| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
| |
Introduces GHC.Prelude.Basic which can be used in modules which are a
dependency of the ppr code.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
* Rename pprCLabel to pprCLabelStyle, and use the name pprCLabel
for a function using CStyle (analogous to pprAsmLabel)
* Move LabelStyle to the CLabel module, it no longer needs to be in Outputable.
* Move calls to 'text' right next to literals, to make sure the text/str
rule is triggered.
* Remove FastString/String roundtrip in Tc.Deriv.Generate
* Introduce showSDocForUser', which abstracts over a pattern in
GHCi.UI
|
|
|
|
| |
Move doCpp out of the driver to be able to use it in the upcoming JS backend.
|
| |
|
| |
|
|
|
|
| |
Lets us avoid some use of `head` and `tail`, and some panics.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In many development environments, the source span is the primary means
of seeing what an error message relates to, and the In the expression:
and In an equation for: clauses are not particularly relevant. However,
they can grow to be quite long, which can make the message itself both
feel overwhelming and interact badly with limited-space areas.
It's simple to implement this flag so we might as well do it and give
the user control about how they see their messages.
Fixes #21722
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR implements the idea of #21731 that the printing of a diagnostic
method should be configurable at the printing time.
The interface of the `Diagnostic` class is modified from:
```
class Diagnostic a where
diagnosticMessage :: a -> DecoratedSDoc
diagnosticReason :: a -> DiagnosticReason
diagnosticHints :: a -> [GhcHint]
```
to
```
class Diagnostic a where
type DiagnosticOpts a
defaultDiagnosticOpts :: DiagnosticOpts a
diagnosticMessage :: DiagnosticOpts a -> a -> DecoratedSDoc
diagnosticReason :: a -> DiagnosticReason
diagnosticHints :: a -> [GhcHint]
```
and so each `Diagnostic` can implement their own configuration record
which can then be supplied by a client in order to dictate how to print
out the error message.
At the moment this only allows us to implement #21722 nicely but in
future it is more natural to separate the configuration of how much
information we put into an error message and how much we decide to print
out of it.
Updates Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I had assumed that wrappers were not inlined in interactive mode.
Meaning we would always execute the compiled wrapper which properly
takes care of upholding the strict field invariant.
This turned out to be wrong. So instead we now run tag inference even
when we generate bytecode. In that case only for correctness not
performance reasons although it will be still beneficial for runtime
in some cases.
I further fixed a bug where GHCi didn't tag nullary constructors
properly when used as arguments. Which caused segfaults when calling
into compiled functions which expect the strict field invariant to
be upheld.
Fixes #22042 and #21083
-------------------------
Metric Increase:
T4801
Metric Decrease:
T13035
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Here we refactor the representation of info table provenance information
in object code to significantly reduce its size and link-time impact.
Specifically, we deduplicate strings and represent them as 32-bit
offsets into a common string table.
In addition, we rework the registration logic to eliminate allocation
from the registration path, which is run from a static initializer where
things like allocation are technically undefined behavior (although it
did previously seem to work). For similar reasons we eliminate lock
usage from registration path, instead relying on atomic CAS.
Closes #22077.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We were religiously keeping exit join points throughout, which
had some bad effects (#21148, #22084).
This MR does two things:
* Arranges that exit join points are inhibited from inlining
only in /one/ Simplifier pass (right after Exitification).
See Note [Be selective about not-inlining exit join points]
in GHC.Core.Opt.Exitify
It's not a big deal, but it shaves 0.1% off compile times.
* Inline used-once non-recursive join points very aggressively
Given join j x = rhs in
joinrec k y = ....j x....
where this is the only occurrence of `j`, we want to inline `j`.
(Unless sm_keep_exits is on.)
See Note [Inline used-once non-recursive join points] in
GHC.Core.Opt.Simplify.Utils
This is just a tidy-up really. It doesn't change allocation, but
getting rid of a binding is always good.
Very effect on nofib -- some up and down.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch teachs the code generation logic of -fno-code about
-fprefer-byte-code, so that if we need to generate code for a module
which prefers byte code, then we generate byte code rather than object
code.
We keep track separately which modules need object code and which byte
code and then enable the relevant code generation for each. Typically
the option will be enabled globally so one of these sets should be empty
and we will just turn on byte code or object code generation.
We also fix the bug where we would generate code for a module which
enables Template Haskell despite the fact it was unecessary.
Fixes #22016
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds three new flags
* -fwrite-if-simplified-core: Writes the whole core program into an interface
file
* -fbyte-code-and-object-code: Generate both byte code and object code
when compiling a file
* -fprefer-byte-code: Prefer to use byte-code if it's available when
running TH splices.
The goal for including the core bindings in an interface file is to be able to restart the compiler pipeline
at the point just after simplification and before code generation. Once compilation is
restarted then code can be created for the byte code backend.
This can significantly speed up
start-times for projects in GHCi. HLS already implements its own version of these extended interface
files for this reason.
Preferring to use byte-code means that we can avoid some potentially
expensive code generation steps (see #21700)
* Producing object code is much slower than producing bytecode, and normally you
need to compile with `-dynamic-too` to produce code in the static and dynamic way, the
dynamic way just for Template Haskell execution when using a dynamically linked compiler.
* Linking many large object files, which happens once per splice, can be quite
expensive compared to linking bytecode.
And you can get GHC to compile the necessary byte code so
`-fprefer-byte-code` has access to it by using
`-fbyte-code-and-object-code`.
Fixes #21067
|
|
|
|
|
|
|
|
| |
A small refactoring in our Core Opt pipeline and some new functions for
transfering argument boxities from one signature to another to facilitate
`Note [Don't change boxity without worker/wrapper]`.
Fixes #21754.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was working on fixing an issue where HLS was trying to pass its
DynFlags to HLint, but didn't pass any of the disabled language
extensions, which HLint would then assume are on because of their
default values.
Currently it's not possible to get any of the "No" flags because the
`DynFlags.extensions` field can't really be used since it is [OnOff
Extension] and OnOff is not exported.
So let's export it.
|
|
|
|
| |
includes corresponding changes to haddock submodule
|
|
|
|
|
|
|
| |
When compiling Cmm, the ml_hs_file field is used to indicate Cmm
filename when later generating DWARF information. We should pass the
original filename here, otherwise for preprocessed Cmm files, the
filename will be a temporary filename which is confusing.
|
|
|
|
|
|
|
|
|
|
| |
• Delete some dead code, largely under `GHC.Utils`.
• Clean up a few definitions in `GHC.Utils.(Misc, Monad)`.
• Clean up `GHC.Types.SrcLoc`.
• Derive stock `Functor, Foldable, Traversable` for more types.
• Derive more instances for newtypes.
Bump haddock submodule.
|
| |
|
|
|
|
|
|
|
| |
This fixes various typos and spelling mistakes
in the compiler.
Fixes #21891
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR adds diagnostic codes, assigning unique numeric codes to
error and warnings, e.g.
error: [GHC-53633]
Pattern match is redundant
This is achieved as follows:
- a type family GhcDiagnosticCode that gives the diagnostic code
for each diagnostic constructor,
- a type family ConRecursInto that specifies whether to recur into
an argument of the constructor to obtain a more fine-grained code
(e.g. different error codes for different 'deriving' errors),
- generics machinery to generate the value-level function assigning
each diagnostic its error code; see Note [Diagnostic codes using generics]
in GHC.Types.Error.Codes.
The upshot is that, to add a new diagnostic code, contributors only need
to modify the two type families mentioned above. All logic relating to
diagnostic codes is thus contained to the GHC.Types.Error.Codes module,
with no code duplication.
This MR also refactors error message datatypes a bit, ensuring we can
derive Generic for them, and cleans up the logic around constraint
solver reports by splitting up 'TcSolverReportInfo' into separate
datatypes (see #20772).
Fixes #21684
|
|
|
|
|
| |
Use 'text' instead of 'ppr'.
Using 'ppr' on the list "hello" rendered as "h,e,l,l,o".
|
|
|
|
|
|
|
|
|
| |
- Remove mkHeteroCoercionType, sdocImpredicativeTypes, isStateType (unused),
isCoVar_maybe (duplicated by getCoVar_maybe)
- Replace a few occurrences of voidPrimId with (# #).
void# is a deprecated synonym for the unboxed tuple.
- Use showSDoc in :show linker.
This makes it consistent with the other :show commands
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, the SDocContext used for code generation contained
information whether the labels should use Asm or C style.
However, at every individual call site, this is known statically.
This removes the parameter to 'PprCode' and replaces every 'pdoc'
used to print a label in code style with 'pprCLabel' or 'pprAsmLabel'.
The OutputableP instance is now used only for dumps.
The output of T15155 changes, it now uses the Asm style
(which is faithful to what actually happens).
|
|
|
|
|
| |
This fixes a build error on x86_64-linux-alpine3_12-validate.
See the function 'loadExternalPlugins' defined in this file.
|
| |
|
|
|
|
|
|
|
|
|
| |
Since 2011 the object-joining implementation has had a hack to pass
`--build-id=none` to `ld` when supported, seemingly to work around a
linker bug. This hack is now unnecessary and may break downstream users
who expect objects to have valid build-ids. Remove it.
Closes #22060.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The -x option is used to manually specify which phase a file should be
started to be compiled from (even if it lacks the correct extension). I
just failed to implement this when refactoring the driver.
In particular Cabal calls GHC with `-E -cpp -x hs Foo.cpphs` to
preprocess source files using GHC.
I added a test to exercise this case.
Fixes #22044
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds a new command-line flag:
-fplugin-library=<file-path>;<unit-id>;<module>;<args>
used like this:
-fplugin-library=path/to/plugin.so;package-123;Plugin.Module;["Argument","List"]
It allows a plugin to be loaded directly from a shared library. With
this approach, GHC doesn't compile anything for the plugin and doesn't
load any .hi file for the plugin and its dependencies. As such GHC
doesn't need to support two environments (one for plugins, one for
target code), which was the more ambitious approach tracked in #14335.
Fix #20964
Co-authored-by: Josh Meredith <joshmeredith2008@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The former behaviour of adding cost centres after optimization but
before unfoldings are created is not available via the flag
`prof-late-inline` instead.
I also reduced the overhead of -fprof-late* by pushing the cost centres
into lambdas. This means the cost centres will only account for
execution of functions and not their partial application.
Further I made LATE_CC cost centres it's own CC flavour so they now
won't clash with user defined ones if a user uses the same string for
a custom scc.
LateCC: Don't put cost centres inside constructor workers.
With -fprof-late they are rarely useful as the worker is usually
inlined. Even if the worker is not inlined or we use -fprof-late-linline
they are generally not helpful but bloat compile and run time
significantly. So we just don't add sccs inside constructor workers.
-------------------------
Metric Decrease:
T13701
-------------------------
|
|
|
|
|
|
|
|
| |
I realised hydration was completely irrelavant for this cache because
the ModDetails are pruned from the result. So now it simplifies things a
lot to just store the ModIface and Linkable, which we can put into the
cache straight away rather than wait for the final version of a
HomeModInfo to appear.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes quite a tricky leak where we would end up retaining
stale ModDetails due to rehydrating modules against non-finalised
interfaces.
== Loops with multiple boot files
It is possible for a module graph to have a loop (SCC, when ignoring boot files)
which requires multiple boot files to break. In this case we must perform the
necessary hydration steps before and after compiling modules which have boot files
which are described above for corectness but also perform an additional hydration step
at the end of the SCC to remove space leaks.
Consider the following example:
┌───────┐ ┌───────┐
│ │ │ │
│ A │ │ B │
│ │ │ │
└─────┬─┘ └───┬───┘
│ │
┌────▼─────────▼──┐
│ │
│ C │
└────┬─────────┬──┘
│ │
┌────▼──┐ ┌───▼───┐
│ │ │ │
│ A-boot│ │ B-boot│
│ │ │ │
└───────┘ └───────┘
A, B and C live together in a SCC. Say we compile the modules in order
A-boot, B-boot, C, A, B then when we compile A we will perform the hydration steps
(because A has a boot file). Therefore C will be hydrated relative to A, and the
ModDetails for A will reference C/A. Then when B is compiled C will be rehydrated again,
and so B will reference C/A,B, its interface will be hydrated relative to both A and B.
Now there is a space leak because say C is a very big module, there are now two different copies of
ModDetails kept alive by modules A and B.
The way to avoid this space leak is to rehydrate an entire SCC together at the
end of compilation so that all the ModDetails point to interfaces for .hs files.
In this example, when we hydrate A, B and C together then both A and B will refer to
C/A,B.
See #21900 for some more discussion.
-------------------------------------------------------
In addition to this simple case, there is also the potential for a leak
during parallel upsweep which is also fixed by this patch. Transcibed is
Note [ModuleNameSet, efficiency and space leaks]
Note [ModuleNameSet, efficiency and space leaks]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
During unsweep the results of compiling modules are placed into a MVar, to find
the environment the module needs to compile itself in the MVar is consulted and
the HomeUnitGraph is set accordingly. The reason we do this is that precisely tracking
module dependencies and recreating the HUG from scratch each time is very expensive.
In serial mode (-j1), this all works out fine because a module can only be compiled after
its dependencies have finished compiling and not interleaved with compiling module loops.
Therefore when we create the finalised or no loop interfaces, the HUG only contains
finalised interfaces.
In parallel mode, we have to be more careful because the HUG variable can contain
non-finalised interfaces which have been started by another thread. In order to avoid
a space leak where a finalised interface is compiled against a HPT which contains a
non-finalised interface we have to restrict the HUG to only the visible modules.
The visible modules is recording in the ModuleNameSet, this is propagated upwards
whilst compiling and explains which transitive modules are visible from a certain point.
This set is then used to restrict the HUG before the module is compiled to only
the visible modules and thus avoiding this tricky space leak.
Efficiency of the ModuleNameSet is of utmost importance because a union occurs for
each edge in the module graph. Therefore the set is represented directly as an IntSet
which provides suitable performance, even using a UniqSet (which is backed by an IntMap) is
too slow. The crucial test of performance here is the time taken to a do a no-op build in --make mode.
See test "jspace" for an example which used to trigger this problem.
Fixes #21900
|
|
|
|
|
|
| |
This will only have a (very) modest impact on memory but we don't want
to retain old copies of DynFlags hanging around so best to force this
value.
|
|
|
|
| |
This fixes #21236.
|
|
|
|
|
| |
Instead of `` `cast` <Co:11> :: (Some -> Really -> Large Type)``
simply print `` `cast` <Co:11> :: ... ``
|
|
|
|
| |
Fixes #21866
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This MR adds the language extension -XDeepSubsumption, implementing
GHC proposal #511. This change mitigates the impact of GHC proposal
The changes are highly localised, by design. See Note [Deep subsumption]
in GHC.Tc.Utils.Unify.
The main changes are:
* Add -XDeepSubsumption, which is on by default in Haskell98 and Haskell2010,
but off in Haskell2021.
-XDeepSubsumption largely restores the behaviour before the "simple subsumption" change.
-XDeepSubsumpition has a similar flavour as -XNoMonoLocalBinds:
it makes type inference more complicated and less predictable, but it
may be convenient in practice.
* The main changes are in:
* GHC.Tc.Utils.Unify.tcSubType, which does deep susumption and eta-expanansion
* GHC.Tc.Utils.Unify.tcSkolemiseET, which does deep skolemisation
* In GHC.Tc.Gen.App.tcApp we call tcSubTypeNC to match the result
type. Without deep subsumption, unifyExpectedType would be sufficent.
See Note [Deep subsumption] in GHC.Tc.Utils.Unify.
* There are no changes to Quick Look at all.
* The type of `withDict` becomes ambiguous; so add -XAllowAmbiguousTypes to
GHC.Magic.Dict
* I fixed a small but egregious bug in GHC.Core.FVs.varTypeTyCoFVs, where
we'd forgotten to take the free vars of the multiplicity of an Id.
* I also had to fix tcSplitNestedSigmaTys
When I did the shallow-subsumption patch
commit 2b792facab46f7cdd09d12e79499f4e0dcd4293f
Date: Sun Feb 2 18:23:11 2020 +0000
Simple subsumption
I changed tcSplitNestedSigmaTys to not look through function arrows
any more. But that was actually an un-forced change. This function
is used only in
* Improving error messages in GHC.Tc.Gen.Head.addFunResCtxt
* Validity checking for default methods: GHC.Tc.TyCl.checkValidClass
* A couple of calls in the GHCi debugger: GHC.Runtime.Heap.Inspect
All to do with validity checking and error messages. Acutally its
fine to look under function arrows here, and quite useful a test
DeepSubsumption05 (a test motivated by a build failure in the
`lens` package) shows.
The fix is easy. I added Note [tcSplitNestedSigmaTys].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Removed references to driver from GHC.Core.LateCC, GHC.Core.Simplify
namespace and GHC.Core.Opt.Stats.
Also removed services from configuration records.
* Renamed GHC.Core.Opt.Simplify to GHC.Core.Opt.Simplify.Iteration.
* Inlined `simplifyPgm` and renamed `simplifyPgmIO` to `simplifyPgm`
and moved the Simplify driver to GHC.Core.Opt.Simplify.
* Moved `SimplMode` and `FloatEnable` to GHC.Core.Opt.Simplify.Env.
* Added a configuration record `TopEnvConfig` for the `SimplTopEnv` environment
in GHC.Core.Opt.Simplify.Monad.
* Added `SimplifyOpts` and `SimplifyExprOpts`. Provide initialization functions
for those in a new module GHC.Driver.Config.Core.Opt.Simplify.
Also added initialization functions for `SimplMode` to that module.
* Moved `CoreToDo` and friends to a new module GHC.Core.Pipeline.Types
and the counting types and functions (`SimplCount` and `Tick`) to new
module GHC.Core.Opt.Stats.
* Added getter functions for the fields of `SimplMode`. The pedantic bottoms
option and the platform are retrieved from the ArityOpts and RuleOpts and the
getter functions allow us to retrieve values from `SpecEnv` without the
knowledge where the data is stored exactly.
* Moved the coercion optimization options from the top environment to
`SimplMode`. This way the values left in the top environment are those
dealing with monadic functionality, namely logging, IO related stuff and
counting. Added a note "The environments of the Simplify pass".
* Removed `CoreToDo` from GHC.Core.Lint and GHC.CoreToStg.Prep and got rid of
`CoreDoSimplify`. Pass `SimplifyOpts` in the `CoreToDo` type instead.
* Prep work before removing `InteractiveContext` from `HscEnv`.
|
|
|
|
|
|
|
| |
We were failing to stop before running the assembler so the object file
was also created.
Fixes #21869
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before the behaviour of `dopt` and `logHasDumpFlag` (and the underlying
function `log_dopt`) were different as the latter did not take the
verbosity level into account. This led to problems during the
refactoring as we cannot simply replace calls to `dopt` with calls to
`logHasDumpFlag`.
In addition to that a subtle bug in the GHC module was fixed:
`setSessionDynFlags` did not update the logger and as a consequence the
verbosity value of the logger was not set appropriately.
Fixes #21861
|
|
|
|
|
|
|
|
|
|
| |
We were attempting to rehydrate all dependencies of a particular module,
but we actually only needed to rehydrate those of the current package
(as those are the ones participating in the loop).
This fixes loading GHC into a multi-unit session.
Fixes #21814
|
|
|
|
|
|
|
| |
Add a TTG parameter to both `ForeignImport` and `ForeignExport` and,
according to #21592, move the GHC-specific bits in them and in the other
AST data types related to foreign imports and exports to the TTG
extension point.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ModuleName used to live in GHC.Unit.Module.Name. In this commit, the
definition of ModuleName and its associated functions are moved to
Language.Haskell.Syntax.Module.Name according to the current plan
towards making the AST GHC-independent.
The instances for ModuleName for Outputable, Uniquable and Binary were
moved to the module in which the class is defined because these instances
depend on GHC.
The instance of Eq for ModuleName is slightly changed to no longer
depend on unique explicitly and instead uses FastString's instance of
Eq.
|
|
|
|
|
|
|
|
|
|
|
| |
Move the GHC-independent definitions from GHC.Hs.ImpExp to
Language.Haskell.Syntax.ImpExp with the required TTG extension fields
such as to keep the AST independent from GHC.
This is progress towards having the haskell-syntax package, as described
in #21592
Bumps haddock submodule
|
|
|
|
|
|
|
|
|
| |
Move the definition of HsModule defined in GHC.Hs to
Language.Haskell.Syntax with an added TTG parameter and corresponding
extension fields.
This is progress towards having the haskell-syntax package, as described
in #21592
|