| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GHC Proposals #448 "Modern scoped type variables"
and #425 "Invisible binders in type declarations"
introduce a new language extension flag: TypeAbstractions.
Part of the functionality guarded by this flag has already been
implemented, namely type abstractions in constructor patterns, but it
was guarded by a combination of TypeApplications and ScopedTypeVariables
instead of a dedicated language extension flag.
This patch does the following:
* introduces a new language extension flag TypeAbstractions
* requires TypeAbstractions for @a-syntax in constructor patterns
instead of TypeApplications and ScopedTypeVariables
* creates a User's Guide page for TypeAbstractions and
moves the "Type Applications in Patterns" section there
To avoid a breaking change, the new flag is implied by
ScopedTypeVariables and is retroactively added to GHC2021.
Metric Decrease:
MultiLayerModulesTH_OneShot
|
|
|
|
|
|
|
|
|
| |
This commit introduces a new warning
that indicates code incompatible with
future extension: RequiredTypeArguments.
Enabling this extension may break some code and the warning
will help to make it compatible in advance.
|
|
|
|
|
|
|
|
|
|
|
| |
In 8f71d958 the make build system was made to use split-sections on
linux systems but it appears this logic never made it to hadrian.
There is the split_sections flavour transformer but this doesn't appear
to be used for perf builds on linux.
This is disbled on deb9 and windows due to #21670
Closes #21135
|
|
|
|
|
|
|
|
| |
Here we add a `-fsplit-sections` flag which may some day replace
`-split-sections`. This has the advantage of automatically providing a
`-fno-split-sections` flag, which is useful for our packaging because we
enable `-split-sections` by default but want to disable it in certain
configurations.
|
|
|
|
|
|
|
|
|
|
| |
-fwrite-interface
Involves adding many new NFData instances.
Without forcing Docs, references to the TcGblEnv for each module are retained
by the Docs structure. Usually these are forced when the ModIface is serialised
but not when we aren't writing the interface.
|
|
|
|
|
|
|
| |
The `-outputdir` option wasn't correctly handled with the JS backend
because the same code path was used to handle both objects produced by
the JS backend and foreign .js files. Now we clearly distinguish the
two in the pipeline, fixing the bug.
|
| |
|
|
|
|
| |
Following convention as in other wasm toolchains. Fixes #22594.
|
|
|
|
|
|
|
|
|
| |
When the `-mtail-call` clang flag is passed at configure time, wasm
tail-call extension is enabled, and the wasm NCG will emit
`return_call`/`return_call_indirect` instructions to take advantage of
it and avoid the `StgRun` trampoline overhead.
Closes #22461.
|
|
|
|
|
|
| |
This introduces a new Cmm pass which instruments the program with
ThreadSanitizer annotations, allowing full tracking of mutator memory
accesses via TSAN.
|
| |
|
|
|
|
|
|
|
|
| |
We were not setting the UnitId before rehydrating modules which just led
to us attempting to find things in the wrong HPT. The test for this is
the hadrian-multi command (which is now added as a CI job).
Fixes #22222
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
Unboxed sums might store a Int8# value as Int64#. This patch
makes sure we keep track of the actual value type.
See Note [Casting slot arguments] for the details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add JS backend adapted from the GHCJS project by Luite Stegeman.
Some features haven't been ported or implemented yet. Tests for these
features have been disabled with an associated gitlab ticket.
Bump array submodule
Work funded by IOG.
Co-authored-by: Jeffrey Young <jeffrey.young@iohk.io>
Co-authored-by: Luite Stegeman <stegeman@gmail.com>
Co-authored-by: Josh Meredith <joshmeredith2008@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, GHC unconditionally printed ticks before promoted
data constructors:
ghci> type T = True -- unticked (user-written)
ghci> :kind! T
T :: Bool
= 'True -- ticked (compiler output)
After this patch, GHC prints ticks only when necessary:
ghci> type F = False -- unticked (user-written)
ghci> :kind! F
F :: Bool
= False -- unticked (compiler output)
ghci> data False -- introduce ambiguity
ghci> :kind! F
F :: Bool
= 'False -- ticked by necessity (compiler output)
The old behavior can be enabled by -fprint-redundant-promotion-ticks.
Summary of changes:
* Rename PrintUnqualified to NamePprCtx
* Add QueryPromotionTick to it
* Consult the GlobalRdrEnv to decide whether to print a tick (see mkPromTick)
* Introduce -fprint-redundant-promotion-ticks
Co-authored-by: Artyom Kuznetsov <hi@wzrd.ht>
|
| |
|
|
|
|
|
|
|
| |
* Replace catMaybes . map f with mapMaybe f
* Use concatFS to concatenate multiple FastStrings
* Fix documentation of -exclude-module
* Cleanup getIgnoreCount in GHCi.UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This big patch addresses the rats-nest of issues that have plagued
us for years, about the relationship between Type and Constraint.
See #11715/#21623.
The main payload of the patch is:
* To introduce CONSTRAINT :: RuntimeRep -> Type
* To make TYPE and CONSTRAINT distinct throughout the compiler
Two overview Notes in GHC.Builtin.Types.Prim
* Note [TYPE and CONSTRAINT]
* Note [Type and Constraint are not apart]
This is the main complication.
The specifics
* New primitive types (GHC.Builtin.Types.Prim)
- CONSTRAINT
- ctArrowTyCon (=>)
- tcArrowTyCon (-=>)
- ccArrowTyCon (==>)
- funTyCon FUN -- Not new
See Note [Function type constructors and FunTy]
and Note [TYPE and CONSTRAINT]
* GHC.Builtin.Types:
- New type Constraint = CONSTRAINT LiftedRep
- I also stopped nonEmptyTyCon being built-in; it only needs to be wired-in
* Exploit the fact that Type and Constraint are distinct throughout GHC
- Get rid of tcView in favour of coreView.
- Many tcXX functions become XX functions.
e.g. tcGetCastedTyVar --> getCastedTyVar
* Kill off Note [ForAllTy and typechecker equality], in (old)
GHC.Tc.Solver.Canonical. It said that typechecker-equality should ignore
the specified/inferred distinction when comparein two ForAllTys. But
that wsa only weakly supported and (worse) implies that we need a separate
typechecker equality, different from core equality. No no no.
* GHC.Core.TyCon: kill off FunTyCon in data TyCon. There was no need for it,
and anyway now we have four of them!
* GHC.Core.TyCo.Rep: add two FunTyFlags to FunCo
See Note [FunCo] in that module.
* GHC.Core.Type. Lots and lots of changes driven by adding CONSTRAINT.
The key new function is sORTKind_maybe; most other changes are built
on top of that.
See also `funTyConAppTy_maybe` and `tyConAppFun_maybe`.
* Fix a longstanding bug in GHC.Core.Type.typeKind, and Core Lint, in
kinding ForAllTys. See new tules (FORALL1) and (FORALL2) in GHC.Core.Type.
(The bug was that before (forall (cv::t1 ~# t2). blah), where
blah::TYPE IntRep, would get kind (TYPE IntRep), but it should be
(TYPE LiftedRep). See Note [Kinding rules for types] in GHC.Core.Type.
* GHC.Core.TyCo.Compare is a new module in which we do eqType and cmpType.
Of course, no tcEqType any more.
* GHC.Core.TyCo.FVs. I moved some free-var-like function into this module:
tyConsOfType, visVarsOfType, and occCheckExpand. Refactoring only.
* GHC.Builtin.Types. Compiletely re-engineer boxingDataCon_maybe to
have one for each /RuntimeRep/, rather than one for each /Type/.
This dramatically widens the range of types we can auto-box.
See Note [Boxing constructors] in GHC.Builtin.Types
The boxing types themselves are declared in library ghc-prim:GHC.Types.
GHC.Core.Make. Re-engineer the treatment of "big" tuples (mkBigCoreVarTup
etc) GHC.Core.Make, so that it auto-boxes unboxed values and (crucially)
types of kind Constraint. That allows the desugaring for arrows to work;
it gathers up free variables (including dictionaries) into tuples.
See Note [Big tuples] in GHC.Core.Make.
There is still work to do here: #22336. But things are better than
before.
* GHC.Core.Make. We need two absent-error Ids, aBSENT_ERROR_ID for types of
kind Type, and aBSENT_CONSTRAINT_ERROR_ID for vaues of kind Constraint.
Ditto noInlineId vs noInlieConstraintId in GHC.Types.Id.Make;
see Note [inlineId magic].
* GHC.Core.TyCo.Rep. Completely refactor the NthCo coercion. It is now called
SelCo, and its fields are much more descriptive than the single Int we used to
have. A great improvement. See Note [SelCo] in GHC.Core.TyCo.Rep.
* GHC.Core.RoughMap.roughMatchTyConName. Collapse TYPE and CONSTRAINT to
a single TyCon, so that the rough-map does not distinguish them.
* GHC.Core.DataCon
- Mainly just improve documentation
* Some significant renamings:
GHC.Core.Multiplicity: Many --> ManyTy (easier to grep for)
One --> OneTy
GHC.Core.TyCo.Rep TyCoBinder --> GHC.Core.Var.PiTyBinder
GHC.Core.Var TyCoVarBinder --> ForAllTyBinder
AnonArgFlag --> FunTyFlag
ArgFlag --> ForAllTyFlag
GHC.Core.TyCon TyConTyCoBinder --> TyConPiTyBinder
Many functions are renamed in consequence
e.g. isinvisibleArgFlag becomes isInvisibleForAllTyFlag, etc
* I refactored FunTyFlag (was AnonArgFlag) into a simple, flat data type
data FunTyFlag
= FTF_T_T -- (->) Type -> Type
| FTF_T_C -- (-=>) Type -> Constraint
| FTF_C_T -- (=>) Constraint -> Type
| FTF_C_C -- (==>) Constraint -> Constraint
* GHC.Tc.Errors.Ppr. Some significant refactoring in the TypeEqMisMatch case
of pprMismatchMsg.
* I made the tyConUnique field of TyCon strict, because I
saw code with lots of silly eval's. That revealed that
GHC.Settings.Constants.mAX_SUM_SIZE can only be 63, because
we pack the sum tag into a 6-bit field. (Lurking bug squashed.)
Fixes
* #21530
Updates haddock submodule slightly.
Performance changes
~~~~~~~~~~~~~~~~~~~
I was worried that compile times would get worse, but after
some careful profiling we are down to a geometric mean 0.1%
increase in allocation (in perf/compiler). That seems fine.
There is a big runtime improvement in T10359
Metric Decrease:
LargeRecord
MultiLayerModulesTH_OneShot
T13386
T13719
Metric Increase:
T8095
|
|
|
|
|
|
|
|
|
| |
The `withDeferredDiagnostics` wrapper wasn't doing anything because the
session it was modifying wasn't used in hsc_env. Therefore the fix is
simple, just push the `getSession` call into the scope of
`withDeferredDiagnostics`.
Fixes #22391
|
|
|
|
|
|
| |
This patch forcibly enable Cmm switch planning for wasm32, since
otherwise the switch tables we generate may exceed the br_table
maximum allowed size.
|
|
|
|
|
| |
This patch passes -Wa,--no-type-check for wasm32 when compiling
assembly. See the added note for more detailed explanation.
|
|
|
|
|
| |
This patch enables Cmm big arithmetic on wasm32, since 64-bit
arithmetic can be efficiently lowered to wasm32 opcodes.
|
|
|
|
|
|
| |
This patch adds the wasm32-wasi tuple support to various places in the
tree: autoconf, hadrian, ghc-boot and also the compiler. The codegen
logic will come in subsequent commits.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Specialiser has, for some time, fires class-op RULES in the
specialiser itself: see
Note [Specialisation modulo dictionary selectors]
This MR beefs it up a bit, so that it fires /all/ RULES in the
specialiser, not just class-op rules. See
Note [Fire rules in the specialiser]
The result is a bit more specialisation; see test
simplCore/should_compile/T21851_2
This pushed me into a bit of refactoring. I made a new data types
GHC.Core.Rules.RuleEnv, which combines
- the several source of rules (local, home-package, external)
- the orphan-module dependencies
in a single record for `getRules` to consult. That drove a bunch of
follow-on refactoring, including allowing me to remove
cr_visible_orphan_mods from the CoreReader data type.
I moved some of the RuleBase/RuleEnv stuff into GHC.Core.Rule.
The reorganisation in the Simplifier improve compile times a bit
(geom mean -0.1%), but T9961 is an outlier
Metric Decrease:
T9961
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following `TcRnDiagnostic` messages have been introduced:
TcRnWarnUnsatisfiedMinimalDefinition
TcRnMisplacedInstSig
TcRnBadBootFamInstDeclErr
TcRnIllegalFamilyInstance
TcRnAssocInClassErr
TcRnBadFamInstDecl
TcRnNotOpenFamily
|
|
|
|
|
|
|
| |
Pass FastStrings to functions directly, to make sure the rule
for fsLit "literal" fires.
Remove SDoc indirection in GHCi.UI.Tags and GHC.Unit.Module.Graph.
|
|
|
|
|
| |
Introduces GHC.Prelude.Basic which can be used in modules which are a
dependency of the ppr code.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
* Rename pprCLabel to pprCLabelStyle, and use the name pprCLabel
for a function using CStyle (analogous to pprAsmLabel)
* Move LabelStyle to the CLabel module, it no longer needs to be in Outputable.
* Move calls to 'text' right next to literals, to make sure the text/str
rule is triggered.
* Remove FastString/String roundtrip in Tc.Deriv.Generate
* Introduce showSDocForUser', which abstracts over a pattern in
GHCi.UI
|
|
|
|
| |
Move doCpp out of the driver to be able to use it in the upcoming JS backend.
|
| |
|
| |
|
|
|
|
| |
Lets us avoid some use of `head` and `tail`, and some panics.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In many development environments, the source span is the primary means
of seeing what an error message relates to, and the In the expression:
and In an equation for: clauses are not particularly relevant. However,
they can grow to be quite long, which can make the message itself both
feel overwhelming and interact badly with limited-space areas.
It's simple to implement this flag so we might as well do it and give
the user control about how they see their messages.
Fixes #21722
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR implements the idea of #21731 that the printing of a diagnostic
method should be configurable at the printing time.
The interface of the `Diagnostic` class is modified from:
```
class Diagnostic a where
diagnosticMessage :: a -> DecoratedSDoc
diagnosticReason :: a -> DiagnosticReason
diagnosticHints :: a -> [GhcHint]
```
to
```
class Diagnostic a where
type DiagnosticOpts a
defaultDiagnosticOpts :: DiagnosticOpts a
diagnosticMessage :: DiagnosticOpts a -> a -> DecoratedSDoc
diagnosticReason :: a -> DiagnosticReason
diagnosticHints :: a -> [GhcHint]
```
and so each `Diagnostic` can implement their own configuration record
which can then be supplied by a client in order to dictate how to print
out the error message.
At the moment this only allows us to implement #21722 nicely but in
future it is more natural to separate the configuration of how much
information we put into an error message and how much we decide to print
out of it.
Updates Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I had assumed that wrappers were not inlined in interactive mode.
Meaning we would always execute the compiled wrapper which properly
takes care of upholding the strict field invariant.
This turned out to be wrong. So instead we now run tag inference even
when we generate bytecode. In that case only for correctness not
performance reasons although it will be still beneficial for runtime
in some cases.
I further fixed a bug where GHCi didn't tag nullary constructors
properly when used as arguments. Which caused segfaults when calling
into compiled functions which expect the strict field invariant to
be upheld.
Fixes #22042 and #21083
-------------------------
Metric Increase:
T4801
Metric Decrease:
T13035
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Here we refactor the representation of info table provenance information
in object code to significantly reduce its size and link-time impact.
Specifically, we deduplicate strings and represent them as 32-bit
offsets into a common string table.
In addition, we rework the registration logic to eliminate allocation
from the registration path, which is run from a static initializer where
things like allocation are technically undefined behavior (although it
did previously seem to work). For similar reasons we eliminate lock
usage from registration path, instead relying on atomic CAS.
Closes #22077.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We were religiously keeping exit join points throughout, which
had some bad effects (#21148, #22084).
This MR does two things:
* Arranges that exit join points are inhibited from inlining
only in /one/ Simplifier pass (right after Exitification).
See Note [Be selective about not-inlining exit join points]
in GHC.Core.Opt.Exitify
It's not a big deal, but it shaves 0.1% off compile times.
* Inline used-once non-recursive join points very aggressively
Given join j x = rhs in
joinrec k y = ....j x....
where this is the only occurrence of `j`, we want to inline `j`.
(Unless sm_keep_exits is on.)
See Note [Inline used-once non-recursive join points] in
GHC.Core.Opt.Simplify.Utils
This is just a tidy-up really. It doesn't change allocation, but
getting rid of a binding is always good.
Very effect on nofib -- some up and down.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch teachs the code generation logic of -fno-code about
-fprefer-byte-code, so that if we need to generate code for a module
which prefers byte code, then we generate byte code rather than object
code.
We keep track separately which modules need object code and which byte
code and then enable the relevant code generation for each. Typically
the option will be enabled globally so one of these sets should be empty
and we will just turn on byte code or object code generation.
We also fix the bug where we would generate code for a module which
enables Template Haskell despite the fact it was unecessary.
Fixes #22016
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds three new flags
* -fwrite-if-simplified-core: Writes the whole core program into an interface
file
* -fbyte-code-and-object-code: Generate both byte code and object code
when compiling a file
* -fprefer-byte-code: Prefer to use byte-code if it's available when
running TH splices.
The goal for including the core bindings in an interface file is to be able to restart the compiler pipeline
at the point just after simplification and before code generation. Once compilation is
restarted then code can be created for the byte code backend.
This can significantly speed up
start-times for projects in GHCi. HLS already implements its own version of these extended interface
files for this reason.
Preferring to use byte-code means that we can avoid some potentially
expensive code generation steps (see #21700)
* Producing object code is much slower than producing bytecode, and normally you
need to compile with `-dynamic-too` to produce code in the static and dynamic way, the
dynamic way just for Template Haskell execution when using a dynamically linked compiler.
* Linking many large object files, which happens once per splice, can be quite
expensive compared to linking bytecode.
And you can get GHC to compile the necessary byte code so
`-fprefer-byte-code` has access to it by using
`-fbyte-code-and-object-code`.
Fixes #21067
|
|
|
|
|
|
|
|
| |
A small refactoring in our Core Opt pipeline and some new functions for
transfering argument boxities from one signature to another to facilitate
`Note [Don't change boxity without worker/wrapper]`.
Fixes #21754.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was working on fixing an issue where HLS was trying to pass its
DynFlags to HLint, but didn't pass any of the disabled language
extensions, which HLint would then assume are on because of their
default values.
Currently it's not possible to get any of the "No" flags because the
`DynFlags.extensions` field can't really be used since it is [OnOff
Extension] and OnOff is not exported.
So let's export it.
|
|
|
|
| |
includes corresponding changes to haddock submodule
|
|
|
|
|
|
|
| |
When compiling Cmm, the ml_hs_file field is used to indicate Cmm
filename when later generating DWARF information. We should pass the
original filename here, otherwise for preprocessed Cmm files, the
filename will be a temporary filename which is confusing.
|
|
|
|
|
|
|
|
|
|
| |
• Delete some dead code, largely under `GHC.Utils`.
• Clean up a few definitions in `GHC.Utils.(Misc, Monad)`.
• Clean up `GHC.Types.SrcLoc`.
• Derive stock `Functor, Foldable, Traversable` for more types.
• Derive more instances for newtypes.
Bump haddock submodule.
|
| |
|