| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
| |
If the context is missing it is captured as Nothing, rather than
putting a noLoc in the ParsedSource.
Updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When implementing Quick Look I'd failed to remember that overloaded
labels, like #foo, should be treated as a "head", so that they can be
instantiated with Visible Type Application. This caused #19154.
A very similar ticket covers overloaded literals: #19167.
This patch fixes both problems, but (annoyingly, albeit temporarily)
in two different ways.
Overloaded labels
I dealt with overloaded labels by buying fully into the
Rebindable Syntax approach described in GHC.Hs.Expr
Note [Rebindable syntax and HsExpansion].
There is a good overview in GHC.Rename.Expr
Note [Handling overloaded and rebindable constructs].
That module contains much of the payload for this patch.
Specifically:
* Overloaded labels are expanded in the renamer, fixing #19154.
See Note [Overloaded labels] in GHC.Rename.Expr.
* Left and right sections used to have special code paths in the
typechecker and desugarer. Now we just expand them in the
renamer. This is harder than it sounds. See GHC.Rename.Expr
Note [Left and right sections].
* Infix operator applications are expanded in the typechecker,
specifically in GHC.Tc.Gen.App.splitHsApps. See
Note [Desugar OpApp in the typechecker] in that module
* ExplicitLists are expanded in the renamer, when (and only when)
OverloadedLists is on.
* HsIf is expanded in the renamer when (and only when) RebindableSyntax
is on. Reason: the coverage checker treats HsIf specially. Maybe
we could instead expand it unconditionally, and fix up the coverage
checker, but I did not attempt that.
Overloaded literals
Overloaded literals, like numbers (3, 4.2) and strings with
OverloadedStrings, were not working correctly with explicit type
applications (see #19167). Ideally I'd also expand them in the
renamer, like the stuff above, but I drew back on that because they
can occur in HsPat as well, and I did not want to to do the HsExpanded
thing for patterns.
But they *can* now be the "head" of an application in the typechecker,
and hence something like ("foo" @T) works now. See
GHC.Tc.Gen.Head.tcInferOverLit. It's also done a bit more elegantly,
rather than by constructing a new HsExpr and re-invoking the
typechecker. There is some refactoring around tcShortCutLit.
Ultimately there is more to do here, following the Rebindable Syntax
story.
There are a lot of knock-on effects:
* HsOverLabel and ExplicitList no longer need funny (Maybe SyntaxExpr)
fields to support rebindable syntax -- good!
* HsOverLabel, OpApp, SectionL, SectionR all become impossible in the
output of the typecheker, GhcTc; so we set their extension fields to
Void. See GHC.Hs.Expr Note [Constructor cannot occur]
* Template Haskell quotes for HsExpanded is a bit tricky. See
Note [Quotation and rebindable syntax] in GHC.HsToCore.Quote.
* In GHC.HsToCore.Match.viewLExprEq, which groups equal HsExprs for the
purpose of pattern-match overlap checking, I found that dictionary
evidence for the same type could have two different names. Easily
fixed by comparing types not names.
* I did quite a bit of annoying fiddling around in GHC.Tc.Gen.Head and
GHC.Tc.Gen.App to get error message locations and contexts right,
esp in splitHsApps, and the HsExprArg type. Tiresome and not very
illuminating. But at least the tricky, higher order, Rebuilder
function is gone.
* Some refactoring in GHC.Tc.Utils.Monad around contexts and locations
for rebindable syntax.
* Incidentally fixes #19346, because we now print renamed, rather than
typechecked, syntax in error mesages about applications.
The commit removes the vestigial module GHC.Builtin.RebindableNames,
and thus triggers a 2.4% metric decrease for test MultiLayerModules
(#19293).
Metric Decrease:
MultiLayerModules
T12545
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Co-authored-by: Rinat Stryungis <rinat.stryungis@serokell.io>
Implement GHC Proposal #387
* Parse char literals 'x' at the type level
* New built-in type families CmpChar, ConsSymbol, UnconsSymbol
* New KnownChar class (cf. KnownSymbol and KnownNat)
* New SomeChar type (cf. SomeSymbol and SomeNat)
* CharTyLit support in template-haskell
Updated submodules: binary, haddock.
Metric Decrease:
T5205
haddock.base
Metric Increase:
Naperian
T13035
|
|
|
|
|
|
|
|
|
|
| |
Provoked by #19074, this patch makes GHC.Core.PatSyn.PatSyn
immutable, by recording only the *Name* of the matcher and
builder rather than (as currently) the *Id*.
See Note [Keep Ids out of PatSyn] in GHC.Core.PatSyn.
Updates haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Related to a future change in Data.List,
https://downloads.haskell.org/ghc/8.10.3/docs/html/users_guide/using-warnings.html?highlight=wcompat#ghc-flag--Wcompat-unqualified-imports
Companion pull&merge requests:
- https://github.com/judah/haskeline/pull/153
- https://github.com/haskell/containers/pull/762
- https://gitlab.haskell.org/ghc/packages/hpc/-/merge_requests/9
After these the actual change in Data.List should be easy to do.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When -XStrict is enabled the rules for irrefutability are slightly modified.
Specifically, the pattern in a program like
do ~(Just hi) <- expr
cannot be considered irrefutable. The ~ here merely disables the bang that
-XStrict would usually apply, rendering the program equivalent to the following
without -XStrict
do Just hi <- expr
To achieve make this pattern irrefutable with -XStrict the user would rather
need to write
do ~(~(Just hi)) <- expr
Failing to account for this resulted in #19027. To fix this isIrrefutableHsPat
takes care to check for two the irrefutability of the inner pattern when it
encounters a LazyPat and -XStrict is enabled.
|
|
|
|
|
|
| |
Thery is still, in my view, far too numerous, but I believe this won't
be too hard to improve upon. At the very lease, we can always add more
extension points!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
----------------
What:
There are two splits.
The first spit is:
- `Language.Haskell.Syntax.Extension`
- `GHC.Hs.Extension`
where the former now just contains helpers like `NoExtCon` and all the
families, and the latter is everything having to do with `GhcPass`.
The second split is:
- `Language.Haskell.Syntax.<mod>`
- `GHC.Hs.<mod>`
Where the former contains all the data definitions, and the few helpers
that don't use `GhcPass`, and the latter contains everything else. The
second modules also reexport the former.
----------------
Why:
See the issue for more details, but in short answer is we're trying to
grasp at the modularity TTG is supposed to offer, after a long time of
mainly just getting the safety benefits of more complete pattern
matching on the AST.
Now, we have an AST datatype which, without `GhcPass` is decently
stripped of GHC-specific concerns. Whereas before, not was it
GHC-specific, it was aware of all the GHC phases despite the
parameterization, with the instances and parametric data structure
side-by-side.
For what it's worth there are also some smaller, imminent benefits:
- The latter change also splits a strongly connected component in two,
since none of the `Language.Haskell.Syntax.*` modules import the older
ones.
- A few TTG violations (Using GhcPass directly in the AST) in `Expr` are
now more explicitly accounted for with new type families to provide the
necessary indirection.
-----------------
Future work:
- I don't see why all the type families should live in
`Language.Haskell.Syntax.Extension`. That seems anti-modular for
little benefit. All the ones used just once can be moved next to the
AST type they serve as an extension point for.
- Decide what to do with the `Outputable` instances. Some of these are
no orphans because they referred to `GhcPass`, and had to be moved. I
think the types could be generalized so they don't refer to `GhcPass`
and therefore can be moved back, but having gotten flak for increasing
the size and complexity types when generalizing before, I did *not*
want to do this.
- We should triage the remaining contents of `GHC.Hs.<mod>`. The
renaming helpers are somewhat odd for needing `GhcPass`. We might
consider if they are a) in fact only needed by one phase b) can be
generalized to be non-GhcPass-specific (e.g. take a callback rather
than GADT-match with `IsPass`) and then they can live in
`Language.Haskell.Syntax.<mod>`.
For more details, see
https://gitlab.haskell.org/ghc/ghc/-/wikis/implementing-trees-that-grow
Bumps Haddock submodule
|
|
|
|
|
|
|
|
|
| |
Parameterize collect*Binders functions with a flag indicating if
evidence binders should be collected.
The related note in GHC.Hs.Utils has been updated.
Bump haddock submodule
|
| |
|
|
|
|
|
|
|
|
|
| |
See Note [Error on unconstrained meta-variables] in TcMType.
Close #17301
Close #17567
Close #17562
Close #15474
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, we let-bound an identifier to use to carry
the erroring evidence for an out-of-scope variable. But
this failed for levity-polymorphic out-of-scope variables,
leading to a panic (#17812). The new plan is to use
a mutable update to just write the erroring expression directly
where it needs to go.
Close #17812.
Test case: typecheck/should_compile/T17812
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch significantly refactors key renamer datastructures (primarily Avail
and GlobalRdrElt) in order to treat DuplicateRecordFields in a more robust way.
In particular it allows the extension to be used with pattern synonyms (fixes
where mangled record selector names could be printed instead of field labels
(e.g. with -Wpartial-fields or hole fits, see new tests).
The key idea is the introduction of a new type GreName for names that may
represent either normal entities or field labels. This is then used in
GlobalRdrElt and AvailInfo, in place of the old way of representing fields
using FldParent (yuck) and an extra list in AvailTC.
Updates the haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Consider
```hs
data Ex where
Ex :: e -> Int -> Ex
f :: Ex -> Int
f (Ex e n) = e `seq` n + 1
```
Worker/wrapper should build the following worker for `f`:
```hs
$wf :: forall e. e -> Int# -> Int#
$wf e n = e `seq` n +# 1#
```
But previously it didn't, because `Ex` binds an existential.
This patch lifts that condition. That entailed having to instantiate
existential binders in `GHC.Core.Opt.WorkWrap.Utils.mkWWstr` via
`GHC.Core.Utils.dataConRepFSInstPat`, requiring a bit of a refactoring
around what is now `DataConPatContext`.
CPR W/W still won't unbox DataCons with existentials.
See `Note [Which types are unboxed?]` for details.
I also refactored the various `tyCon*DataCon(s)_maybe` functions in
`GHC.Core.TyCon`, deleting some of them which are no longer needed
(`isDataProductType_maybe` and `isDataSumType_maybe`).
I cleaned up a couple of call sites, some of which weren't very explicit
about whether they cared for existentials or not.
The test output of `T18013` changed, because we now unbox the `Rule`
data type. Its constructor carries existential state and will be
w/w'd now. In the particular example, the worker functions inlines right
back into the wrapper, which then unnecessarily has a (quite big) stable
unfolding. I think this kind of fallout is inevitable;
see also Note [Don't w/w inline small non-loop-breaker things].
There's a new regression test case `T18982`.
Fixes #18982.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Issue #18914 revealed that `GeneralizedNewtypeDeriving` would generate code
that mentions unbound type variables, which is dangerously fragile. The
problem (and fix) is described in the new `Wrinkle: Use HsOuterExplicit`
in `Note [GND and QuantifiedConstraints]`. The gist of it: make sure to
put the top-level `forall`s in `deriving`-generated instance signatures in an
`HsOuterExplicit` to ensure that they scope over the bodies of methods
correctly. A side effect of this process is that it will expand any type
synonyms in the instance signature, which will surface any `forall`s that
are hidden underneath type synonyms (such as in the test case for #18914).
While I was in town, I also performed some maintenance on `NewHsTypeX`, which
powers `GeneralizedNewtypeDeriving`:
* I renamed `NewHsTypeX` to `HsCoreTy`, which more accurately describes its
intended purpose (#15706). I also made `HsCoreTy` a type synonym instead of
a newtype, as making it a distinct data type wasn't buying us much.
* To make sure that mistakes similar to #18914 do not occur later, I added an
additional validity check when renaming `HsCoreTy`s that complains if an
`HsCoreTy`s contains an out-of-scope type variable. See the new
`Note [Renaming HsCoreTys]` in `GHC.Rename.HsType` for the details.
Fixes #15706. Fixes #18914. Bumps the `haddock` submodule.
|
|
|
|
|
| |
The haddock submodule is also updated so that it understands the changes
to patterns.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes several aspects of kind inference for data type
declarations, especially data /instance/ declarations
Specifically
1. In kcConDecls/kcConDecl make it clear that the tc_res_kind argument
is only used in the H98 case; and in that case there is no result
kind signature; and hence no need for the disgusting splitPiTys in
kcConDecls (now thankfully gone).
The GADT case is a bit different to before, and much nicer.
This is what fixes #18891.
See Note [kcConDecls: kind-checking data type decls]
2. Do not look at the constructor decls of a data/newtype instance
in tcDataFamInstanceHeader. See GHC.Tc.TyCl.Instance
Note [Kind inference for data family instances]. This was a
new realisation that arose when doing (1)
This causes a few knock-on effects in the tests suite, because
we require more information than before in the instance /header/.
New user-manual material about this in "Kind inference in data type
declarations" and "Kind inference for data/newtype instance
declarations".
3. Minor improvement in kcTyClDecl, combining GADT and H98 cases
4. Fix #14111 and #8707 by allowing the header of a data instance
to affect kind inferece for the the data constructor signatures;
as described at length in Note [GADT return types] in GHC.Tc.TyCl
This led to a modest refactoring of the arguments (and argument
order) of tcConDecl/tcConDecls.
5. Fix #19000 by inverting the sense of the test in new_locs
in GHC.Tc.Solver.Canonical.canDecomposableTyConAppOK.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This refactors the GHC AST to remove `HsImplicitBndrs` and replace it with
`HsOuterTyVarBndrs`, a type which records whether the outermost quantification
in a type is explicit (i.e., with an outermost, invisible `forall`) or
implicit. As a result of this refactoring, it is now evident in the AST where
the `forall`-or-nothing rule applies: it's all the places that use
`HsOuterTyVarBndrs`. See the revamped `Note [forall-or-nothing rule]` in
`GHC.Hs.Type` (previously in `GHC.Rename.HsType`).
Moreover, the places where `ScopedTypeVariables` brings lexically scoped type
variables into scope are a subset of the places that adhere to the
`forall`-or-nothing rule, so this also makes places that interact with
`ScopedTypeVariables` easier to find. See the revamped
`Note [Lexically scoped type variables]` in `GHC.Hs.Type` (previously in
`GHC.Tc.Gen.Sig`).
`HsOuterTyVarBndrs` are used in type signatures (see `HsOuterSigTyVarBndrs`)
and type family equations (see `HsOuterFamEqnTyVarBndrs`). The main difference
between the former and the latter is that the former cares about specificity
but the latter does not.
There are a number of knock-on consequences:
* There is now a dedicated `HsSigType` type, which is the combination of
`HsOuterSigTyVarBndrs` and `HsType`. `LHsSigType` is now an alias for an
`XRec` of `HsSigType`.
* Working out the details led us to a substantial refactoring of
the handling of explicit (user-written) and implicit type-variable
bindings in `GHC.Tc.Gen.HsType`.
Instead of a confusing family of higher order functions, we now
have a local data type, `SkolemInfo`, that controls how these
binders are kind-checked.
It remains very fiddly, not fully satisfying. But it's better
than it was.
Fixes #16762. Bumps the Haddock submodule.
Co-authored-by: Simon Peyton Jones <simonpj@microsoft.com>
Co-authored-by: Richard Eisenberg <rae@richarde.dev>
Co-authored-by: Zubin Duggal <zubin@cmi.ac.in>
|
|
|
|
|
|
|
| |
This disallows `a %001 -> b`, and makes sure the type literal is
printed from its SourceText so it is clear why.
Closes #18888
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Haskell98 and GADT constructors both use `HsConDeclDetails`, which includes
`InfixCon`. But `InfixCon` is never used for GADT constructors, which results
in an awkward unrepresentable state. This removes the unrepresentable state by:
* Renaming the existing `HsConDeclDetails` synonym to `HsConDeclH98Details`,
which emphasizes the fact that it is now only used for Haskell98-style data
constructors, and
* Creating a new `HsConDeclGADTDetails` data type with `PrefixConGADT` and
`RecConGADT` constructors that closely resemble `PrefixCon` and `InfixCon`
in `HsConDeclH98Details`. The key difference is that `HsConDeclGADTDetails`
lacks any way to represent infix constructors.
The rest of the patch is refactoring to accommodate the new structure of
`HsConDecl{H98,GADT}Details`. Some highlights:
* The `getConArgs` and `hsConDeclArgTys` functions have been removed, as
there is no way to implement these functions uniformly for all
`ConDecl`s. For the most part, their previous call sites now
pattern match on the `ConDecl`s directly and do different things for
`ConDeclH98`s and `ConDeclGADT`s.
I did introduce one new function to make the transition easier:
`getRecConArgs_maybe`, which extracts the arguments from a `RecCon(GADT)`.
This is still possible since `RecCon(GADT)`s still use the same representation
in both `HsConDeclH98Details` and `HsConDeclGADTDetails`, and since the
pattern that `getRecConArgs_maybe` implements is used in several places,
I thought it worthwhile to factor it out into its own function.
* Previously, the `con_args` fields in `ConDeclH98` and `ConDeclGADT` were
both of type `HsConDeclDetails`. Now, the former is of type
`HsConDeclH98Details`, and the latter is of type `HsConDeclGADTDetails`,
which are distinct types. As a result, I had to rename the `con_args` field
in `ConDeclGADT` to `con_g_args` to make it typecheck.
A consequence of all this is that the `con_args` field is now partial, so
using `con_args` as a top-level field selector is dangerous. (Indeed, Haddock
was using `con_args` at the top-level, which caused it to crash at runtime
before I noticed what was wrong!) I decided to add a disclaimer in the 9.2.1
release notes to advertise this pitfall.
Fixes #18844. Bumps the `haddock` submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes #18723 by:
* Moving the existing `GHC.Tc.Gen.HsType.bigConstraintTuple` validity
check to `GHC.Rename.Utils.checkCTupSize` for consistency with
`GHC.Rename.Utils.checkTupSize`, and
* Using `check(C)TupSize` when checking tuple _types_, in addition
to checking names, expressions, and patterns.
Note that I put as many of these checks as possible in the typechecker so
that GHC can properly distinguish between boxed and constraint tuples. The
exception to this rule is checking names, which I perform in the renamer
(in `GHC.Rename.Env`) so that we can rule out `(,, ... ,,)` and
`''(,, ... ,,)` alike in one fell swoop.
While I was in town, I also removed the `HsConstraintTuple` and
`HsBoxedTuple` constructors of `HsTupleSort`, which are functionally
unused. This requires a `haddock` submodule bump.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was working on making DynFlags stateless (#17957), especially by
storing loaded plugins into HscEnv instead of DynFlags. It turned out to
be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin
isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I
didn't feel like introducing yet another hs-boot file to break the loop.
Additionally I remember that while we introduced the module hierarchy
(#13009) we talked about splitting GHC.Driver.Types because it contained
various unrelated types and functions, but we never executed. I didn't
feel like making GHC.Driver.Types bigger with more unrelated Plugins
related types, so finally I bit the bullet and split GHC.Driver.Types.
As a consequence this patch moves a lot of things. I've tried to put
them into appropriate modules but nothing is set in stone.
Several other things moved to avoid loops.
* Removed Binary instances from GHC.Utils.Binary for random compiler
things
* Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they
import a lot of things that users of GHC.Utils.Binary don't want to
depend on.
* put everything related to Units/Modules under GHC.Unit:
GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.}
* Created several modules under GHC.Types: GHC.Types.Fixity, SourceText,
etc.
* Split GHC.Utils.Error (into GHC.Types.Error)
* Finally removed GHC.Driver.Types
Note that this patch doesn't put loaded plugins into HscEnv. It's left
for another patch.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
| |
The linear arrow can be parsed as `%1 ->` or a direct single token unicode
equivalent.
Make sure that this distinction is captured in the parsed AST by using
IsUnicodeSyntax where it appears, and introduce a new API Annotation,
AnnMult to represent its location when unicode is not used.
Updated haddock submodule
|
|
|
|
|
|
|
| |
- Update comments: placeHolderTypeTc no longer exists
"another level check problem" was a temporary comment from linear types
- Use Mult type synonym (reported in #18676)
- Mention multiplicity-polymorphic fields in linear types docs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are two signficant changes here:
* Ticket #18815 showed that we were missing some opportunities for
preInlineUnconditionally. The one-line fix is in the code for
GHC.Core.Opt.Simplify.Utils.preInlineUnconditionally, which now
switches off only for INLINE pragmas. I expanded
Note [Stable unfoldings and preInlineUnconditionally] to explain.
* When doing this I discovered a way in which preInlineUnconditionally
was occasionally /too/ eager. It's all explained in
Note [Occurrences in stable unfoldings] in GHC.Core.Opt.OccurAnal,
and the one-line change adding markAllMany to occAnalUnfolding.
I also got confused about what NoUserInline meant, so I've renamed
it to NoUserInlinePrag, and changed its pretty-printing slightly.
That led to soem error messate wibbling, and touches quite a few
files, but there is no change in functionality.
I did a nofib run. As expected, no significant changes.
Program Size Allocs
----------------------------------------
sphere -0.0% -0.4%
----------------------------------------
Min -0.0% -0.4%
Max -0.0% +0.0%
Geometric Mean -0.0% -0.0%
I'm allowing a max-residency increase for T10370, which seems
very irreproducible. (See comments on !4241.) There is always
sampling error for max-residency measurements; and in any case
the change shows up on some platforms but not others.
Metric Increase:
T10370
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes a long-standing bug in the desugaring of record
updates for data families, when the latter involves a GADT. It's
all explained in Note [Update for GADTs] in GHC.HsToCore.Expr.
Building the correct cast is surprisingly tricky, as that Note
explains.
Fixes #18809. The test case (in indexed-types/should_compile/T18809)
contains several examples that exercise the dark corners.
|
|
|
|
|
|
|
|
|
| |
A cleanup in 7f418acf61e accidentally discarded some parens in
ConDeclGADT.
Make sure these stay in the AST in a usable format.
Also ensure the AnnLolly does not get lost in a GADT.
|
|
|
|
|
|
|
|
|
|
|
| |
* Include funTyCon in exposedPrimTyCons.
Every single place using exposedPrimTyCons was adding funTyCon
manually.
* Remove unused synTyConResKind and ieLWrappedName
* Add recordSelectorTyCon_maybe
* In exprType, panic instead of giving a trace message and dummy output.
This prevents #18767 reoccurring.
* Fix compilation error in fragile concprog001 test (part of #18732)
|
|
|
|
|
|
| |
1. Fix and update section headers in GHC/Hs/Extension.hs
2. Delete the unused 'XCoreAnn' and 'XTickPragma' families
3. Avoid calls to 'panic' in 'pprStmt'
|
|
|
|
|
|
| |
Implements GHC Proposal #356
Updates the haddock submodule.
|
|
|
|
|
|
|
| |
As of 686e06c59c3aa6b66895e8a501c7afb019b09e36,
GHC.Parser.PostProcess.mergeOps no longer exists.
[ci skip]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Move everything from `GHC.HsToCore.PmCheck.*` to
`GHC.HsToCore.Pmc.*` in analogy to `GHC.Tc`, rename exported
`covCheck*` functions to `pmc*`
* Rename `Pmc.Oracle` to `Pmc.Solver`
* Split off the LYG desugaring and checking steps into their own
modules (`Pmc.Desugar` and `Pmc.Check` respectively)
* Split off a `Pmc.Utils` module with stuff shared by
`Pmc.{,Desugar,Check,Solver}`
* Move `Pmc.Types` to `Pmc.Solver.Types`, add a new `Pmc.Types` module
with all the LYG types, which form the interfaces between
`Pmc.{Desugar,Check,Solver,}`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements Quick Look impredicativity (#18126), sticking
very closely to the design in
A quick look at impredicativity, Serrano et al, ICFP 2020
The main change is that a big chunk of GHC.Tc.Gen.Expr has been
extracted to two new modules
GHC.Tc.Gen.App
GHC.Tc.Gen.Head
which deal with typechecking n-ary applications, and the head of
such applications, respectively. Both contain a good deal of
documentation.
Three other loosely-related changes are in this patch:
* I implemented (partly by accident) points (2,3)) of the accepted GHC
proposal "Clean up printing of foralls", namely
https://github.com/ghc-proposals/ghc-proposals/blob/
master/proposals/0179-printing-foralls.rst
(see #16320).
In particular, see Note [TcRnExprMode] in GHC.Tc.Module
- :type instantiates /inferred/, but not /specified/, quantifiers
- :type +d instantiates /all/ quantifiers
- :type +v is killed off
That completes the implementation of the proposal,
since point (1) was done in
commit df08468113ab46832b7ac0a7311b608d1b418c4d
Author: Krzysztof Gogolewski <krzysztof.gogolewski@tweag.io>
Date: Mon Feb 3 21:17:11 2020 +0100
Always display inferred variables using braces
* HsRecFld (which the renamer introduces for record field selectors),
is now preserved by the typechecker, rather than being rewritten
back to HsVar. This is more uniform, and turned out to be more
convenient in the new scheme of things.
* The GHCi debugger uses a non-standard unification that allows the
unification variables to unify with polytypes. We used to hack
this by using ImpredicativeTypes, but that doesn't work anymore
so I introduces RuntimeUnkTv. See Note [RuntimeUnkTv] in
GHC.Runtime.Heap.Inspect
Updates haddock submodule.
WARNING: this patch won't validate on its own. It was too
hard to fully disentangle it from the following patch, on
type errors and kind generalisation.
Changes to tests
* Fixes #9730 (test added)
* Fixes #7026 (test added)
* Fixes most of #8808, except function `g2'` which uses a
section (which doesn't play with QL yet -- see #18126)
Test added
* Fixes #1330. NB Church1.hs subsumes Church2.hs, which is now deleted
* Fixes #17332 (test added)
* Fixes #4295
* This patch makes typecheck/should_run/T7861 fail.
But that turns out to be a pre-existing bug: #18467.
So I have just made T7861 into expect_broken(18467)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We used to produce inhabitants of a pattern-match refinement type Nabla
in the checker in at least two different and mostly redundant ways:
1. There was `provideEvidence` (now called
`generateInhabitingPatterns`) which is used by
`GHC.HsToCore.PmCheck` to produce non-exhaustive patterns, which
produces inhabitants of a Nabla as a sub-refinement type where all
match variables are instantiated.
2. There also was `ensure{,All}Inhabited` (now called
`inhabitationTest`) which worked slightly different, but was
whenever new type constraints or negative term constraints were
added. See below why `provideEvidence` and `ensureAllInhabited`
can't be the same function, the main reason being performance.
3. And last but not least there was the `nonVoid` test, which tested
that a given type was inhabited. We did use this for strict fields
and -XEmptyCase in the past.
The overlap of (3) with (2) was always a major pet peeve of mine. The
latter was quite efficient and proven to work for recursive data types,
etc, but could not handle negative constraints well (e.g. we often want
to know if a *refined* type is empty, such as `{ x:[a] | x /= [] }`).
Lower Your Guards suggested that we could get by with just one, by
replacing both functions with `inhabitationTest` in this patch.
That was only possible by implementing the structure of φ constraints
as in the paper, namely the semantics of φ constructor constraints.
This has a number of benefits:
a. Proper handling of unlifted types and strict fields, fixing #18249,
without any code duplication between
`GHC.HsToCore.PmCheck.Oracle.instCon` (was `mkOneConFull`) and
`GHC.HsToCore.PmCheck.checkGrd`.
b. `instCon` can perform the `nonVoid` test (3) simply by emitting
unliftedness constraints for strict fields.
c. `nonVoid` (3) is thus simply expressed by a call to
`inhabitationTest`.
d. Similarly, `ensureAllInhabited` (2), which we called after adding
type info, now can similarly be expressed as the fuel-based
`inhabitationTest`.
See the new `Note [Why inhabitationTest doesn't call generateInhabitingPatterns]`
why we still have tests (1) and (2).
Fixes #18249 and brings nice metric decreases for `T17836` (-76%) and
`T17836b` (-46%), as well as `T18478` (-8%) at the cost of a few very
minor regressions (< +2%), potentially due to the fact that
`generateInhabitingPatterns` does more work to suggest the minimal
COMPLETE set.
Metric Decrease:
T17836
T17836b
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches `deriv_clause_tys` so that instead of using a list of
`LHsSigType`s to represent the types in a `deriving` clause, it now
uses a sum type. `DctSingle` represents a `deriving` clause with no
enclosing parentheses, while `DctMulti` represents a clause with
enclosing parentheses. This makes pretty-printing easier and avoids
confusion between `HsParTy` and the enclosing parentheses in
`deriving` clauses, which are different semantically.
Fixes #18662.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
@alanz pointed out on ghc-devs that the payload of this pragma does
not appear to be used anywhere.
I (@bgamari) did some digging and traced the pragma's addition back to
d386e0d2 (way back in 2006!).
It appears that it was intended to be used by code generators for use
in informing the code coveraging checker about generated code
provenance. When it was added it used the pragma's "payload" fields as
source location information to build an "ExternalBox". However, it
looks like this was dropped a year later in 55a5d8d9. At this point
it seems like the pragma serves no useful purpose.
Given that it also is not documented, I think we should remove it.
Updates haddock submodule
Closes #18639
|
|
|
|
|
|
|
|
| |
This fixes #18660 by changing `isLHsForAllTy` to
`isLHsInvisForAllTy`, which is sufficient to make the
`forall`-or-nothing rule only apply to invisible `forall`s. I also
updated some related documentation and Notes while I was in the
neighborhood.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FastStrings can be compared in 2 ways: by Unique or lexically. We don't
want to bless one particular way with an "Ord" instance because it leads
to bugs (#18562) or to suboptimal code (e.g. using lexical comparison
while a Unique comparison would suffice).
UTF-8 encoding has the advantage that sorting strings by their encoded
bytes also sorts them by their Unicode code points, without having to
decode the actual code points. BUT GHC uses Modified UTF-8 which
diverges from UTF-8 by encoding \0 as 0xC080 instead of 0x00 (to avoid
null bytes in the middle of a String so that the string can still be
null-terminated). This patch adds a new `utf8CompareShortByteString`
function that performs sorting by bytes but that also takes Modified
UTF-8 into account. It is much more performant than decoding the strings
into [Char] to perform comparisons (which we did in the previous patch).
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
| |
`hsExprNeedsParens`, `hsTypeNeedsParens`, and `patNeedsParens`
previously assumed that all uses of explicit tuples in the source
syntax never need to be parenthesized. This is true save for one
exception: boxed one-tuples, which use the `Solo` data type from
`GHC.Tuple` instead of special tuple syntax. This patch adds the
necessary logic to the three `*NeedsParens` functions to handle
`Solo` correctly.
Fixes #18612.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch mainly just replaces use of
XRec p (IdP p)
with
LIdP p
One slightly more significant change is to parameterise
HsPatSynDetails over the pass rather than the argument type,
so that it's uniform with HsConDeclDetails and HsConPatDetails.
I also got rid of the dead code GHC.Hs.type.conDetailsArgs
But this is all just minor refactoring. No change in functionality.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix #18323 by adding a few lines of code to handle non-recursive
pattern bindings. see GHC.Tc.Gen.Bind
Note [Special case for non-recursive pattern bindings]
Alas, this confused the pattern-match overlap checker; see #18323.
Note that this patch only affects pattern bindings like that
for (x,y) in this program
combine :: (forall a . [a] -> a) -> [forall a. a -> a]
-> ((forall a . [a] -> a), [forall a. a -> a])
breaks = let (x,y) = combine head ids
in x y True
We need ImpredicativeTypes for those [forall a. a->a] types to be
valid. And with ImpredicativeTypes the old, unprincipled "allow
unification variables to unify with a polytype" story actually
works quite well. So this test compiles fine (if delicatedly) with
old GHCs; but not with QuickLook unless we add this patch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add new flag '-Wredundant-bang-patterns' that enables checks for "dead" bangs.
Dead bangs are the ones that under no circumstances can force a thunk that
wasn't already forced. Dead bangs are a form of redundant bangs. The new check
is performed in Pattern-Match Coverage Checker along with other checks (namely,
redundant and inaccessible RHSs). Given
f :: Bool -> Int
f True = 1
f !x = 2
we can detect dead bang patterns by checking whether @x ~ ⊥@ is satisfiable
where the PmBang appears in 'checkGrdTree'. If not, then clearly the bang is
dead. Such a dead bang is then indicated in the annotated pattern-match tree by
a 'RedundantSrcBang' wrapping. In 'redundantAndInaccessibles', we collect
all dead bangs to warn about.
Note that we don't want to warn for a dead bang that appears on a redundant
clause. That is because in that case, we recommend to delete the clause wholly,
including its leading pattern match.
Dead bang patterns are redundant. But there are bang patterns which are
redundant that aren't dead, for example
f !() = 0
the bang still forces the match variable, before we attempt to match on (). But
it is redundant with the forcing done by the () match. We currently don't
detect redundant bangs that aren't dead.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Where bindings can see evidence from the pattern match of the `GRHSs`
they belong to, but not from anything in any of the guards (which belong
to one of possibly many RHSs).
Before this patch, we did *not* consider said evidence, causing #18533,
where the lack of considering type information from a case pattern match
leads to failure to resolve the vanilla COMPLETE set of a data type.
Making available that information required a medium amount of
refactoring so that `checkMatches` can return a
`[(Deltas, NonEmpty Deltas)]`; one `(Deltas, NonEmpty Deltas)` for each
`GRHSs` of the match group. The first component of the pair is the
covered set of the pattern, the second component is one covered set per
RHS.
Fixes #18533.
Regression test case: T18533
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes the `ConDeclGADTPrefixPs` per the discussion in #18517.
Most of this patch simply removes code, although the code in the
`rnConDecl` case for `ConDeclGADTPrefixPs` had to be moved around a
bit:
* The nested `forall`s check now lives in the `rnConDecl` case for
`ConDeclGADT`.
* The `LinearTypes`-specific code that used to live in the
`rnConDecl` case for `ConDeclGADTPrefixPs` now lives in
`GHC.Parser.PostProcess.mkGadtDecl`, which is now monadic so that
it can check if `-XLinearTypes` is enabled.
Fixes #18157.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch primarily:
* Documents `checkInferredVars` (previously called
`check_inferred_vars`) more carefully. This is the
function which throws an error message if a user quantifies an
inferred type variable in a place where specificity cannot be
observed. See `Note [Unobservably inferred type variables]` in
`GHC.Rename.HsType`.
Note that I now invoke `checkInferredVars` _alongside_
`rnHsSigType`, `rnHsWcSigType`, etc. rather than doing so _inside_
of these functions. This results in slightly more call sites for
`checkInferredVars`, but it makes it much easier to enumerate the
spots where the inferred type variable restriction comes into
effect.
* Removes the inferred type variable restriction for default method
type signatures, per the discussion in #18432. As a result, this
patch fixes #18432.
Along the way, I performed some various cleanup:
* I moved `no_nested_foralls_contexts_err` into `GHC.Rename.Utils`
(under the new name `noNestedForallsContextsErr`), since it now
needs to be invoked from multiple modules. I also added a helper
function `addNoNestedForallsContextsErr` that throws the error
message after producing it, as this is a common idiom.
* In order to ensure that users cannot sneak inferred type variables
into `SPECIALISE instance` pragmas by way of nested `forall`s, I
now invoke `addNoNestedForallsContextsErr` when renaming
`SPECIALISE instance` pragmas, much like when we rename normal
instance declarations. (This probably should have originally been
done as a part of the fix for #18240, but this task was somehow
overlooked.) As a result, this patch fixes #18455 as a side effect.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change `Located X` usage to `XRec pass X`
This increases the scope of the LPat experiment to almost all of GHC.
Introduce UnXRec and MapXRec classes
Fixes #17587 and #18408
Updates haddock submodule
Co-authored-by: Philipp Krüger <philipp.krueger1@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Haddock comments are, first and foremost, comments. It's very annoying
to incorporate them into the grammar. We can take advantage of an
important property: adding a Haddock comment does not change the parse
tree in any way other than wrapping some nodes in HsDocTy and the like
(and if it does, that's a bug).
This patch implements the following:
* Accumulate Haddock comments with their locations in the P monad.
This is handled in the lexer.
* After parsing, do a pass over the AST to associate Haddock comments
with AST nodes using location info.
* Report the leftover comments to the user as a warning (-Winvalid-haddock).
|