| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
* Introduce refactorDupsOn f = refactorDups (comparing f)
* Make mkBigTupleCase and coreCaseTuple monadic.
Every call to those functions was preceded by calling newUniqueSupply.
* Use mkUserLocalOrCoVar, which is equivalent to combining
mkLocalIdOrCoVar with mkInternalName.
|
|
|
|
|
|
|
| |
This patch removes some orphan instances in the STG namespace
by introducing the GHC.Stg.Lift.Types module, which allows various
type family instances to be moved to GHC.Stg.Syntax, avoiding orphan
instances.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes the fact that we were not reporting orphan family instances
at all. The fix here is easy, but touches a bit of code. I refactored
the code to be much more similar to the way that class instances are done:
- Add a fi_orphan field to FamInst, like the is_orphan field in ClsInst
- Make newFamInst initialise this field, just like newClsInst
- And make newFamInst report a warning for an orphan, just like newClsInst
- I moved newFamInst from GHC.Tc.Instance.Family to GHC.Tc.Utils.Instantiate,
just like newClsInst.
- I added mkLocalFamInst to FamInstEnv, just like mkLocalClsInst in InstEnv
- TcRnOrphanInstance and SuggestFixOrphanInstance are now parametrised
over class instances vs type/data family instances.
Fixes #19773
|
|
|
|
|
|
|
|
|
| |
We were treating a type-family instance as a non-orphan if there
was a type constructor on its /right-hand side/ that was local. Boo!
Utterly wrong. With this patch, we correctly check the /left-hand side/
instead!
Fixes #22717
|
|
|
|
|
|
|
| |
This occname has just been derived from an `Id`, so need to force it
promptly so we can release the Id back to the world.
Another symptom of the bug caused by #19619
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The key part of this change is to store a UnitId in the
`UsageHomeModule` and `UsageHomeModuleInterface`.
* Fine-grained dependency tracking is used if the dependency comes from
any home unit.
* We actually look up the right module when checking whether we need to
recompile in the `UsageHomeModuleInterface` case.
These scenarios are both checked by the new tests (
multipleHomeUnits_recomp and multipleHomeUnits_recomp_th )
Fixes #22675
|
|
|
|
|
|
|
|
|
|
|
|
| |
Problem: In 2463df2f, the Solo data constructor was renamed to MkSolo,
and Solo was turned into a pattern synonym for backwards compatibility.
Since pattern synonyms can not be promoted, the old code that pretty-printed
promoted single-element tuples started producing ill-typed code:
t :: Proxy ('Solo Int)
This fails with "Pattern synonym ‘Solo’ used as a type"
The solution is to track the distinction between type constructors and data
constructors more carefully when printing single-element tuples.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All the issues here have been caused by #18758.
The goal of the ticket is to be able to talk about things like
`LTyClDecl GhcTc`. In the case of HsMatchContext,
the correct "context" is whatever we want, and in fact storing just a
`Name` is sufficient and correct context, even if the rest of the AST is
storing typechecker Ids.
So this reverts (#20415, !5579) which intended to get closed to #18758 but
didn't really and introduced a few subtle bugs.
Printing of an error message in #22695 would just hang, because we would
attempt to print the `Id` in debug mode to assertain whether it was
empty or not. Printing the Name is fine for the error message.
Another consequence is that when `-dppr-debug` was enabled the compiler would
hang because the debug printing of the Id would try and print fields
which were not populated yet.
This also led to 32070e6c2e1b4b7c32530a9566fe14543791f9a6 having to add
a workaround for the `checkArgs` function which was probably a very
similar bug to #22695.
Fixes #22695
|
|
|
|
| |
Updates the haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements proposal 547 and closes ticket #22298.
See the proposal and ticket for motivation.
Compiler perf improves a bit
Metrics: compile_time/bytes allocated
-------------------------------------
CoOpt_Singletons(normal) -2.4% GOOD
T12545(normal) +1.0%
T13035(normal) -13.5% GOOD
T18478(normal) +0.9%
T9872d(normal) -2.2% GOOD
geo. mean -0.2%
minimum -13.5%
maximum +1.0%
Metric Decrease:
CoOpt_Singletons
T13035
T9872d
|
|
|
|
|
|
|
|
|
|
| |
A minor optimization to remove lazy IO and a lazy accumulator
strictify foldGet'
IFace.Binary: use strict foldGet'
remove superfluous bang
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As discovered in #22272, dehydration of the unfolding info of a
recursive definition used to involve a traversal of the definition
itself, which in turn involves traversing the unfolding info. Hence,
a loop.
Instead, we now store enough data in the interface that we can produce
the unfolding info without this traversal. See Note [Tying the 'CoreUnfolding' knot]
for details.
Fixes #22272
Co-authored-by: Simon Peyton Jones <simon.peytonjones@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In #22217 it was observed that the order modules are compiled in affects
the contents of an interface file. This was because a module dependended
on another module indirectly, via a re-export but the interface file for
this module was never loaded because the symbol was never used in the
file.
If we decide that we depend on a module then we jolly well ought to
record this fact in the interface file! Otherwise it could lead to very
subtle recompilation bugs if the dependency is not tracked and the
module is updated.
Therefore the best thing to do is just to make sure the file is loaded
by calling the `loadSysInterface` function. This first checks the
caches (like we did before) but then actually goes to find the interface
on disk if it wasn't loaded.
Fixes #22217
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There was some code in the signature merging logic which added together
the ImportAvails of the signature and the signature which was merged
into it. This had the side-effect of making the merged signature depend
on the signature (via a normal module dependency). The intention was to
propagate orphan instances through the merge but this also messed up
recompilation logic because we shouldn't be attempting to load B.hi when
mergeing it.
The fix is to just combine the part of ImportAvails that we intended to
(transitive info, orphan instances and type family instances) rather
than the whole thing.
|
|
|
|
|
|
|
|
|
|
|
| |
This patch changes the representation of TyCon so that it has
a top-level product type, with a field that gives the details
(newtype, type family etc), #22458.
Not much change in allocation, but execution seems to be a bit
faster.
Includes a change to the haddock submodule to adjust for API changes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add JS backend adapted from the GHCJS project by Luite Stegeman.
Some features haven't been ported or implemented yet. Tests for these
features have been disabled with an associated gitlab ticket.
Bump array submodule
Work funded by IOG.
Co-authored-by: Jeffrey Young <jeffrey.young@iohk.io>
Co-authored-by: Luite Stegeman <stegeman@gmail.com>
Co-authored-by: Josh Meredith <joshmeredith2008@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, GHC unconditionally printed ticks before promoted
data constructors:
ghci> type T = True -- unticked (user-written)
ghci> :kind! T
T :: Bool
= 'True -- ticked (compiler output)
After this patch, GHC prints ticks only when necessary:
ghci> type F = False -- unticked (user-written)
ghci> :kind! F
F :: Bool
= False -- unticked (compiler output)
ghci> data False -- introduce ambiguity
ghci> :kind! F
F :: Bool
= 'False -- ticked by necessity (compiler output)
The old behavior can be enabled by -fprint-redundant-promotion-ticks.
Summary of changes:
* Rename PrintUnqualified to NamePprCtx
* Add QueryPromotionTick to it
* Consult the GlobalRdrEnv to decide whether to print a tick (see mkPromTick)
* Introduce -fprint-redundant-promotion-ticks
Co-authored-by: Artyom Kuznetsov <hi@wzrd.ht>
|
|
|
|
|
|
| |
Updating this note was missed when updating the HPT to the HUG.
Fixes #22477
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes pretty-printing of character literals
inside promoted lists and tuples.
When we pretty-print a promoted list or tuple whose first element
starts with a single quote, we want to add a space between the opening
bracket and the element:
'[True] -- ok
'[ 'True] -- ok
'['True] -- not ok
If we don't add the space, we accidentally produce a character
literal '['.
Before this patch, pprSpaceIfPromotedTyCon inspected the type as an AST
and tried to guess if it would be rendered with a single quote. However,
it missed the case when the inner type was itself a character literal:
'[ 'x'] -- ok
'['x'] -- not ok
Instead of adding this particular case, I opted for a more future-proof
solution: check the SDoc directly. This way we can detect if the single
quote is actually there instead of trying to predict it from the AST.
The new function is called spaceIfSingleQuote.
|
| |
|
|
|
|
|
|
|
| |
Since Constraint became a synonym for CONSTRAINT 'LiftedRep,
we need the same code for handling printing as for the synonym
Type = TYPE 'LiftedRep.
This addresses the same bug as #18594, so I'm reusing the test.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This big patch addresses the rats-nest of issues that have plagued
us for years, about the relationship between Type and Constraint.
See #11715/#21623.
The main payload of the patch is:
* To introduce CONSTRAINT :: RuntimeRep -> Type
* To make TYPE and CONSTRAINT distinct throughout the compiler
Two overview Notes in GHC.Builtin.Types.Prim
* Note [TYPE and CONSTRAINT]
* Note [Type and Constraint are not apart]
This is the main complication.
The specifics
* New primitive types (GHC.Builtin.Types.Prim)
- CONSTRAINT
- ctArrowTyCon (=>)
- tcArrowTyCon (-=>)
- ccArrowTyCon (==>)
- funTyCon FUN -- Not new
See Note [Function type constructors and FunTy]
and Note [TYPE and CONSTRAINT]
* GHC.Builtin.Types:
- New type Constraint = CONSTRAINT LiftedRep
- I also stopped nonEmptyTyCon being built-in; it only needs to be wired-in
* Exploit the fact that Type and Constraint are distinct throughout GHC
- Get rid of tcView in favour of coreView.
- Many tcXX functions become XX functions.
e.g. tcGetCastedTyVar --> getCastedTyVar
* Kill off Note [ForAllTy and typechecker equality], in (old)
GHC.Tc.Solver.Canonical. It said that typechecker-equality should ignore
the specified/inferred distinction when comparein two ForAllTys. But
that wsa only weakly supported and (worse) implies that we need a separate
typechecker equality, different from core equality. No no no.
* GHC.Core.TyCon: kill off FunTyCon in data TyCon. There was no need for it,
and anyway now we have four of them!
* GHC.Core.TyCo.Rep: add two FunTyFlags to FunCo
See Note [FunCo] in that module.
* GHC.Core.Type. Lots and lots of changes driven by adding CONSTRAINT.
The key new function is sORTKind_maybe; most other changes are built
on top of that.
See also `funTyConAppTy_maybe` and `tyConAppFun_maybe`.
* Fix a longstanding bug in GHC.Core.Type.typeKind, and Core Lint, in
kinding ForAllTys. See new tules (FORALL1) and (FORALL2) in GHC.Core.Type.
(The bug was that before (forall (cv::t1 ~# t2). blah), where
blah::TYPE IntRep, would get kind (TYPE IntRep), but it should be
(TYPE LiftedRep). See Note [Kinding rules for types] in GHC.Core.Type.
* GHC.Core.TyCo.Compare is a new module in which we do eqType and cmpType.
Of course, no tcEqType any more.
* GHC.Core.TyCo.FVs. I moved some free-var-like function into this module:
tyConsOfType, visVarsOfType, and occCheckExpand. Refactoring only.
* GHC.Builtin.Types. Compiletely re-engineer boxingDataCon_maybe to
have one for each /RuntimeRep/, rather than one for each /Type/.
This dramatically widens the range of types we can auto-box.
See Note [Boxing constructors] in GHC.Builtin.Types
The boxing types themselves are declared in library ghc-prim:GHC.Types.
GHC.Core.Make. Re-engineer the treatment of "big" tuples (mkBigCoreVarTup
etc) GHC.Core.Make, so that it auto-boxes unboxed values and (crucially)
types of kind Constraint. That allows the desugaring for arrows to work;
it gathers up free variables (including dictionaries) into tuples.
See Note [Big tuples] in GHC.Core.Make.
There is still work to do here: #22336. But things are better than
before.
* GHC.Core.Make. We need two absent-error Ids, aBSENT_ERROR_ID for types of
kind Type, and aBSENT_CONSTRAINT_ERROR_ID for vaues of kind Constraint.
Ditto noInlineId vs noInlieConstraintId in GHC.Types.Id.Make;
see Note [inlineId magic].
* GHC.Core.TyCo.Rep. Completely refactor the NthCo coercion. It is now called
SelCo, and its fields are much more descriptive than the single Int we used to
have. A great improvement. See Note [SelCo] in GHC.Core.TyCo.Rep.
* GHC.Core.RoughMap.roughMatchTyConName. Collapse TYPE and CONSTRAINT to
a single TyCon, so that the rough-map does not distinguish them.
* GHC.Core.DataCon
- Mainly just improve documentation
* Some significant renamings:
GHC.Core.Multiplicity: Many --> ManyTy (easier to grep for)
One --> OneTy
GHC.Core.TyCo.Rep TyCoBinder --> GHC.Core.Var.PiTyBinder
GHC.Core.Var TyCoVarBinder --> ForAllTyBinder
AnonArgFlag --> FunTyFlag
ArgFlag --> ForAllTyFlag
GHC.Core.TyCon TyConTyCoBinder --> TyConPiTyBinder
Many functions are renamed in consequence
e.g. isinvisibleArgFlag becomes isInvisibleForAllTyFlag, etc
* I refactored FunTyFlag (was AnonArgFlag) into a simple, flat data type
data FunTyFlag
= FTF_T_T -- (->) Type -> Type
| FTF_T_C -- (-=>) Type -> Constraint
| FTF_C_T -- (=>) Constraint -> Type
| FTF_C_C -- (==>) Constraint -> Constraint
* GHC.Tc.Errors.Ppr. Some significant refactoring in the TypeEqMisMatch case
of pprMismatchMsg.
* I made the tyConUnique field of TyCon strict, because I
saw code with lots of silly eval's. That revealed that
GHC.Settings.Constants.mAX_SUM_SIZE can only be 63, because
we pack the sum tag into a 6-bit field. (Lurking bug squashed.)
Fixes
* #21530
Updates haddock submodule slightly.
Performance changes
~~~~~~~~~~~~~~~~~~~
I was worried that compile times would get worse, but after
some careful profiling we are down to a geometric mean 0.1%
increase in allocation (in perf/compiler). That seems fine.
There is a big runtime improvement in T10359
Metric Decrease:
LargeRecord
MultiLayerModulesTH_OneShot
T13386
T13719
Metric Increase:
T8095
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There were two bugs here:
1. Treating type-level constructors as PromotedDataCon doesn't always
work, in particular because constructors promoted via DataKinds are
called both T and 'T. (Tests T22332a, T22332b, T22315a, T22315b)
Fix: guard these cases with isDataKindsPromotedDataCon.
2. Type-level constructors were sent to the code generator, producing
things like constructor wrappers. (Tests T22332a, T22332b)
Fix: test for them in isDataTyCon.
Other changes:
* changed the marking of "type data" DataCon's as suggested by SPJ.
* added a test TDGADT for a type-level GADT.
* comment tweaks
* change tcIfaceTyCon to ignore IfaceTyConInfo, so that IfaceTyConInfo
is used only for pretty printing, not for typechecking. (SPJ)
|
|
|
|
|
|
|
| |
Pass FastStrings to functions directly, to make sure the rule
for fsLit "literal" fires.
Remove SDoc indirection in GHCi.UI.Tags and GHC.Unit.Module.Graph.
|
|
|
|
|
| |
Introduces GHC.Prelude.Basic which can be used in modules which are a
dependency of the ppr code.
|
|
|
|
|
|
|
|
|
|
|
| |
* Rename pprCLabel to pprCLabelStyle, and use the name pprCLabel
for a function using CStyle (analogous to pprAsmLabel)
* Move LabelStyle to the CLabel module, it no longer needs to be in Outputable.
* Move calls to 'text' right next to literals, to make sure the text/str
rule is triggered.
* Remove FastString/String roundtrip in Tc.Deriv.Generate
* Introduce showSDocForUser', which abstracts over a pattern in
GHCi.UI
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change aims to minimize source location information leaking
into interface files, which makes ABI hashes dependent on the
build location.
The `Binary (Located a)` instance has been removed completely.
It seems that the HIE interface still needs the ability to
serialize SrcSpans, but by wrapping the instances, it should
be a lot more difficult to inadvertently add source location
information.
|
| |
|
|
|
|
| |
Lets us avoid some use of `head` and `tail`, and some panics.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I had assumed that wrappers were not inlined in interactive mode.
Meaning we would always execute the compiled wrapper which properly
takes care of upholding the strict field invariant.
This turned out to be wrong. So instead we now run tag inference even
when we generate bytecode. In that case only for correctness not
performance reasons although it will be still beneficial for runtime
in some cases.
I further fixed a bug where GHCi didn't tag nullary constructors
properly when used as arguments. Which caused segfaults when calling
into compiled functions which expect the strict field invariant to
be upheld.
Fixes #22042 and #21083
-------------------------
Metric Increase:
T4801
Metric Decrease:
T13035
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ticket #22162 pointed out that the build directory was leaking into the
ABI hash of a module because the BufPos depended on the location of the
build tree.
BufPos is only used in GHC.Parser.PostProcess.Haddock, and the
information doesn't need to be propagated outside the context of a
module.
Fixes #22162
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds three new flags
* -fwrite-if-simplified-core: Writes the whole core program into an interface
file
* -fbyte-code-and-object-code: Generate both byte code and object code
when compiling a file
* -fprefer-byte-code: Prefer to use byte-code if it's available when
running TH splices.
The goal for including the core bindings in an interface file is to be able to restart the compiler pipeline
at the point just after simplification and before code generation. Once compilation is
restarted then code can be created for the byte code backend.
This can significantly speed up
start-times for projects in GHCi. HLS already implements its own version of these extended interface
files for this reason.
Preferring to use byte-code means that we can avoid some potentially
expensive code generation steps (see #21700)
* Producing object code is much slower than producing bytecode, and normally you
need to compile with `-dynamic-too` to produce code in the static and dynamic way, the
dynamic way just for Template Haskell execution when using a dynamically linked compiler.
* Linking many large object files, which happens once per splice, can be quite
expensive compared to linking bytecode.
And you can get GHC to compile the necessary byte code so
`-fprefer-byte-code` has access to it by using
`-fbyte-code-and-object-code`.
Fixes #21067
|
|
|
|
|
| |
We want to put implicit binds into fat interface files, so the easiest
thing to do seems to be to treat them uniformly with other binders.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I finally got tired of the way that IfaceUnfolding reflected
a previous structure of unfoldings, not the current one. This
MR refactors UnfoldingSource and IfaceUnfolding to be simpler
and more consistent.
It's largely just a refactor, but in UnfoldingSource (which moves
to GHC.Types.Basic, since it is now used in IfaceSyn too), I
distinguish between /user-specified/ and /system-generated/ stable
unfoldings.
data UnfoldingSource
= VanillaSrc
| StableUserSrc -- From a user-specified pragma
| StableSystemSrc -- From a system-generated unfolding
| CompulsorySrc
This has a minor effect in CSE (see the use of isisStableUserUnfolding
in GHC.Core.Opt.CSE), which I tripped over when working on
specialisation, but it seems like a Good Thing to know anyway.
|
|
|
|
|
|
|
|
| |
Rather than a list of constructors and a `NewOrData` flag, we define `data DataDefnCons a = NewTypeCon a | DataTypeCons [a]`, which enforces a newtype to have exactly one constructor.
Closes #22070.
Bump haddock submodule.
|
|
|
|
|
|
|
|
|
|
| |
• Delete some dead code, largely under `GHC.Utils`.
• Clean up a few definitions in `GHC.Utils.(Misc, Monad)`.
• Clean up `GHC.Types.SrcLoc`.
• Derive stock `Functor, Foldable, Traversable` for more types.
• Derive more instances for newtypes.
Bump haddock submodule.
|
|
|
|
|
|
|
| |
This fixes various typos and spelling mistakes
in the compiler.
Fixes #21891
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR adds diagnostic codes, assigning unique numeric codes to
error and warnings, e.g.
error: [GHC-53633]
Pattern match is redundant
This is achieved as follows:
- a type family GhcDiagnosticCode that gives the diagnostic code
for each diagnostic constructor,
- a type family ConRecursInto that specifies whether to recur into
an argument of the constructor to obtain a more fine-grained code
(e.g. different error codes for different 'deriving' errors),
- generics machinery to generate the value-level function assigning
each diagnostic its error code; see Note [Diagnostic codes using generics]
in GHC.Types.Error.Codes.
The upshot is that, to add a new diagnostic code, contributors only need
to modify the two type families mentioned above. All logic relating to
diagnostic codes is thus contained to the GHC.Types.Error.Codes module,
with no code duplication.
This MR also refactors error message datatypes a bit, ensuring we can
derive Generic for them, and cleans up the logic around constraint
solver reports by splitting up 'TcSolverReportInfo' into separate
datatypes (see #20772).
Fixes #21684
|
|
|
|
|
| |
Use 'text' instead of 'ppr'.
Using 'ppr' on the list "hello" rendered as "h,e,l,l,o".
|
|
|
|
|
|
|
|
| |
As the remarkably-simple #22112 showed, we were making a black hole
in the unfolding of a self-recursive binding. Boo!
It's a bit tricky. Documented in GHC.Iface.Tidy,
Note [tidyTopUnfolding: avoiding black holes]
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, the SDocContext used for code generation contained
information whether the labels should use Asm or C style.
However, at every individual call site, this is known statically.
This removes the parameter to 'PprCode' and replaces every 'pdoc'
used to print a label in code style with 'pprCLabel' or 'pprAsmLabel'.
The OutputableP instance is now used only for dumps.
The output of T15155 changes, it now uses the Asm style
(which is faithful to what actually happens).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR fixes #21694, #21755. It also makes sure that #21948 and
fix to #21694.
* For #21694 the underlying problem was that we were calling arityType
on an expression that had free join points. This is a Bad Bad Idea.
See Note [No free join points in arityType].
* To make "no free join points in arityType" work out I had to avoid
trying to use eta-expansion for runRW#. This entailed a few changes
in the Simplifier's treatment of runRW#. See
GHC.Core.Opt.Simplify.Iteration Note [No eta-expansion in runRW#]
* I also made andArityType work correctly with -fpedantic-bottoms;
see Note [Combining case branches: andWithTail].
* Rewrote Note [Combining case branches: optimistic one-shot-ness]
* arityType previously treated join points differently to other
let-bindings. This patch makes them unform; arityType analyses
the RHS of all bindings to get its ArityType, and extends am_sigs.
I realised that, now we have am_sigs giving the ArityType for
let-bound Ids, we don't need the (pre-dating) special code in
arityType for join points. But instead we need to extend the env for
Rec bindings, which weren't doing before. More uniform now. See
Note [arityType for let-bindings].
This meant we could get rid of ae_joins, and in fact get rid of
EtaExpandArity altogether. Simpler.
* And finally, it was the strange treatment of join-point Ids in
arityType (involving a fake ABot type) that led to a serious bug:
#21755. Fixed by this refactoring, which treats them uniformly;
but without breaking #18328.
In fact, the arity for recursive join bindings is pretty tricky;
see the long Note [Arity for recursive join bindings]
in GHC.Core.Opt.Simplify.Utils. That led to more refactoring,
including deciding that an Id could have an Arity that is bigger
than its JoinArity; see Note [Invariants on join points], item
2(b) in GHC.Core
* Make sure that the "demand threshold" for join points in DmdAnal
is no bigger than the join-arity. In GHC.Core.Opt.DmdAnal see
Note [Demand signatures are computed for a threshold arity based on idArity]
* I moved GHC.Core.Utils.exprIsDeadEnd into GHC.Core.Opt.Arity,
where it more properly belongs.
* Remove an old, redundant hack in FloatOut. The old Note was
Note [Bottoming floats: eta expansion] in GHC.Core.Opt.SetLevels.
Compile time improves very slightly on average:
Metrics: compile_time/bytes allocated
---------------------------------------------------------------------------------------
T18223(normal) ghc/alloc 725,808,720 747,839,216 +3.0% BAD
T6048(optasm) ghc/alloc 105,006,104 101,599,472 -3.2% GOOD
geo. mean -0.2%
minimum -3.2%
maximum +3.0%
For some reason Windows was better
T10421(normal) ghc/alloc 125,888,360 124,129,168 -1.4% GOOD
T18140(normal) ghc/alloc 85,974,520 83,884,224 -2.4% GOOD
T18698b(normal) ghc/alloc 236,764,568 234,077,288 -1.1% GOOD
T18923(normal) ghc/alloc 75,660,528 73,994,512 -2.2% GOOD
T6048(optasm) ghc/alloc 112,232,512 108,182,520 -3.6% GOOD
geo. mean -0.6%
I had a quick look at T18223 but it is knee deep in coercions and
the size of everything looks similar before and after. I decided
to accept that 3% increase in exchange for goodness elsewhere.
Metric Decrease:
T10421
T18140
T18698b
T18923
T6048
Metric Increase:
T18223
|
|
|
|
| |
Now we also filter the local rules (again) which fixes the issue.
|
|
|
|
|
|
|
|
| |
If these thunks are not forced then the entire unfolding for the binding
is live throughout the whole of CodeGen despite the fact it should have
been discarded.
Fixes #22071
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For the code
{-# LANGUAGE OverloadedRecordUpdate #-}
operatorUpdate f = f{(+) = 1}
There are no exact print annotations for the parens around the +
symbol, nor does normal ppr print them.
This MR fixes that.
Closes #21805
Updates haddock submodule
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The former behaviour of adding cost centres after optimization but
before unfoldings are created is not available via the flag
`prof-late-inline` instead.
I also reduced the overhead of -fprof-late* by pushing the cost centres
into lambdas. This means the cost centres will only account for
execution of functions and not their partial application.
Further I made LATE_CC cost centres it's own CC flavour so they now
won't clash with user defined ones if a user uses the same string for
a custom scc.
LateCC: Don't put cost centres inside constructor workers.
With -fprof-late they are rarely useful as the worker is usually
inlined. Even if the worker is not inlined or we use -fprof-late-linline
they are generally not helpful but bloat compile and run time
significantly. So we just don't add sccs inside constructor workers.
-------------------------
Metric Decrease:
T13701
-------------------------
|
| |
|
|
|
|
|
|
| |
I observed some unforced thunks in the NameCache which were retaining a
whole Id, which ends up retaining a Type.. which ends up retaining old
copies of HscEnv containing stale HomeModInfo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes the TCvSubst data type and instead uses Subst as
the environment for both term and type level substitution. This
change is partially motivated by the existential type proposal,
which will introduce types that contain expressions and therefore
forces us to carry around an "IdSubstEnv" even when substituting for
types. It also reduces the amount of code because "Subst" and
"TCvSubst" share a lot of common operations. There isn't any
noticeable impact on performance (geo. mean for ghc/alloc is around
0.0% but we have -94 loc and one less data type to worry abount).
Currently, the "TCvSubst" data type for substitution on types is
identical to the "Subst" data type except the former doesn't store
"IdSubstEnv". Using "Subst" for type-level substitution means there
will be a redundant field stored in the data type. However, in cases
where the substitution starts from the expression, using "Subst" for
type-level substitution saves us from having to project "Subst" into a
"TCvSubst". This probably explains why the allocation is mostly even
despite the redundant field.
The patch deletes "TCvSubst" and moves "Subst" and its relevant
functions from "GHC.Core.Subst" into "GHC.Core.TyCo.Subst".
Substitution on expressions is still defined in "GHC.Core.Subst" so we
don't have to expose the definition of "Expr" in the hs-boot file that
"GHC.Core.TyCo.Subst" must import to refer to "IdSubstEnv" (whose
codomain is "CoreExpr"). Most functions named fooTCvSubst are renamed
into fooSubst with a few exceptions (e.g. "isEmptyTCvSubst" is a
distinct function from "isEmptySubst"; the former ignores the
emptiness of "IdSubstEnv"). These exceptions mainly exist for
performance reasons and will go away when "Expr" and "Type" are
mutually recursively defined (we won't be able to take those
shortcuts if we can't make the assumption that expressions don't
appear in types).
|