| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pretty-printing of partially applied unboxed sums was incorrect,
as we incorrectly dropped the first half of the arguments, even
for a partial application such as
(# | #) @IntRep @DoubleRep Int#
which lead to the nonsensical (# DoubleRep | Int# #).
This patch also allows users to write unboxed sum type constructors
such as
(# | #) :: TYPE r1 -> TYPE r2 -> TYPE (SumRep '[r1,r2]).
Fixes #20858 and #20859.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Multiple home units allows you to load different packages which may depend on
each other into one GHC session. This will allow both GHCi and HLS to support
multi component projects more naturally.
Public Interface
~~~~~~~~~~~~~~~~
In order to specify multiple units, the -unit @⟨filename⟩ flag
is given multiple times with a response file containing the arguments for each unit.
The response file contains a newline separated list of arguments.
```
ghc -unit @unitLibCore -unit @unitLib
```
where the `unitLibCore` response file contains the normal arguments that cabal would pass to `--make` mode.
```
-this-unit-id lib-core-0.1.0.0
-i
-isrc
LibCore.Utils
LibCore.Types
```
The response file for lib, can specify a dependency on lib-core, so then modules in lib can use modules from lib-core.
```
-this-unit-id lib-0.1.0.0
-package-id lib-core-0.1.0.0
-i
-isrc
Lib.Parse
Lib.Render
```
Then when the compiler starts in --make mode it will compile both units lib and lib-core.
There is also very basic support for multiple home units in GHCi, at the
moment you can start a GHCi session with multiple units but only the
:reload is supported. Most commands in GHCi assume a single home unit,
and so it is additional work to work out how to modify the interface to
support multiple loaded home units.
Options used when working with Multiple Home Units
There are a few extra flags which have been introduced specifically for
working with multiple home units. The flags allow a home unit to pretend
it’s more like an installed package, for example, specifying the package
name, module visibility and reexported modules.
-working-dir ⟨dir⟩
It is common to assume that a package is compiled in the directory
where its cabal file resides. Thus, all paths used in the compiler
are assumed to be relative to this directory. When there are
multiple home units the compiler is often not operating in the
standard directory and instead where the cabal.project file is
located. In this case the -working-dir option can be passed which
specifies the path from the current directory to the directory the
unit assumes to be it’s root, normally the directory which contains
the cabal file.
When the flag is passed, any relative paths used by the compiler are
offset by the working directory. Notably this includes -i and
-I⟨dir⟩ flags.
-this-package-name ⟨name⟩
This flag papers over the awkward interaction of the PackageImports
and multiple home units. When using PackageImports you can specify
the name of the package in an import to disambiguate between modules
which appear in multiple packages with the same name.
This flag allows a home unit to be given a package name so that you
can also disambiguate between multiple home units which provide
modules with the same name.
-hidden-module ⟨module name⟩
This flag can be supplied multiple times in order to specify which
modules in a home unit should not be visible outside of the unit it
belongs to.
The main use of this flag is to be able to recreate the difference
between an exposed and hidden module for installed packages.
-reexported-module ⟨module name⟩
This flag can be supplied multiple times in order to specify which
modules are not defined in a unit but should be reexported. The
effect is that other units will see this module as if it was defined
in this unit.
The use of this flag is to be able to replicate the reexported
modules feature of packages with multiple home units.
Offsetting Paths in Template Haskell splices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When using Template Haskell to embed files into your program,
traditionally the paths have been interpreted relative to the directory
where the .cabal file resides. This causes problems for multiple home
units as we are compiling many different libraries at once which have
.cabal files in different directories.
For this purpose we have introduced a way to query the value of the
-working-dir flag to the Template Haskell API. By using this function we
can implement a makeRelativeToProject function which offsets a path
which is relative to the original project root by the value of
-working-dir.
```
import Language.Haskell.TH.Syntax ( makeRelativeToProject )
foo = $(makeRelativeToProject "./relative/path" >>= embedFile)
```
> If you write a relative path in a Template Haskell splice you should use the makeRelativeToProject function so that your library works correctly with multiple home units.
A similar function already exists in the file-embed library. The
function in template-haskell implements this function in a more robust
manner by honouring the -working-dir flag rather than searching the file
system.
Closure Property for Home Units
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For tools or libraries using the API there is one very important closure
property which must be adhered to:
> Any dependency which is not a home unit must not (transitively) depend
on a home unit.
For example, if you have three packages p, q and r, then if p depends on
q which depends on r then it is illegal to load both p and r as home
units but not q, because q is a dependency of the home unit p which
depends on another home unit r.
If you are using GHC by the command line then this property is checked,
but if you are using the API then you need to check this property
yourself. If you get it wrong you will probably get some very confusing
errors about overlapping instances.
Limitations of Multiple Home Units
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are a few limitations of the initial implementation which will be smoothed out on user demand.
* Package thinning/renaming syntax is not supported
* More complicated reexports/renaming are not yet supported.
* It’s more common to run into existing linker bugs when loading a
large number of packages in a session (for example #20674, #20689)
* Backpack is not yet supported when using multiple home units.
* Dependency chasing can be quite slow with a large number of
modules and packages.
* Loading wired-in packages as home units is currently not supported
(this only really affects GHC developers attempting to load
template-haskell).
* Barely any normal GHCi features are supported, it would be good to
support enough for ghcid to work correctly.
Despite these limitations, the implementation works already for nearly
all packages. It has been testing on large dependency closures,
including the whole of head.hackage which is a total of 4784 modules
from 452 packages.
Internal Changes
~~~~~~~~~~~~~~~~
* The biggest change is that the HomePackageTable is replaced with the
HomeUnitGraph. The HomeUnitGraph is a map from UnitId to HomeUnitEnv,
which contains information specific to each home unit.
* The HomeUnitEnv contains:
- A unit state, each home unit can have different package db flags
- A set of dynflags, each home unit can have different flags
- A HomePackageTable
* LinkNode: A new node type is added to the ModuleGraph, this is used to
place the linking step into the build plan so linking can proceed in
parralel with other packages being built.
* New invariant: Dependencies of a ModuleGraphNode can be completely
determined by looking at the value of the node. In order to achieve
this, downsweep now performs a more complete job of downsweeping and
then the dependenices are recorded forever in the node rather than
being computed again from the ModSummary.
* Some transitive module calculations are rewritten to use the
ModuleGraph which is more efficient.
* There is always an active home unit, which simplifies modifying a lot
of the existing API code which is unit agnostic (for example, in the
driver).
The road may be bumpy for a little while after this change but the
basics are well-tested.
One small metric increase, which we accept and also submodule update to
haddock which removes ExtendedModSummary.
Closes #10827
-------------------------
Metric Increase:
MultiLayerModules
-------------------------
Co-authored-by: Fendor <power.walross@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Plugins were directly fetched from HscEnv (hsc_static_plugins and
hsc_plugins). The tight coupling of plugins and of HscEnv is undesirable
and it's better to store them in a new Plugins datatype and to use it in
the plugins' API (e.g. withPlugins, mapPlugins...).
In the process, the interactive context (used by GHCi) got proper
support for different static plugins than those used for loaded modules.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
isUnliftedTyCon was used in three places: Ticky, Template Haskell
and FFI checks.
It was straightforward to remove it from Ticky and Template Haskell.
It is now used in FFI only and renamed to marshalablePrimTyCon.
Previously, it was fetching information from a field
in PrimTyCon called is_unlifted. Instead, I've changed the code
to compute liftedness based on the kind.
isFFITy and legalFFITyCon are removed. They were only referred from
an old comment that I removed.
There were three functions to define a PrimTyCon, but the only difference
was that they were setting is_unlifted to True or False.
Everything is now done in mkPrimTyCon.
I also added missing integer types in Ticky.hs, I think it was an oversight.
Fixes #20401
|
|
|
|
|
|
|
|
| |
There were two ways to indicate that a TTG constructor is unused in a phase:
`NoExtCon` and `Void`. This unifies the code, and uses the name
'DataConCantHappen', following the discussion at MR 7041.
Updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Remove `getTag_RDR` (unused), `tidyKind` and `tidyOpenKind`
(already available as `tidyType` and `tidyOpenType`)
* Remove Note [Explicit Case Statement for Specificity].
Since 0a709dd9876e40 we require GHC 8.10 for bootstrapping.
* Change the warning to `cmpAltCon` to a panic.
This shouldn't happen. If it ever does, the code was wrong anyway:
it shouldn't always return `LT`, but rather `LT` in one case
and `GT` in the other case.
* Rename `verifyLinearConstructors` to `verifyLinearFields`
* Fix `Note [Local record selectors]` which was not referenced
* Remove vestiges of `type +v`
* Minor fixes to StaticPointers documentation, part of #15603
|
|
|
|
|
|
|
|
|
| |
This is a preliminary refactoring for #14335 (supporting plugins in
cross-compilers). In many places the home-unit must be optional because
there won't be one available in the plugin environment (we won't be
compiling anything in this environment). Hence we replace "HomeUnit"
with "Maybe HomeUnit" in a few places and we avoid the use of
"hsc_home_unit" (which is partial) in some few others.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We should still default kind variables in type families
in the presence of -XNoPolyKinds, to avoid suggesting enabling
-XPolyKinds just because the function arrow introduced kind variables,
e.g.
type family F (t :: Type) :: Type where
F (a -> b) = b
With -XNoPolyKinds, we should still default `r :: RuntimeRep`
in `a :: TYPE r`.
Fixes #20584
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Type kind is printed unqualified:
ghci> :set -XNoStarIsType
ghci> :k (->)
(->) :: Type -> Type -> Type
This is the desired behavior unless the user has defined
their own Type:
ghci> data Type
Then we want to resolve the ambiguity by qualification:
ghci> :k (->)
(->) :: GHC.Types.Type -> GHC.Types.Type -> GHC.Types.Type
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The ghc-exactPrint library has had to re-introduce the relatavise
phase.
This is needed if you change the length of an identifier and want the
layout to be preserved afterwards.
It is not possible to relatavise a bare SrcSpan, so introduce `SrcAnn
NoEpAnns` for them instead.
Updates haddock submodule.
|
|
|
|
| |
One more step towards the new design of EPA.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes the following defaulting of type variables
in type and data families:
- type variables of kind RuntimeRep defaulting to LiftedRep
- type variables of kind Levity defaulting to Lifted
- type variables of kind Multiplicity defaulting to Many
It does this by passing "defaulting options" to the `defaultTyVars`
function; when calling from `tcTyFamInstEqnGuts` or
`tcDataFamInstHeader` we pass options that avoid defaulting.
This avoids wildcards being defaulted, which caused type families
to unexpectedly fail to reduce.
Note that kind defaulting, applicable only with -XNoPolyKinds,
is not changed by this patch.
Fixes #17536
-------------------------
Metric Increase:
T12227
-------------------------
|
|
|
|
|
| |
This allows us to use an Anchor with a DeltaPos in it when exact
printing.
|
|
|
|
|
|
|
|
|
| |
Use an (Raw)PkgQual datatype instead of `Maybe FastString` to represent
package imports. Factorize the code that renames RawPkgQual into PkgQual
in function `rnPkgQual`. Renaming consists in checking if the FastString
is the magic "this" keyword, the home-unit unit-id or something else.
Bump haddock submodule
|
|
|
|
| |
We no longer need it after previous IndefUnitId refactoring.
|
|
|
|
|
| |
At the moment the note just covers three important invariants but now
there is a place to add more to if we think of them.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This hack inserted for backpack caused a very bad leak when using
-fno-code where EPS entries would end up retaining stale
HomePackageTables. For any interactive user, such as HLS, this is really
bad as once the entry makes it's way into the EPS then it's there for
the rest of the session.
This is a temporary fix which "solves" the issue by filtering the HPT to
only the part which is needed for the hack to work, but in future we
want to separate out hole modules from the HPT entirely to avoid needing
to do this kind of special casing.
-------------------------
Metric Decrease:
MultiLayerModulesDefsGhci
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
At the moment if `-dynamic-too` fails then we rerun the whole pipeline
as if we were just in `-dynamic` mode. I argue this is a misfeature and
we should remove the so-called `DT_Failed` mode.
In what situations do we fall back to `DT_Failed`?
1. If the `dyn_hi` file corresponding to a `hi` file is missing completely.
2. If the interface hash of `dyn_hi` doesn't match the interface hash of `hi`.
What happens in `DT_Failed` mode?
* The whole compiler pipeline is rerun as if the user had just passed `-dynamic`.
* Therefore `dyn_hi/dyn_o` files are used which don't agree with the
`hi/o` files. (As evidenced by `dynamicToo001` test).
* This is very confusing as now a single compiler invocation has
produced further `hi`/`dyn_hi` files which are different to each
other.
Why should we remove it?
* In `--make` mode, which is predominately used `DT_Failed` does not
work (#19782), there can't be users relying on this functionality.
* In `-c` mode, the recovery doesn't fix the root issue, which is the
`dyn_hi` and `hi` files are mismatched. We should instead produce an
error and pass responsibility to the build system using `-c` to ensure
that the prerequisites for `-dynamic-too` (dyn_hi/hi) files are there
before we start compiling.
* It is a misfeature to support use cases like `dynamicToo001` which
allow you to mix different versions of dynamic/non-dynamic interface
files. It's more likely to lead to subtle bugs in your resulting
programs where out-dated build products are used rather than a
deliberate choice.
* In practice, people are usually compiling with `-dynamic-too` rather
than separately with `-dynamic` and `-static`, so the build products
always match and `DT_Failed` is only entered due to compiler bugs (see
!6583)
What should we do instead?
* In `--make` mode, for home packages check during recompilation
checking that `dyn_hi` and `hi` are both present and agree, recompile
the modules if they do not.
* For package modules, when loading the interface check that `dyn_hi`
and `hi` are there and that they agree but fail with an
error message if they are not.
* In `--oneshot` mode, fail with an error message if the right files
aren't already there.
Closes #19782 #20446 #9176 #13616
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ModLocation is the data type which tells you the locations of all the
build products which can affect recompilation. It is now computed in one
place and not modified through the pipeline. Important locations will
now just consult ModLocation rather than construct the dynamic object
path incorrectly.
* Add paths for dynamic object and dynamic interface files to
ModLocation.
* Always use the paths from mod location when looking for where to find
any interface or object file.
* Always use the paths in a ModLocation when deciding where to write an
interface and object file.
* Remove `dynamicOutputFile` and `dynamicOutputHi` functions which
*calculated* (incorrectly) the location of `dyn_o` and `dyn_hi` files.
* Don't set `outputFile_` and so-on in `enableCodeGenWhen`, `-o` and
hence `outputFile_` should not affect the location of object files in
`--make` mode. It is now sufficient to just update the ModLocation with
the temporary paths.
* In `hscGenBackendPipeline` don't recompute the `ModLocation` to
account for `-dynamic-too`, the paths are now accurate from the start
of the run.
* Rename `getLocation` to `mkOneShotModLocation`, as that's the only
place it's used. Increase the locality of the definition by moving it
close to the use-site.
* Load the dynamic interface from ml_dyn_hi_file rather than attempting
to reconstruct it in load_dynamic_too.
* Add a variety of tests to check how -o -dyno etc interact with each
other.
Some other clean-ups
* DeIOify mkHomeModLocation and friends, they are all pure functions.
* Move FinderOpts into GHC.Driver.Config.Finder, next to initFinderOpts.
* Be more precise about whether we mean outputFile or outputFile_: there
were many places where outputFile was used but the result shouldn't have
been affected by `-dyno` (for example the filename of the resulting
executable). In these places dynamicNow would never be set but it's
still more precise to not allow for this possibility.
* Typo fixes suffices -> suffixes in the appropiate places.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PHASE 1: we never rewrite Concrete# evidence.
This patch migrates all the representation polymorphism checks to
the typechecker, using a new constraint form
Concrete# :: forall k. k -> TupleRep '[]
Whenever a type `ty` must be representation-polymorphic
(e.g. it is the type of an argument to a function), we emit a new
`Concrete# ty` Wanted constraint. If this constraint goes
unsolved, we report a representation-polymorphism error to the user.
The 'FRROrigin' datatype keeps track of the context of the
representation-polymorphism check, for more informative error messages.
This paves the way for further improvements, such as
allowing type families in RuntimeReps and improving the soundness
of typed Template Haskell. This is left as future work (PHASE 2).
fixes #17907 #20277 #20330 #20423 #20426
updates haddock submodule
-------------------------
Metric Decrease:
T5642
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It is quite easy to end up accidently retaining a KnotVars, which
contains pointers to a stale TypeEnv because they are placed in the
HscEnv.
One place in particular we have to be careful is when loading a module
into the EPS in `--make` mode, we have to remove the reference to
KnotVars as otherwise the interface loading thunks will forever retain
reference to the KnotVars which are live at the time the interface was
loaded.
These changes do not go as far as to enforce the invariant described in
Note [KnotVar invariants]
* At the end of upsweep, there should be no live KnotVars
but at least improve the situation.
This is left for future work (#20491)
|
|
|
|
|
|
|
| |
We have `instance Eq a => Eq (HieType a)` already. This instance can be
handy when we want to impement a function to find all
`fromIntegral :: a -> a` using
`case ty of { Roll (HFunTy _ a b) -> a == b; _ -> False }`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, plugin units were linked with the target code even
when the unit was passed via `-plugin-package`. This is an issue to
support plugins in cross-compilers (plugins are definitely not ABI
compatible with target code).
We now clearly separate unit dependencies for plugins and unit
dependencies for target code and only link the latter ones.
We've also added a test to ensure that plugin units passed via
`-package` are linked with target code so that `thNameToGhcName` can
still be used in plugins that need it (see T20218b).
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a plugins was specified using the -plugin-package-(id) flag then the
module it applied to was always recompiled.
The recompilation checker was previously using `findImportedModule`,
which looked for packages in the HPT and then in the package database
but only for modules specified using `-package`.
The correct lookup function for plugins is `findPluginModule`, therefore
we check normal imports with `findImportedModule` and plugins with
`findPluginModule`.
Fixes #20417
|
|
|
|
|
|
| |
Move HsTick and HsBinTick to XExpr, the extension tree of HsExpr.
Part of #16830 .
|
| |
|
|
|
|
|
|
| |
NoGhcTc is removed from HsMatchContext. As a result of this,
HsMatchContext GhcTc is now a valid type that has Id in it,
instead of Name and tcMatchesFun now takes Id instead of Name.
|
| |
|
|
|
|
|
|
| |
* moved deps related code into GHC.Unit.Module.Deps
* refactored Deps module to not export Dependencies constructor to help
maintaining invariants
|
|
|
|
|
|
| |
When determining whether to default a RuntimeRep or Multiplicity
variable, use isMetaTyVar to distinguish between metavariables
(which can be hidden) and skolems (which cannot).
|
|
|
|
|
|
| |
Converts uses of TcRnUnknownMessage in GHC.Iface.Rename.
Closes #19927
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch specifies and simplifies the module cycle compilation
in upsweep. How things work are described in the Note [Upsweep]
Note [Upsweep]
~~~~~~~~~~~~~~
Upsweep takes a 'ModuleGraph' as input, computes a build plan and then executes
the plan in order to compile the project.
The first step is computing the build plan from a 'ModuleGraph'.
The output of this step is a `[BuildPlan]`, which is a topologically sorted plan for
how to build all the modules.
```
data BuildPlan = SingleModule ModuleGraphNode -- A simple, single module all alone but *might* have an hs-boot file which isn't part of a cycle
| ResolvedCycle [ModuleGraphNode] -- A resolved cycle, linearised by hs-boot files
| UnresolvedCycle [ModuleGraphNode] -- An actual cycle, which wasn't resolved by hs-boot files
```
The plan is computed in two steps:
Step 1: Topologically sort the module graph without hs-boot files. This returns a [SCC ModuleGraphNode] which contains
cycles.
Step 2: For each cycle, topologically sort the modules in the cycle *with* the relevant hs-boot files. This should
result in an acyclic build plan if the hs-boot files are sufficient to resolve the cycle.
The `[BuildPlan]` is then interpreted by the `interpretBuildPlan` function.
* `SingleModule nodes` are compiled normally by either the upsweep_inst or upsweep_mod functions.
* `ResolvedCycles` need to compiled "together" so that the information which ends up in
the interface files at the end is accurate (and doesn't contain temporary information from
the hs-boot files.)
- During the initial compilation, a `KnotVars` is created which stores an IORef TypeEnv for
each module of the loop. These IORefs are gradually updated as the loop completes and provide
the required laziness to typecheck the module loop.
- At the end of typechecking, all the interface files are typechecked again in
the retypecheck loop. This time, the knot-tying is done by the normal laziness
based tying, so the environment is run without the KnotVars.
* UnresolvedCycles are indicative of a proper cycle, unresolved by hs-boot files
and are reported as an error to the user.
The main trickiness of `interpretBuildPlan` is deciding which version of a dependency
is visible from each module. For modules which are not in a cycle, there is just
one version of a module, so that is always used. For modules in a cycle, there are two versions of
'HomeModInfo'.
1. Internal to loop: The version created whilst compiling the loop by upsweep_mod.
2. External to loop: The knot-tied version created by typecheckLoop.
Whilst compiling a module inside the loop, we need to use the (1). For a module which
is outside of the loop which depends on something from in the loop, the (2) version
is used.
As the plan is interpreted, which version of a HomeModInfo is visible is updated
by updating a map held in a state monad. So after a loop has finished being compiled,
the visible module is the one created by typecheckLoop and the internal version is not
used again.
This plan also ensures the most important invariant to do with module loops:
> If you depend on anything within a module loop, before you can use the dependency,
the whole loop has to finish compiling.
The end result of `interpretBuildPlan` is a `[MakeAction]`, which are pairs
of `IO a` actions and a `MVar (Maybe a)`, somewhere to put the result of running
the action. This list is topologically sorted, so can be run in order to compute
the whole graph.
As well as this `interpretBuildPlan` also outputs an `IO [Maybe (Maybe HomeModInfo)]` which
can be queried at the end to get the result of all modules at the end, with their proper
visibility. For example, if any module in a loop fails then all modules in that loop will
report as failed because the visible node at the end will be the result of retypechecking
those modules together.
Along the way we also fix a number of other bugs in the driver:
* Unify upsweep and parUpsweep.
* Fix #19937 (static points, ghci and -j)
* Adds lots of module loop tests due to Divam.
Also related to #20030
Co-authored-by: Divam Narula <dfordivam@gmail.com>
-------------------------
Metric Decrease:
T10370
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Make mkDependencies pure
* Use Sets instead of sorted lists
Notable perf changes:
MultiLayerModules(normal) ghc/alloc 4130851520.0 2981473072.0 -27.8%
T13719(normal) ghc/alloc 4313296052.0 4151647512.0 -3.7%
Metric Decrease:
MultiLayerModules
T13719
|
|
|
|
| |
Copy-paste error in 38faeea1a94072ffd9f459d9fe570f06bc1da84a
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The GHC.Prim module is quite special as there is no interface file,
therefore it doesn't appear in ms_textual_imports, but the ghc-prim
package does appear in the direct package dependencies. This confused
the recompilation checking which couldn't find any modules from ghc-prim
and concluded that the package was no longer a dependency.
The fix is to keep track of whether GHC.Prim is imported separately in
the relevant places.
Fixes #20084
|
| |
|
| |
|
|
|
|
| |
Fixes #14380, #19997
|
|
|
|
|
|
|
|
|
|
|
| |
This commit tries to untangle the zoo of diagnostic-related functions
in `Tc.Utils.Monad` so that we can have the interfaces mentions only
`TcRnMessage`s while we push the creation of these messages upstream.
It also ports TcRnMessage diagnostics to use the new API, in particular
this commit switch to use TcRnMessage in the external interfaces
of the diagnostic functions, and port the old SDoc to be wrapped
into TcRnUnknownMessage.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Strong loop-breakers never inline, INLINE pragma or not.
Hence they should be treated as if there was no INLINE pragma on them.
Also not doing Cast W/W for INLINE strong loop-breakers will trip up Strictness
W/W, because it treats them as if there was no INLINE pragma. Subsequently,
that will lead to a panic once Strictness W/W will no longer do eta-expansion,
as we discovered while implementing !5814.
I also renamed to `unfoldingInfo` to `realUnfoldingInfo` and redefined
`unfoldingInfo` to zap the unfolding it returns in case of a strong loop-breaker.
Now the naming and semantics is symmetrical to `idUnfolding`/`realIdUnfolding`.
Now there was no more reason for `hasInlineUnfolding` to operate on `Id`,
because the zapping of strong loop-breaker unfoldings moved from `idUnfolding`
to `unfoldingInfo`, so I refactored it to take `IdInfo` and call it both from
the Simplifier and WorkWrap, making it utterly clear that both checks are
equivalent.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When TemplateHaskellQuotes is enabled, we also generate programs which
mention symbols from the template-haskell module. So that package is
added conditionally if the extension is turned on.
We should really do the same for other wired-in packages:
* base
* ghc-bignum
* ghc-prim
* rts
When we link an executable, we must also link against these
libraries. In accordance with every other package, these dependencies
should be added into the direct dependencies for a module automatically
and end up in the interface file to record the fact the object file was
created by linking against these packages.
Unfortunately it is not so easy to work out when symbols from each of
these libraries ends up in the generated program. You might think that
`base` would always be used but the `ghc-prim` package doesn't depend
on `base`, so you have to be a bit careful and this futher enhancement
is left to a future patch.
|
|
|
|
|
|
|
|
| |
Now that Outputable is independent of DynFlags, we can put tracing
functions using SDocs into their own module that doesn't transitively
depend on any GHC.Driver.* module.
A few modules needed to be moved to avoid loops in DEBUG mode.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are some obscure situations where the RHS of a rule can contain a
tick which is not mentioned anywhere else in the program. If this
happens you end up with an obscure linker error. The solution is quite
simple, traverse the RHS of rules to also look for ticks. It turned out
to be easier to implement if the traversal was moved into CoreTidy
rather than at the start of code generation because there we still had
easy access to the rules.
./StreamD.o(.text+0x1b9f2): error: undefined reference to 'StreamK_mkStreamFromStream_HPC_cc'
./MArray.o(.text+0xbe83): error: undefined reference to 'StreamK_mkStreamFromStream_HPC_cc'
Main.o(.text+0x6fdb): error: undefined reference to 'StreamK_mkStreamFromStream_HPC_cc'
|
|
|
|
|
|
| |
Another step towards a simpler design for exact printing.
Updates the haddock submodule.
|