summaryrefslogtreecommitdiff
path: root/compiler/GHC/Builtin
Commit message (Collapse)AuthorAgeFilesLines
...
* compiler: re-engineer the treatment of rebindable ifAlp Mestanogullari2020-07-141-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Executing on the plan described in #17582, this patch changes the way if expressions are handled in the compiler in the presence of rebindable syntax. We get rid of the SyntaxExpr field of HsIf and instead, when rebindable syntax is on, we rewrite the HsIf node to the appropriate sequence of applications of the local `ifThenElse` function. In order to be able to report good error messages, with expressions as they were written by the user (and not as desugared by the renamer), we make use of TTG extensions to extend GhcRn expression ASTs with an `HsExpansion` construct, which keeps track of a source (GhcPs) expression and the desugared (GhcRn) expression that it gives rise to. This way, we can typecheck the latter while reporting the former in error messages. In order to discard the error context lines that arise from typechecking the desugared expressions (because they talk about expressions that the user has not written), we carefully give a special treatment to the nodes fabricated by this new renaming-time transformation when typechecking them. See Note [Rebindable syntax and HsExpansion] for more details. The note also includes a recipe to apply the same treatment to other rebindable constructs. Tests 'rebindable11' and 'rebindable12' have been added to make sure we report identical error messages as before this patch under various circumstances. We also now disable rebindable syntax when processing untyped TH quotes, as per the discussion in #18102 and document the interaction of rebindable syntax and Template Haskell, both in Note [Template Haskell quotes and Rebindable Syntax] and in the user guide, adding a test to make sure that we do not regress in that regard.
* Give Uniq[D]FM a phantom type for its key.Andreas Klebinger2020-07-121-3/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes #17667 and should help to avoid such issues going forward. The changes are mostly mechanical in nature. With two notable exceptions. * The register allocator. The register allocator references registers by distinct uniques. However they come from the types of VirtualReg, Reg or Unique in various places. As a result we sometimes cast the key type of the map and use functions which operate on the now typed map but take a raw Unique as actual key. The logic itself has not changed it just becomes obvious where we do so now. * <Type>Env Modules. As an example a ClassEnv is currently queried using the types `Class`, `Name`, and `TyCon`. This is safe since for a distinct class value all these expressions give the same unique. getUnique cls getUnique (classTyCon cls) getUnique (className cls) getUnique (tcName $ classTyCon cls) This is for the most part contained within the modules defining the interface. However it requires us to play dirty when we are given a `Name` to lookup in a `UniqFM Class a` map. But again the logic did not change and it's for the most part hidden behind the Env Module. Some of these cases could be avoided by refactoring but this is left for future work. We also bump the haddock submodule as it uses UniqFM.
* Optimise genericIntMul2OpSylvain Henry2020-07-071-1/+9
| | | | | | We shouldn't directly call 'genericWordMul2Op' in genericIntMul2Op because a target may provide a faster primop for 'WordMul2Op': we'd better use it!
* Fix duplicated words and typos in comments and user guideJan Hrček2020-06-284-4/+4
|
* Don't generalize when typechecking a tuple sectionKrzysztof Gogolewski2020-06-271-6/+0
| | | | The code is simpler and cleaner.
* Fix ghc-bignum exceptionsSylvain Henry2020-06-272-45/+11
| | | | | | | | | | | | | | | We must ensure that exceptions are not simplified. Previously we used: case raiseDivZero of _ -> 0## -- dummyValue But it was wrong because the evaluation of `raiseDivZero` was removed and the dummy value was directly returned. See new Note [ghc-bignum exceptions]. I've also removed the exception triggering primops which were fragile. We don't need them to be primops, we can have them exported by ghc-prim. I've also added a test for #18359 which triggered this patch.
* Implement the proposed -XQualifiedDo extensionMatthias Pall Gissurarson2020-06-261-5/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Co-authored-by: Facundo Domínguez <facundo.dominguez@tweag.io> QualifiedDo is implemented using the same placeholders for operation names in the AST that were devised for RebindableSyntax. Whenever the renamer checks which names to use for do syntax, it first checks if the do block is qualified (e.g. M.do { stmts }), in which case it searches for qualified names in the module M. This allows users to write {-# LANGUAGE QualifiedDo #-} import qualified SomeModule as M f x = M.do -- desugars to: y <- M.return x -- M.return x M.>>= \y -> M.return y -- M.return y M.>> M.return y -- M.return y See Note [QualifiedDo] and the users' guide for more details. Issue #18214 Proposal: https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0216-qualified-do.rst Since we change the constructors `ITdo` and `ITmdo` to carry the new module name, we need to bump the haddock submodule to account or the new shape of these constructors.
* Clean up haddock hyperlinks of GHC.* (part1)Takenobu Tani2020-06-253-6/+6
| | | | | | | | | | | | | | | | | | | This updates haddock comments only. This patch focuses to update for hyperlinks in GHC API's haddock comments, because broken links especially discourage newcomers. This includes the following hierarchies: - GHC.Hs.* - GHC.Core.* - GHC.Stg.* - GHC.Cmm.* - GHC.Types.* - GHC.Data.* - GHC.Builtin.* - GHC.Parser.* - GHC.Driver.* - GHC top
* Update compilerSylvain Henry2020-06-175-199/+424
| | | | | | | | | | | | | | | | Thanks to ghc-bignum, the compiler can be simplified: * Types and constructors of Integer and Natural can be wired-in. It means that we don't have to query them from interfaces. It also means that numeric literals don't have to carry their type with them. * The same code is used whatever ghc-bignum backend is enabled. In particular, conversion of bignum literals into final Core expressions is now much more straightforward. Bignum closure inspection too. * GHC itself doesn't depend on any integer-* package anymore * The `integerLibrary` setting is gone.
* Various performance improvementsKrzysztof Gogolewski2020-06-171-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This implements several general performance improvements to GHC, to offset the effect of the linear types change. General optimisations: - Add a `coreFullView` function which iterates `coreView` on the head. This avoids making function recursive solely because the iterate `coreView` themselves. As a consequence, this functions can be inlined, and trigger case-of-known constructor (_e.g._ `kindRep_maybe`, `isLiftedRuntimeRep`, `isMultiplicityTy`, `getTyVar_maybe`, `splitAppTy_maybe`, `splitFunType_maybe`, `tyConAppTyCon_maybe`). The common pattern about all these functions is that they are almost always used as views, and immediately consumed by a case expression. This commit also mark them asx `INLINE`. - In `subst_ty` add a special case for nullary `TyConApp`, which avoid allocations altogether. - Use `mkTyConApp` in `subst_ty` for the general `TyConApp`. This required quite a bit of module shuffling. case. `myTyConApp` enforces crucial sharing, which was lost during substitution. See also !2952 . - Make `subst_ty` stricter. - In `eqType` (specifically, in `nonDetCmpType`), add a special case, tested first, for the very common case of nullary `TyConApp`. `nonDetCmpType` has been made `INLINE` otherwise it is actually a regression. This is similar to the optimisations in !2952. Linear-type specific optimisations: - Use `tyConAppTyCon_maybe` instead of the more complex `eqType` in the definition of the pattern synonyms `One` and `Many`. - Break the `hs-boot` cycles between `Multiplicity.hs` and `Type.hs`: `Multiplicity` now import `Type` normally, rather than from the `hs-boot`. This way `tyConAppTyCon_maybe` can inline properly in the `One` and `Many` pattern synonyms. - Make `updateIdTypeAndMult` strict in its type and multiplicity - The `scaleIdBy` gets a specialised definition rather than being an alias to `scaleVarBy` - `splitFunTy_maybe` is given the type `Type -> Maybe (Mult, Type, Type)` instead of `Type -> Maybe (Scaled Type, Type)` - Remove the `MultMul` pattern synonym in favour of a view `isMultMul` because pattern synonyms appear not to inline well. - in `eqType`, in a `FunTy`, compare multiplicities last: they are almost always both `Many`, so it helps failing faster. - Cache `manyDataConTy` in `mkTyConApp`, to make sure that all the instances of `TyConApp ManyDataConTy []` are physically the same. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Arnaud Spiwack Metric Decrease: haddock.base T12227 T12545 T12990 T1969 T3064 T5030 T9872b Metric Increase: haddock.base haddock.Cabal haddock.compiler T12150 T12234 T12425 T12707 T13035 T13056 T15164 T16190 T18304 T1969 T3064 T3294 T5631 T5642 T5837 T6048 T9020 T9233 T9675 T9872a T9961 WWRec
* Linear types (#15981)Krzysztof Gogolewski2020-06-177-33/+171
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the first step towards implementation of the linear types proposal (https://github.com/ghc-proposals/ghc-proposals/pull/111). It features * A language extension -XLinearTypes * Syntax for linear functions in the surface language * Linearity checking in Core Lint, enabled with -dlinear-core-lint * Core-to-core passes are mostly compatible with linearity * Fields in a data type can be linear or unrestricted; linear fields have multiplicity-polymorphic constructors. If -XLinearTypes is disabled, the GADT syntax defaults to linear fields The following items are not yet supported: * a # m -> b syntax (only prefix FUN is supported for now) * Full multiplicity inference (multiplicities are really only checked) * Decent linearity error messages * Linear let, where, and case expressions in the surface language (each of these currently introduce the unrestricted variant) * Multiplicity-parametric fields * Syntax for annotating lambda-bound or let-bound with a multiplicity * Syntax for non-linear/multiple-field-multiplicity records * Linear projections for records with a single linear field * Linear pattern synonyms * Multiplicity coercions (test LinearPolyType) A high-level description can be found at https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation Following the link above you will find a description of the changes made to Core. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Matthew Pickering * Arnaud Spiwack With contributions from: * Mark Barbone * Alexander Vershilov Updates haddock submodule.
* winio: Add Atomic Exchange PrimOp and implement Atomic Ptr exchanges.Tamar Christina2020-06-141-0/+12
| | | | | | | The initial version was rewritten by Tamar Christina. It was rewritten in large parts by Andreas Klebinger. Co-authored-by: Andreas Klebinger <klebinger.andreas@gmx.at>
* Rename Package into Unit (2)Sylvain Henry2020-06-131-1/+1
| | | | | | | * rename PackageState into UnitState * rename findWiredInPackages into findWiredInUnits * rename lookupModuleInAll[Packages,Units] * etc.
* Enhance UnitId useSylvain Henry2020-06-132-10/+10
| | | | | | | | * use UnitId instead of String to identify wired-in units * use UnitId instead of Unit in the backend (Unit are only use by Backpack to produce type-checked interfaces, not real code) * rename lookup functions for consistency * documentation
* Implement cast worker/wrapper properlySimon Peyton Jones2020-06-101-5/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The cast worker/wrapper transformation transforms x = e |> co into y = e x = y |> co This is done by the simplifier, but we were being careless about transferring IdInfo from x to y, and about what to do if x is a NOINLNE function. This resulted in a series of bugs: #17673, #18093, #18078. This patch fixes all that: * Main change is in GHC.Core.Opt.Simplify, and the new prepareBinding function, which does this cast worker/wrapper transform. See Note [Cast worker/wrappers]. * There is quite a bit of refactoring around prepareRhs, makeTrivial etc. It's nicer now. * Some wrappers from strictness and cast w/w, notably those for a function with a NOINLINE, should inline very late. There wasn't really a mechanism for that, which was an existing bug really; so I invented a new finalPhase = Phase (-1). It's used for all simplifier runs after the user-visible phase 2,1,0 have run. (No new runs of the simplifier are introduced thereby.) See new Note [Compiler phases] in GHC.Types.Basic; the main changes are in GHC.Core.Opt.Driver * Doing this made me trip over two places where the AnonArgFlag on a FunTy was being lost so we could end up with (Num a -> ty) rather than (Num a => ty) - In coercionLKind/coercionRKind - In contHoleType in the Simplifier I fixed the former by defining mkFunctionType and using it in coercionLKind/RKind. I could have done the same for the latter, but the information is almost to hand. So I fixed the latter by - adding sc_hole_ty to ApplyToVal (like ApplyToTy), - adding as_hole_ty to ValArg (like TyArg) - adding sc_fun_ty to StrictArg Turned out I could then remove ai_type from ArgInfo. This is just moving the deck chairs around, but it worked out nicely. See the new Note [AnonArgFlag] in GHC.Types.Var * When looking at the 'arity decrease' thing (#18093) I discovered that stable unfoldings had a much lower arity than the actual optimised function. That's what led to the arity-decrease message. Simple solution: eta-expand. It's described in Note [Eta-expand stable unfoldings] in GHC.Core.Opt.Simplify * I also discovered that unsafeCoerce wasn't being inlined if the context was boring. So (\x. f (unsafeCoerce x)) would create a thunk -- yikes! I fixed that by making inlineBoringOK a bit cleverer: see Note [Inline unsafeCoerce] in GHC.Core.Unfold. I also found that unsafeCoerceName was unused, so I removed it. I made a test case for #18078, and a very similar one for #17673. The net effect of all this on nofib is very modest, but positive: -------------------------------------------------------------------------------- Program Size Allocs Runtime Elapsed TotalMem -------------------------------------------------------------------------------- anna -0.4% -0.1% -3.1% -3.1% 0.0% fannkuch-redux -0.4% -0.3% -0.1% -0.1% 0.0% maillist -0.4% -0.1% -7.8% -1.0% -14.3% primetest -0.4% -15.6% -7.1% -6.6% 0.0% -------------------------------------------------------------------------------- Min -0.9% -15.6% -13.3% -14.2% -14.3% Max -0.3% 0.0% +12.1% +12.4% 0.0% Geometric Mean -0.4% -0.2% -2.3% -2.2% -0.1% All following metric decreases are compile-time allocation decreases between -1% and -3%: Metric Decrease: T5631 T13701 T14697 T15164
* Clarify leaf module names for new module hierarchyTakenobu Tani2020-06-101-2/+2
| | | | | | | | | | | | | | | | | | | | | This updates comments only. This patch replaces leaf module names according to new module hierarchy [1][2] as followings: * Expand leaf names to easily find the module path: for instance, `Id.hs` to `GHC.Types.Id`. * Modify leaf names according to new module hierarchy: for instance, `Convert.hs` to `GHC.ThToHs`. * Fix typo: for instance, `GHC.Core.TyCo.Rep.hs` to `GHC.Core.TyCo.Rep` See also !3375 [1]: https://gitlab.haskell.org/ghc/ghc/-/wikis/Make-GHC-codebase-more-modular [2]: https://gitlab.haskell.org/ghc/ghc/issues/13009
* Simple subsumptionwip/T17775Simon Peyton Jones2020-06-052-11/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch simplifies GHC to use simple subsumption. Ticket #17775 Implements GHC proposal #287 https://github.com/ghc-proposals/ghc-proposals/blob/master/ proposals/0287-simplify-subsumption.rst All the motivation is described there; I will not repeat it here. The implementation payload: * tcSubType and friends become noticably simpler, because it no longer uses eta-expansion when checking subsumption. * No deeplyInstantiate or deeplySkolemise That in turn means that some tests fail, by design; they can all be fixed by eta expansion. There is a list of such changes below. Implementing the patch led me into a variety of sticky corners, so the patch includes several othe changes, some quite significant: * I made String wired-in, so that "foo" :: String rather than "foo" :: [Char] This improves error messages, and fixes #15679 * The pattern match checker relies on knowing about in-scope equality constraints, andd adds them to the desugarer's environment using addTyCsDs. But the co_fn in a FunBind was missed, and for some reason simple-subsumption ends up with dictionaries there. So I added a call to addTyCsDs. This is really part of #18049. * I moved the ic_telescope field out of Implication and into ForAllSkol instead. This is a nice win; just expresses the code much better. * There was a bug in GHC.Tc.TyCl.Instance.tcDataFamInstHeader. We called checkDataKindSig inside tc_kind_sig, /before/ solveEqualities and zonking. Obviously wrong, easily fixed. * solveLocalEqualitiesX: there was a whole mess in here, around failing fast enough. I discovered a bad latent bug where we could successfully kind-check a type signature, and use it, but have unsolved constraints that could fill in coercion holes in that signature -- aargh. It's all explained in Note [Failure in local type signatures] in GHC.Tc.Solver. Much better now. * I fixed a serious bug in anonymous type holes. IN f :: Int -> (forall a. a -> _) -> Int that "_" should be a unification variable at the /outer/ level; it cannot be instantiated to 'a'. This was plain wrong. New fields mode_lvl and mode_holes in TcTyMode, and auxiliary data type GHC.Tc.Gen.HsType.HoleMode. This fixes #16292, but makes no progress towards the more ambitious #16082 * I got sucked into an enormous refactoring of the reporting of equality errors in GHC.Tc.Errors, especially in mkEqErr1 mkTyVarEqErr misMatchMsg misMatchMsgOrCND In particular, the very tricky mkExpectedActualMsg function is gone. It took me a full day. But the result is far easier to understand. (Still not easy!) This led to various minor improvements in error output, and an enormous number of test-case error wibbles. One particular point: for occurs-check errors I now just say Can't match 'a' against '[a]' rather than using the intimidating language of "occurs check". * Pretty-printing AbsBinds Tests review * Eta expansions T11305: one eta expansion T12082: one eta expansion (undefined) T13585a: one eta expansion T3102: one eta expansion T3692: two eta expansions (tricky) T2239: two eta expansions T16473: one eta determ004: two eta expansions (undefined) annfail06: two eta (undefined) T17923: four eta expansions (a strange program indeed!) tcrun035: one eta expansion * Ambiguity check at higher rank. Now that we have simple subsumption, a type like f :: (forall a. Eq a => Int) -> Int is no longer ambiguous, because we could write g :: (forall a. Eq a => Int) -> Int g = f and it'd typecheck just fine. But f's type is a bit suspicious, and we might want to consider making the ambiguity check do a check on each sub-term. Meanwhile, these tests are accepted, whereas they were previously rejected as ambiguous: T7220a T15438 T10503 T9222 * Some more interesting error message wibbles T13381: Fine: one error (Int ~ Exp Int) rather than two (Int ~ Exp Int, Exp Int ~ Int) T9834: Small change in error (improvement) T10619: Improved T2414: Small change, due to order of unification, fine T2534: A very simple case in which a change of unification order means we get tow unsolved constraints instead of one tc211: bizarre impredicative tests; just accept this for now Updates Cabal and haddock submodules. Metric Increase: T12150 T12234 T5837 haddock.base Metric Decrease: haddock.compiler haddock.Cabal haddock.base Merge note: This appears to break the `UnliftedNewtypesDifficultUnification` test. It has been marked as broken in the interest of merging. (cherry picked from commit 66b7b195cb3dce93ed5078b80bf568efae904cc5)
* Rename the singleton tuple GHC.Tuple.Unit to GHC.Tuple.SoloTom Ellis2020-06-012-17/+17
|
* Eta expand un-saturated primopsBen Gamari2020-05-291-20/+72
| | | | | | | | | | | Now since we no longer try to predict CAFfyness we have no need for the solution to #16846. Eta expanding unsaturated primop applications is conceptually simpler, especially in the presence of levity polymorphism. This essentially reverts cac8dc9f51e31e4c0a6cd9bc302f7e1bc7c03beb, as suggested in #18079. Closes #18079.
* Fix "build/elem" RULE.Andreas Klebinger2020-05-291-10/+16
| | | | | | | | | | | | | | | | | | | | | | | | An redundant constraint prevented the rule from matching. Fixing this allows a call to elem on a known list to be translated into a series of equality checks, and eventually a simple case expression. Surprisingly this seems to regress elem for strings. To avoid this we now also allow foldrCString to inline and add an UTF8 variant. This results in elem being compiled to a tight non-allocating loop over the primitive string literal which performs a linear search. In the process this commit adds UTF8 variants for some of the functions in GHC.CString. This is required to make this work for both ASCII and UTF8 strings. There are also small tweaks to the CString related rules. We now allow ourselfes the luxury to compare the folding function via eqExpr, which helps to ensure the rule fires before we inline foldrCString*. Together with a few changes to allow matching on both the UTF8 and ASCII variants of the CString functions.
* Remove unused hs-boot fileMatthew Pickering2020-05-241-7/+0
|
* Add orderingTyCon to wiredInTyCons (#18185)Ryan Scott2020-05-242-6/+6
| | | | | | | | | | `Ordering` needs to be wired in for use in the built-in `CmpNat` and `CmpSymbol` type families, but somehow it was never added to the list of `wiredInTyCons`, leading to the various oddities observed in #18185. Easily fixed by moving `orderingTyCon` from `basicKnownKeyNames` to `wiredInTyCons`. Fixes #18185.
* Implement cstringLength# and FinalPtrAndrew Martin2020-05-231-2/+5
| | | | | | | | | | | | | | | | | | | | This function and its accompanying rule resolve issue #5218. A future PR to the bytestring library will make the internal Data.ByteString.Internal.unsafePackAddress compute string length with cstringLength#. This will improve the status quo because it is eligible for constant folding. Additionally, introduce a new data constructor to ForeignPtrContents named FinalPtr. This additional data constructor, when used in the IsString instance for ByteString, leads to more Core-to-Core optimization opportunities, fewer runtime allocations, and smaller binaries. Also, this commit re-exports all the functions from GHC.CString (including cstringLength#) in GHC.Exts. It also adds a new test driver. This test driver is used to perform substring matches on Core that is dumped after all the simplifier passes. In this commit, it is used to check that constant folding of cstringLength# works.
* Fix wording in primops documentation to reflect the correct reasoning:Alexey Kuleshevich2020-05-211-5/+5
| | | | | | | | | * Besides resizing functions, shrinking ones also mutate the size of a mutable array and because of those two `sizeofMutabeByteArray` and `sizeofSmallMutableArray` are now deprecated * Change reference in documentation to the newer functions `getSizeof*` instead of `sizeof*` for shrinking functions * Fix incorrect mention of "byte" instead of "small"
* Explicit SpecificityGert-Jan Bottu2020-05-212-6/+31
| | | | | | | | | | | | | | | | | | | | Implementation for Ticket #16393. Explicit specificity allows users to manually create inferred type variables, by marking them with braces. This way, the user determines which variables can be instantiated through visible type application. The additional syntax is included in the parser, allowing users to write braces in type variable binders (type signatures, data constructors etc). This information is passed along through the renamer and verified in the type checker. The AST for type variable binders, data constructors, pattern synonyms, partial signatures and Template Haskell has been updated to include the specificity of type variables. Minor notes: - Bumps haddock submodule - Disables pattern match checking in GHC.Iface.Type with GHC 8.8
* DmdAnal: Improve handling of precise exceptionsSebastian Graf2020-05-151-10/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch does two things: Fix possible unsoundness in what was called the "IO hack" and implement part 2.1 of the "fixing precise exceptions" plan in https://gitlab.haskell.org/ghc/ghc/wikis/fixing-precise-exceptions, which, in combination with !2956, supersedes !3014 and !2525. **IO hack** The "IO hack" (which is a fallback to preserve precise exceptions semantics and thus soundness, rather than some smart thing that increases precision) is called `exprMayThrowPreciseException` now. I came up with two testcases exemplifying possible unsoundness (if twisted enough) in the old approach: - `T13380d`: Demonstrating unsoundness of the "IO hack" when resorting to manual state token threading and direct use of primops. More details below. - `T13380e`: Demonstrating unsoundness of the "IO hack" when we have Nested CPR. Not currently relevant, as we don't have Nested CPR yet. - `T13380f`: Demonstrating unsoundness of the "IO hack" for safe FFI calls. Basically, the IO hack assumed that precise exceptions can only be thrown from a case scrutinee of type `(# State# RealWorld, _ #)`. I couldn't come up with a program using the `IO` abstraction that violates this assumption. But it's easy to do so via manual state token threading and direct use of primops, see `T13380d`. Also similar code might be generated by Nested CPR in the (hopefully not too) distant future, see `T13380e`. Hence, we now have a more careful test in `forcesRealWorld` that passes `T13380{d,e}` (and will hopefully be robust to Nested CPR). **Precise exceptions** In #13380 and #17676 we saw that we didn't preserve precise exception semantics in demand analysis. We fixed that with minimal changes in !2956, but that was terribly unprincipled. That unprincipledness resulted in a loss of precision, which is tracked by these new test cases: - `T13380b`: Regression in dead code elimination, because !2956 was too syntactic about `raiseIO#` - `T13380c`: No need to apply the "IO hack" when the IO action may not throw a precise exception (and the existing IO hack doesn't detect that) Fixing both issues in !3014 turned out to be too complicated and had the potential to regress in the future. Hence we decided to only fix `T13380b` and augment the `Divergence` lattice with a new middle-layer element, `ExnOrDiv`, which means either `Diverges` (, throws an imprecise exception) or throws a *precise* exception. See the wiki page on Step 2.1 for more implementational details: https://gitlab.haskell.org/ghc/ghc/wikis/fixing-precise-exceptions#dead-code-elimination-for-raiseio-with-isdeadenddiv-introducing-exnordiv-step-21
* Document (->) using inferred quantification for its runtime representations.Baldur Blöndal2020-05-131-2/+16
| | | | Fixes #18142.
* Fix unboxed-sums GC ptr-slot rubbish value (#17791)Sylvain Henry2020-05-091-1/+2
| | | | | | | This patch allows boot libraries to use unboxed sums without implicitly depending on `base` package because of `absentSumFieldError`. See updated Note [aBSENT_SUM_FIELD_ERROR_ID] in GHC.Core.Make
* Unit: split and rename modulesSylvain Henry2020-04-305-6/+8
| | | | | | | Introduce GHC.Unit.* hierarchy for everything concerning units, packages and modules. Update Haddock submodule
* Refactoring unit management codeSylvain Henry2020-04-301-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Over the years the unit management code has been modified a lot to keep up with changes in Cabal (e.g. support for several library components in the same package), to integrate BackPack, etc. I found it very hard to understand as the terminology wasn't consistent, was referring to past concepts, etc. The terminology is now explained as clearly as I could in the Note "About Units" and the code is refactored to reflect it. ------------------- Many names were misleading: UnitId is not an Id but could be a virtual unit (an indefinite one instantiated on the fly), IndefUnitId constructor may contain a definite instantiated unit, etc. * Rename IndefUnitId into InstantiatedUnit * Rename IndefModule into InstantiatedModule * Rename UnitId type into Unit * Rename IndefiniteUnitId constructor into VirtUnit * Rename DefiniteUnitId constructor into RealUnit * Rename packageConfigId into mkUnit * Rename getPackageDetails into unsafeGetUnitInfo * Rename InstalledUnitId into UnitId Remove references to misleading ComponentId: a ComponentId is just an indefinite unit-id to be instantiated. * Rename ComponentId into IndefUnitId * Rename ComponentDetails into UnitPprInfo * Fix display of UnitPprInfo with empty version: this is now used for units dynamically generated by BackPack Generalize several types (Module, Unit, etc.) so that they can be used with different unit identifier types: UnitKey, UnitId, Unit, etc. * GenModule: Module, InstantiatedModule and InstalledModule are now instances of this type * Generalize DefUnitId, IndefUnitId, Unit, InstantiatedUnit, PackageDatabase Replace BackPack fake "hole" UnitId by a proper HoleUnit constructor. Add basic support for UnitKey. They should be used more in the future to avoid mixing them up with UnitId as we do now. Add many comments. Update Haddock submodule
* Make boxed 1-tuples have known keysRyan Scott2020-04-283-8/+48
| | | | | | | | | | | | Unlike other tuples, which use special syntax and are "known" by way of a special `isBuiltInOcc_maybe` code path, boxed 1-tuples do not use special syntax. Therefore, in order to make sure that the internals of GHC are aware of the `data Unit a = Unit a` definition in `GHC.Tuple`, we give `Unit` known keys. For the full details, see `Note [One-tuples] (Wrinkle: Make boxed one-tuple names have known keys)` in `GHC.Builtin.Types`. Fixes #18097.
* Modules: Utils and Data (#13009)Sylvain Henry2020-04-2610-29/+27
| | | | | | | Update Haddock submodule Metric Increase: haddock.compiler
* GHC.Prim docs: note and testmniip2020-04-231-5/+1
|
* Include docs for non-primop entries in primops.txt as wellmniip2020-04-232-4/+17
|
* Add :doc to GHC.Primmniip2020-04-232-1/+19
|
* Modules (#13009)Sylvain Henry2020-04-1813-0/+12459
* SysTools * Parser * GHC.Builtin * GHC.Iface.Recomp * Settings Update Haddock submodule Metric Decrease: Naperian parsing001