-interpreter`
they even run in different processes. Communication between
the UI and the Interpreter (called `iserv`) is done using
messages over a pipe. This is called `Remote GHCI` and
explained in the Note [Remote GHCi] in `compiler/ghci/GHCi.hs`.
To process a `:force` command the UI sends a `Seq` message
to the `iserv` process. Then `iserv` does the effective
evaluation of the value. When during this process a breakpoint
is hit, the `iserv` process has no additional information to
enhance the `Ignoring breakpoint` output with the breakpoint
location.
To be able to print additional breakpoint information,
there are 2 possible implementation choices:
1. Store the needed information in the `iserv` process.
2. Print the `Ignoring breakpoint` from the UI process.
For option 1 we need to store the breakpoint info redundantely
in 2 places and this is bad. Therfore option 2 was implemented
in this MR:
- The user enters a `force` command
- The UI sends a `Seq` message to the `iserv` process.
- If processing of the `Seq` message hits a breakpoint,
the `iserv` process returns control to the UI process.
- The UI looks up the source location of the breakpoint,
and prints the enhanced `Ignoring breakpoint` output.
- The UI sends a `ResumeSeq` message to the `iserv` process,
to continue forcing.
|