| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
The EpaAnnCO we were using contained an Anchor instead of EpaLocation,
making it harder to work with.
At the same time, using EpaLocation by itself isn't possible either,
as we may have tokens without location information.
Hence the new data type:
data TokenLocation = NoTokenLoc
| TokenLoc !EpaLocation
|
|
|
|
|
|
| |
Another step towards a simpler design for exact printing.
Updates the haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
`GHC.Hs.Syn.Type`
The existing `hsPatType`, `hsLPatType` and `hsLitType` functions have also been
moved to this module
This is a less ambitious take on the same problem that !2182 and !3866
attempt to solve. Rather than have the `hsExprType` function attempt to
efficiently compute the `Type` of every subexpression in an `HsExpr`, this
simply computes the overall `Type` of a single `HsExpr`.
- Explicitly forbids the `SplicePat` `HsIPVar`, `HsBracket`, `HsRnBracketOut`
and `HsTcBracketOut` constructors during the typechecking phase by using
`Void` as the TTG extension field
- Also introduces `dataConCantHappen` as a domain specific alternative to `absurd`
to handle cases where the TTG extension points forbid a constructor.
- Turns HIE file generation into a pure function that doesn't need access to the
`DsM` monad to compute types, but uses `hsExprType` instead.
- Computes a few more types during HIE file generation
- Makes GHCi's `:set +c` command also use `hsExprType` instead of going through
the desugarer to compute types.
Updates haddock submodule
Co-authored-by: Zubin Duggal <zubin.duggal@gmail.com>
|
|
|
|
| |
This patch is a first step towards a simpler design for exact printing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove EpaAnn type synonym, rename EpaAnn' to EpaAnn.
Closes #19705
Updates haddock submodule
--
Change
data EpaAnchor = AR RealSrcSpan
| AD DeltaPos
To instead be
data EpaAnchor = AnchorReal RealSrcSpan
| AnchorDelta DeltaPos
Closes #19699
--
Change
data DeltaPos =
DP
{ deltaLine :: !Int,
deltaColumn :: !Int
}
To instead be
data DeltaPos
= SameLine { deltaColumn :: !Int }
| DifferentLine { deltaLine :: !Int, startColumn :: !Int }
Closes #19698
--
Also some clean-ups of unused parts of check-exact.
|
|
|
|
|
|
| |
Follow-up from !2418, see #19579
Updates haddock submodule
|
|
|
|
|
|
|
|
| |
Metric Increase:
T10370
parsing001
Updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
----------------
What:
There are two splits.
The first spit is:
- `Language.Haskell.Syntax.Extension`
- `GHC.Hs.Extension`
where the former now just contains helpers like `NoExtCon` and all the
families, and the latter is everything having to do with `GhcPass`.
The second split is:
- `Language.Haskell.Syntax.<mod>`
- `GHC.Hs.<mod>`
Where the former contains all the data definitions, and the few helpers
that don't use `GhcPass`, and the latter contains everything else. The
second modules also reexport the former.
----------------
Why:
See the issue for more details, but in short answer is we're trying to
grasp at the modularity TTG is supposed to offer, after a long time of
mainly just getting the safety benefits of more complete pattern
matching on the AST.
Now, we have an AST datatype which, without `GhcPass` is decently
stripped of GHC-specific concerns. Whereas before, not was it
GHC-specific, it was aware of all the GHC phases despite the
parameterization, with the instances and parametric data structure
side-by-side.
For what it's worth there are also some smaller, imminent benefits:
- The latter change also splits a strongly connected component in two,
since none of the `Language.Haskell.Syntax.*` modules import the older
ones.
- A few TTG violations (Using GhcPass directly in the AST) in `Expr` are
now more explicitly accounted for with new type families to provide the
necessary indirection.
-----------------
Future work:
- I don't see why all the type families should live in
`Language.Haskell.Syntax.Extension`. That seems anti-modular for
little benefit. All the ones used just once can be moved next to the
AST type they serve as an extension point for.
- Decide what to do with the `Outputable` instances. Some of these are
no orphans because they referred to `GhcPass`, and had to be moved. I
think the types could be generalized so they don't refer to `GhcPass`
and therefore can be moved back, but having gotten flak for increasing
the size and complexity types when generalizing before, I did *not*
want to do this.
- We should triage the remaining contents of `GHC.Hs.<mod>`. The
renaming helpers are somewhat odd for needing `GhcPass`. We might
consider if they are a) in fact only needed by one phase b) can be
generalized to be non-GhcPass-specific (e.g. take a callback rather
than GADT-match with `IsPass`) and then they can live in
`Language.Haskell.Syntax.<mod>`.
For more details, see
https://gitlab.haskell.org/ghc/ghc/-/wikis/implementing-trees-that-grow
Bumps Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes several aspects of kind inference for data type
declarations, especially data /instance/ declarations
Specifically
1. In kcConDecls/kcConDecl make it clear that the tc_res_kind argument
is only used in the H98 case; and in that case there is no result
kind signature; and hence no need for the disgusting splitPiTys in
kcConDecls (now thankfully gone).
The GADT case is a bit different to before, and much nicer.
This is what fixes #18891.
See Note [kcConDecls: kind-checking data type decls]
2. Do not look at the constructor decls of a data/newtype instance
in tcDataFamInstanceHeader. See GHC.Tc.TyCl.Instance
Note [Kind inference for data family instances]. This was a
new realisation that arose when doing (1)
This causes a few knock-on effects in the tests suite, because
we require more information than before in the instance /header/.
New user-manual material about this in "Kind inference in data type
declarations" and "Kind inference for data/newtype instance
declarations".
3. Minor improvement in kcTyClDecl, combining GADT and H98 cases
4. Fix #14111 and #8707 by allowing the header of a data instance
to affect kind inferece for the the data constructor signatures;
as described at length in Note [GADT return types] in GHC.Tc.TyCl
This led to a modest refactoring of the arguments (and argument
order) of tcConDecl/tcConDecls.
5. Fix #19000 by inverting the sense of the test in new_locs
in GHC.Tc.Solver.Canonical.canDecomposableTyConAppOK.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This refactors the GHC AST to remove `HsImplicitBndrs` and replace it with
`HsOuterTyVarBndrs`, a type which records whether the outermost quantification
in a type is explicit (i.e., with an outermost, invisible `forall`) or
implicit. As a result of this refactoring, it is now evident in the AST where
the `forall`-or-nothing rule applies: it's all the places that use
`HsOuterTyVarBndrs`. See the revamped `Note [forall-or-nothing rule]` in
`GHC.Hs.Type` (previously in `GHC.Rename.HsType`).
Moreover, the places where `ScopedTypeVariables` brings lexically scoped type
variables into scope are a subset of the places that adhere to the
`forall`-or-nothing rule, so this also makes places that interact with
`ScopedTypeVariables` easier to find. See the revamped
`Note [Lexically scoped type variables]` in `GHC.Hs.Type` (previously in
`GHC.Tc.Gen.Sig`).
`HsOuterTyVarBndrs` are used in type signatures (see `HsOuterSigTyVarBndrs`)
and type family equations (see `HsOuterFamEqnTyVarBndrs`). The main difference
between the former and the latter is that the former cares about specificity
but the latter does not.
There are a number of knock-on consequences:
* There is now a dedicated `HsSigType` type, which is the combination of
`HsOuterSigTyVarBndrs` and `HsType`. `LHsSigType` is now an alias for an
`XRec` of `HsSigType`.
* Working out the details led us to a substantial refactoring of
the handling of explicit (user-written) and implicit type-variable
bindings in `GHC.Tc.Gen.HsType`.
Instead of a confusing family of higher order functions, we now
have a local data type, `SkolemInfo`, that controls how these
binders are kind-checked.
It remains very fiddly, not fully satisfying. But it's better
than it was.
Fixes #16762. Bumps the Haddock submodule.
Co-authored-by: Simon Peyton Jones <simonpj@microsoft.com>
Co-authored-by: Richard Eisenberg <rae@richarde.dev>
Co-authored-by: Zubin Duggal <zubin@cmi.ac.in>
|
| |
|
|
|
|
|
|
| |
1. Fix and update section headers in GHC/Hs/Extension.hs
2. Delete the unused 'XCoreAnn' and 'XTickPragma' families
3. Avoid calls to 'panic' in 'pprStmt'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Move everything from `GHC.HsToCore.PmCheck.*` to
`GHC.HsToCore.Pmc.*` in analogy to `GHC.Tc`, rename exported
`covCheck*` functions to `pmc*`
* Rename `Pmc.Oracle` to `Pmc.Solver`
* Split off the LYG desugaring and checking steps into their own
modules (`Pmc.Desugar` and `Pmc.Check` respectively)
* Split off a `Pmc.Utils` module with stuff shared by
`Pmc.{,Desugar,Check,Solver}`
* Move `Pmc.Types` to `Pmc.Solver.Types`, add a new `Pmc.Types` module
with all the LYG types, which form the interfaces between
`Pmc.{Desugar,Check,Solver,}`.
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches `deriv_clause_tys` so that instead of using a list of
`LHsSigType`s to represent the types in a `deriving` clause, it now
uses a sum type. `DctSingle` represents a `deriving` clause with no
enclosing parentheses, while `DctMulti` represents a clause with
enclosing parentheses. This makes pretty-printing easier and avoids
confusion between `HsParTy` and the enclosing parentheses in
`deriving` clauses, which are different semantically.
Fixes #18662.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch mainly just replaces use of
XRec p (IdP p)
with
LIdP p
One slightly more significant change is to parameterise
HsPatSynDetails over the pass rather than the argument type,
so that it's uniform with HsConDeclDetails and HsConPatDetails.
I also got rid of the dead code GHC.Hs.type.conDetailsArgs
But this is all just minor refactoring. No change in functionality.
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change `Located X` usage to `XRec pass X`
This increases the scope of the LPat experiment to almost all of GHC.
Introduce UnXRec and MapXRec classes
Fixes #17587 and #18408
Updates haddock submodule
Co-authored-by: Philipp Krüger <philipp.krueger1@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GHC.Hs.Extension had
type GhcPs = GhcPass 'Parsed
type GhcRn = GhcPass 'Renamed
type GhcTc = GhcPass 'Typechecked
type GhcTcId = GhcTc
The last of these, GhcTcId, is a vestige of the past.
This patch expunges it from GHC.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, `HsForAllTy` permits the combination of `ForallVis` and
`Inferred`, but you can't actually typecheck code that uses it
(e.g., `forall {a} ->`). This patch refactors `HsForAllTy` to use a
new `HsForAllTelescope` data type that makes a type-level distinction
between visible and invisible `forall`s such that visible `forall`s
do not track `Specificity`. That part of the patch is actually quite
small; the rest is simply changing consumers of `HsType` to
accommodate this new type.
Fixes #18235. Bumps the `haddock` submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements chunks (2) and (3) of
https://gitlab.haskell.org/ghc/ghc/issues/16762#note_270170. Namely,
it introduces a dedicated `HsPatSigType` AST type, which represents
the types that can appear in pattern signatures and term-level `RULE`
binders. Previously, these were represented with `LHsSigWcType`.
Although `LHsSigWcType` is isomorphic to `HsPatSigType`, the intended
semantics of the two types are slightly different, as evidenced by
the fact that they have different code paths in the renamer and
typechecker.
See also the new `Note [Pattern signature binders and scoping]` in
`GHC.Hs.Types`.
|
| |
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes every unused TTG extension constructor to be strict in
its field so that the pattern-match coverage checker is smart enough
any such constructors are unreachable in pattern matches. This lets
us remove nearly every use of `noExtCon` in the GHC API. The only
ones we cannot remove are ones underneath uses of `ghcPass`, but that
is only because GHC 8.8's and 8.10's coverage checkers weren't smart
enough to perform this kind of reasoning. GHC HEAD's coverage
checker, on the other hand, _is_ smart enough, so we guard these uses
of `noExtCon` with CPP for now.
Bumps the `haddock` submodule.
Fixes #17992.
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
|
|
|
|
| |
* FailablePattern can no longer be created since ab51bee40c82
Therefore, Opt_WarnMissingMonadFailInstances has no effect anymore.
* XWrap is no longer used, it was moved to an extension field
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are two main payloads of this patch:
1. This introduces IsPass, which allows e.g. printing
code to ask what pass it is running in (Renamed vs
Typechecked) and thus print extension fields. See
Note [IsPass] in Hs.Extension
2. This moves the HsWrap constructor into an extension
field, where it rightly belongs. This is done for
HsExpr and HsCmd, but not for HsPat, which is left
as an exercise for the reader.
There is also some refactoring around SyntaxExprs, but this
is really just incidental.
This patch subsumes !1721 (sorry @chreekat).
Along the way, there is a bit of refactoring in GHC.Hs.Extension,
including the removal of NameOrRdrName in favor of NoGhcTc.
This meant that we had no real need for GHC.Hs.PlaceHolder, so
I got rid of it.
Updates haddock submodule.
-------------------------
Metric Decrease:
haddock.compiler
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a refactoring with no user-visible changes (except for GHC API
users). Consider the HsExpr constructors that correspond to user-written
pragmas:
HsSCC representing {-# SCC ... #-}
HsCoreAnn representing {-# CORE ... #-}
HsTickPragma representing {-# GENERATED ... #-}
We can factor them out into a separate datatype, HsPragE. It makes the
code a bit tidier, especially in the parser.
Before this patch:
hpc_annot :: { Located ( (([AddAnn],SourceText),(StringLiteral,(Int,Int),(Int,Int))),
((SourceText,SourceText),(SourceText,SourceText))
) }
After this patch:
prag_hpc :: { Located ([AddAnn], HsPragE GhcPs) }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since the Trees That Grow effort started, we had `type LPat = Pat`.
This is so that `SrcLoc`s would only be annotated in GHC's AST, which is
the reason why all GHC passes use the extension constructor `XPat` to
attach source locations. See #15495 for the design discussion behind
that.
But now suddenly there are `XPat`s everywhere!
There are several functions which dont't cope with `XPat`s by either
crashing (`hsPatType`) or simply returning incorrect results
(`collectEvVarsPat`).
This issue was raised in #17330. I also came up with a rather clean and
type-safe solution to the problem: We define
```haskell
type family XRec p (f :: * -> *) = r | r -> p f
type instance XRec (GhcPass p) f = Located (f (GhcPass p))
type instance XRec TH f = f p
type LPat p = XRec p Pat
```
This is a rather modular embedding of the old "ping-pong" style, while
we only pay for the `Located` wrapper within GHC. No ping-ponging in
a potential Template Haskell AST, for example. Yet, we miss no case
where we should've handled a `SrcLoc`: `hsPatType` and
`collectEvVarsPat` are not callable at an `LPat`.
Also, this gets rid of one indirection in `Located` variants:
Previously, we'd have to go through `XPat` and `Located` to get from
`LPat` to the wrapped `Pat`. Now it's just `Located` again.
Thus we fix #17330.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
with equality constraints
In #17304, Richard and Simon dicovered that using `-XFlexibleInstances`
for `Outputable` instances of AST data types means users can provide orphan
`Outputable` instances for passes other than `GhcPass`.
Type inference doesn't currently to suffer, and Richard gave an example
in #17304 that shows how rare a case would be where the slightly worse
type inference would matter.
So I went ahead with the refactoring, attempting to fix #17304.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implements GHC Proposal #54: .../ghc-proposals/blob/master/proposals/0054-kind-signatures.rst
With this patch, a type constructor can now be given an explicit
standalone kind signature:
{-# LANGUAGE StandaloneKindSignatures #-}
type Functor :: (Type -> Type) -> Constraint
class Functor f where
fmap :: (a -> b) -> f a -> f b
This is a replacement for CUSKs (complete user-specified
kind signatures), which are now scheduled for deprecation.
User-facing changes
-------------------
* A new extension flag has been added, -XStandaloneKindSignatures, which
implies -XNoCUSKs.
* There is a new syntactic construct, a standalone kind signature:
type <name> :: <kind>
Declarations of data types, classes, data families, type families, and
type synonyms may be accompanied by a standalone kind signature.
* A standalone kind signature enables polymorphic recursion in types,
just like a function type signature enables polymorphic recursion in
terms. This obviates the need for CUSKs.
* TemplateHaskell AST has been extended with 'KiSigD' to represent
standalone kind signatures.
* GHCi :info command now prints the kind signature of type constructors:
ghci> :info Functor
type Functor :: (Type -> Type) -> Constraint
...
Limitations
-----------
* 'forall'-bound type variables of a standalone kind signature do not
scope over the declaration body, even if the -XScopedTypeVariables is
enabled. See #16635 and #16734.
* Wildcards are not allowed in standalone kind signatures, as partial
signatures do not allow for polymorphic recursion.
* Associated types may not be given an explicit standalone kind
signature. Instead, they are assumed to have a CUSK if the parent class
has a standalone kind signature and regardless of the -XCUSKs flag.
* Standalone kind signatures do not support multiple names at the moment:
type T1, T2 :: Type -> Type -- rejected
type T1 = Maybe
type T2 = Either String
See #16754.
* Creative use of equality constraints in standalone kind signatures may
lead to GHC panics:
type C :: forall (a :: Type) -> a ~ Int => Constraint
class C a where
f :: C a => a -> Int
See #16758.
Implementation notes
--------------------
* The heart of this patch is the 'kcDeclHeader' function, which is used to
kind-check a declaration header against its standalone kind signature.
It does so in two rounds:
1. check user-written binders
2. instantiate invisible binders a la 'checkExpectedKind'
* 'kcTyClGroup' now partitions declarations into declarations with a
standalone kind signature or a CUSK (kinded_decls) and declarations
without either (kindless_decls):
* 'kinded_decls' are kind-checked with 'checkInitialKinds'
* 'kindless_decls' are kind-checked with 'getInitialKinds'
* DerivInfo has been extended with a new field:
di_scoped_tvs :: ![(Name,TyVar)]
These variables must be added to the context in case the deriving clause
references tcTyConScopedTyVars. See #16731.
|
|
Add GHC.Hs module hierarchy replacing hsSyn.
Metric Increase:
haddock.compiler
|