| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Co-authored-by: Rinat Stryungis <rinat.stryungis@serokell.io>
Implement GHC Proposal #387
* Parse char literals 'x' at the type level
* New built-in type families CmpChar, ConsSymbol, UnconsSymbol
* New KnownChar class (cf. KnownSymbol and KnownNat)
* New SomeChar type (cf. SomeSymbol and SomeNat)
* CharTyLit support in template-haskell
Updated submodules: binary, haddock.
Metric Decrease:
T5205
haddock.base
Metric Increase:
Naperian
T13035
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Implement constant folding rules for Natural (similar to Integer ones)
* Add mkCoreUbxSum helper in GHC.Core.Make
* Remove naturalTo/FromInt
We now only provide `naturalTo/FromWord` as
the semantics is clear (truncate/zero-extend). For Int we have to deal
with negative numbers (throw an exception? convert to Word
beforehand?) so we leave the decision about what to do to the caller.
Moreover, now that we have sized types (Int8#, Int16#, ..., Word8#,
etc.) there is no reason to bless `Int#` more than `Int8#` or `Word8#`
(for example).
* Replaced a few `()` with `(# #)`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- `inversePrimOp` is renamed to `semiInversePrimOp` to indicate the
given primop is only a right inverse, not left inverse (and
contra-wise for the primop which we are giving rules for). This
explains why are new usage is not incorrect.
- The removed `subsumedByPrimOp` calls were actually dead as the match
on ill-typed code. @hsyl20 pointed this out in
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/4390#note_311912,
Metric Decrease:
T13701
|
|
|
|
|
|
|
| |
Instead of producing auxiliary con2tag bindings we now rely on
dataToTag#, eliminating a fair bit of generated code.
Co-Authored-By: Ben Gamari <ben@well-typed.com>
|
|
|
|
|
|
|
|
|
| |
* allow `integerCompare` to inline into `integerLe#`, etc.
* use `naturalSubThrow` to implement Natural's `(-)`
* use `naturalNegate` to implement Natural's `negate`
* implement and use `integerToNaturalThrow` to implement Natural's `fromInteger`
Thanks to @christiaanb for reporting these
|
|
|
|
|
|
| |
This is is correcting a mistake I unfortunately missed in !4698. But
that is a recent PR so this fix is not a compatibility hazard with
released versions of GHC.
|
|
|
|
|
|
|
|
|
|
|
| |
For interactive evaluations set the field `DynFlags.dumpPrefix` to the
GHCi internal module name. The GHCi module name for an interactive
evaluation is something like `Ghci9`.
To avoid user confusion, don't dump any data for GHCi internal evaluations.
Extend the comment for `DynFlags.dumpPrefix` and fix a little typo in a
comment about the GHCi internal module names.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Progress towards #19026.
The type was added before, but not its primops. We follow the
conventions in 36fcf9edee31513db2ddbf716ee0aa79766cbe69 and
2c959a1894311e59cd2fd469c1967491c1e488f3 for names and testing.
Along with the previous 8- and 16-bit primops, this will allow us to
avoid many conversions for 8-, 16-, and 32-bit sized numeric types.
Co-authored-by: Sylvain Henry <hsyl20@gmail.com>
|
|
|
|
|
| |
I'm not sure how long the submodule dance is going to take, sadly, so
I'd like to chip away at things in the meantime / avoid conflicts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch significantly refactors key renamer datastructures (primarily Avail
and GlobalRdrElt) in order to treat DuplicateRecordFields in a more robust way.
In particular it allows the extension to be used with pattern synonyms (fixes
where mangled record selector names could be printed instead of field labels
(e.g. with -Wpartial-fields or hole fits, see new tests).
The key idea is the introduction of a new type GreName for names that may
represent either normal entities or field labels. This is then used in
GlobalRdrElt and AvailInfo, in place of the old way of representing fields
using FldParent (yuck) and an extra list in AvailTC.
Updates the haddock submodule.
|
|
|
|
| |
Fixes #18840.
|
|
|
|
|
|
| |
This was inadvertently merged.
This reverts commit 6c2eb2232b39ff4720fda0a4a009fb6afbc9dcea.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the BoxedRep proposal, refacoring the `RuntimeRep`
hierarchy from:
```haskell
data RuntimeRep = LiftedPtrRep | UnliftedPtrRep | ...
```
to
```haskell
data RuntimeRep = BoxedRep Levity | ...
data Levity = Lifted | Unlifted
```
Closes #17526.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During the compilation of programs GHC very frequently deals with
the `Type` type, which is a synonym of `TYPE 'LiftedRep`. This patch
teaches GHC to avoid expanding the `Type` synonym (and other nullary
type synonyms) during type comparisons, saving a good amount of work.
This optimisation is described in `Note [Comparing nullary type
synonyms]`.
To maximize the impact of this optimisation, we introduce a few
special-cases to reduce `TYPE 'LiftedRep` to `Type`. See
`Note [Prefer Type over TYPE 'LiftedPtrRep]`.
Closes #17958.
Metric Decrease:
T18698b
T1969
T12227
T12545
T12707
T14683
T3064
T5631
T5642
T9020
T9630
T9872a
T13035
haddock.Cabal
haddock.base
|
|
|
|
|
|
| |
This was inadvertently merged.
This reverts commit 7e9debd4ceb068effe8ac81892d2cabcb8f55850.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During the compilation of programs GHC very frequently deals with
the `Type` type, which is a synonym of `TYPE 'LiftedRep`. This patch
teaches GHC to avoid expanding the `Type` synonym (and other nullary
type synonyms) during type comparisons, saving a good amount of work.
This optimisation is described in `Note [Comparing nullary type
synonyms]`.
To maximize the impact of this optimisation, we introduce a few
special-cases to reduce `TYPE 'LiftedRep` to `Type`. See
`Note [Prefer Type over TYPE 'LiftedPtrRep]`.
Closes #17958.
Metric Decrease:
T18698b
T1969
T12227
T12545
T12707
T14683
T3064
T5631
T5642
T9020
T9630
T9872a
T13035
haddock.Cabal
haddock.base
|
|
|
|
|
|
|
| |
Harmonize the internal (big sum type) names of the native vs fixed-sized
number primops a bit. (Mainly by renaming the former.)
No user-facing names are changed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This replaces all Word<N> = W<N># Word# and Int<N> = I<N># Int# with
Word<N> = W<N># Word<N># and Int<N> = I<N># Int<N>#, thus providing us
with properly sized primitives in the codegenerator instead of pretending
they are all full machine words.
This came up when implementing darwinpcs for arm64. The darwinpcs reqires
us to pack function argugments in excess of registers on the stack. While
most procedure call standards (pcs) assume arguments are just passed in
8 byte slots; and thus the caller does not know the exact signature to make
the call, darwinpcs requires us to adhere to the prototype, and thus have
the correct sizes. If we specify CInt in the FFI call, it should correspond
to the C int, and not just be Word sized, when it's only half the size.
This does change the expected output of T16402 but the new result is no
less correct as it eliminates the narrowing (instead of the `and` as was
previously done).
Bumps the array, bytestring, text, and binary submodules.
Co-Authored-By: Ben Gamari <ben@well-typed.com>
Metric Increase:
T13701
T14697
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As outlined in #18903, interleaving usage and strictness demands not
only means a more compact demand representation, but also allows us to
express demands that we weren't easily able to express before.
Call demands are *relative* in the sense that a call demand `Cn(cd)`
on `g` says "`g` is called `n` times. *Whenever `g` is called*, the
result is used according to `cd`". Example from #18903:
```hs
h :: Int -> Int
h m =
let g :: Int -> (Int,Int)
g 1 = (m, 0)
g n = (2 * n, 2 `div` n)
{-# NOINLINE g #-}
in case m of
1 -> 0
2 -> snd (g m)
_ -> uncurry (+) (g m)
```
Without the interleaved representation, we would just get `L` for the
strictness demand on `g`. Now we are able to express that whenever
`g` is called, its second component is used strictly in denoting `g`
by `1C1(P(1P(U),SP(U)))`. This would allow Nested CPR to unbox the
division, for example.
Fixes #18903.
While fixing regressions, I also discovered and fixed #18957.
Metric Decrease:
T13253-spj
|
|
|
|
|
|
|
|
|
|
|
|
| |
Their strictness signatures said the primops are strict in their first
argument, which is wrong: Handing it a thunk will prefetch the pointer
to the thunk, but not evaluate it. Hence not strict.
The regression test `T8256` actually tests for laziness in the first
argument, so GHC apparently never exploited the strictness signature.
See also https://gitlab.haskell.org/ghc/ghc/-/issues/8256#note_310867,
where this came up.
|
|
|
|
| |
This reuses the codegen used for ByteArray#'s atomic primops.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The atomic Exchange and CAS operations on integral types are updated to
take and return more natural `Word#` rather than `Int#` values. These
are bit-block not arithmetic operations, and the sign bit plays no
special role.
Standardises the names to `atomic<OpType><ValType>Addr#`, where `OpType` is one
of `Cas` or `Exchange` and `ValType` is presently either `Word` or `Addr`.
Eventually, variants for `Word32` and `Word64` can and should be added,
once #11953 and related issues (e.g. #13825) are resolved.
Adds tests for `Addr#` CAS that mirror existing tests for
`MutableByteArray#`.
|
|
|
|
|
| |
Previously these were mostly undocumented and was ripe for potential
inconsistencies.
|
|
|
|
| |
This file will be generated.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was working on making DynFlags stateless (#17957), especially by
storing loaded plugins into HscEnv instead of DynFlags. It turned out to
be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin
isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I
didn't feel like introducing yet another hs-boot file to break the loop.
Additionally I remember that while we introduced the module hierarchy
(#13009) we talked about splitting GHC.Driver.Types because it contained
various unrelated types and functions, but we never executed. I didn't
feel like making GHC.Driver.Types bigger with more unrelated Plugins
related types, so finally I bit the bullet and split GHC.Driver.Types.
As a consequence this patch moves a lot of things. I've tried to put
them into appropriate modules but nothing is set in stone.
Several other things moved to avoid loops.
* Removed Binary instances from GHC.Utils.Binary for random compiler
things
* Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they
import a lot of things that users of GHC.Utils.Binary don't want to
depend on.
* put everything related to Units/Modules under GHC.Unit:
GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.}
* Created several modules under GHC.Types: GHC.Types.Fixity, SourceText,
etc.
* Split GHC.Utils.Error (into GHC.Types.Error)
* Finally removed GHC.Driver.Types
Note that this patch doesn't put loaded plugins into HscEnv. It's left
for another patch.
Bump haddock submodule
|
|
|
|
|
|
|
| |
- Update comments: placeHolderTypeTc no longer exists
"another level check problem" was a temporary comment from linear types
- Use Mult type synonym (reported in #18676)
- Mention multiplicity-polymorphic fields in linear types docs
|
|
|
|
| |
As well a ctuples and sums.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit removes the separate kind 'Nat' and enables promotion
of type 'Natural' for using as type literal.
It partially solves #10776
Now the following code will be successfully typechecked:
data C = MkC Natural
type CC = MkC 1
Before this change we had to create the separate type for promotion
data C = MkC Natural
data CP = MkCP Nat
type CC = MkCP 1
But CP is uninhabited in terms.
For backward compatibility type synonym `Nat` has been made:
type Nat = Natural
The user's documentation and tests have been updated.
The haddock submodule also have been updated.
|
|
|
|
|
|
|
|
|
|
|
| |
* Include funTyCon in exposedPrimTyCons.
Every single place using exposedPrimTyCons was adding funTyCon
manually.
* Remove unused synTyConResKind and ieLWrappedName
* Add recordSelectorTyCon_maybe
* In exprType, panic instead of giving a trace message and dummy output.
This prevents #18767 reoccurring.
* Fix compilation error in fragile concprog001 test (part of #18732)
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move the atomix exchange over the Ptr type to an internal module.
Fix a bug caused by us passing ptr-to-ptr instead of ptr to
atomic exchange.
Renamed interlockedExchange to exchangePtr.
I've also added an cas primitive. It turned out we don't need it
for WinIO but I'm leaving it in as it's useful for other things.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, `integerDecodeDouble#` is known-key so that it can be
recognised in constant folding. But that is very brittle and doesn't
survive worker/wrapper, which we even do for
`NOINLINE` things since #13143.
Also it is a trade-off: The implementation of `integerDecodeDouble#`
allocates an `Integer` box that never cancels aways if we don't inline
it.
Hence we recognise the `decodeDouble_Int64#` primop instead in constant
folding, so that we can inline `integerDecodeDouble#`. As a result,
`integerDecodeDouble#` no longer needs to be known-key.
While doing so, I realised that we don't constant-fold
`decodeFloat_Int#` either, so I also added a RULE for it.
`integerDecodeDouble` is dead, so I deleted it.
Part of #18092. This improves the 32-bit `realToFrac`/`toRational`:
Metric Decrease:
T10359
|
|
|
|
| |
[skip ci]
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Haskell and Cmm parsers/lexers now report errors and warnings using ADTs
defined in GHC.Parser.Errors. They can be printed using functions in
GHC.Parser.Errors.Ppr.
Some of the errors provide hints with a separate ADT (e.g. to suggest to
turn on some extension). For now, however, hints are not consistent
across all messages. For example some errors contain the hints in the
main message. I didn't want to change any message with this patch. I
expect these changes to be discussed and implemented later.
Surprisingly, this patch enhances performance. On CI
(x86_64/deb9/hadrian, ghc/alloc):
parsing001 -11.5%
T13719 -2.7%
MultiLayerModules -3.5%
Naperian -3.1%
Bump haddock submodule
Metric Decrease:
MultiLayerModules
Naperian
T13719
parsing001
|
| |
|
|
|
|
|
|
|
|
|
|
| |
We were missing this case previously.
Close #18528.
Metric Decrease:
T18223
T5321Fun
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Data.OldList exports a monomorphized singleton function but
it is not re-exported by Data.List. Adding the export to
Data.List causes a conflict with a 14-year old function of the
same name and type by SPJ in GHC.Utils.Misc. We can't just remove
this function because that leads to a problems when building
GHC with a stage0 compiler that does not have singleton in
Data.List yet. We also can't hide the function in GHC.Utils.Misc
since it is not possible to hide a function from a module if the
module does not export the function. To work around this, all
places where the Utils.Misc singleton was used now use a qualified
version like Utils.singleton and in GHC.Utils.Misc we are very
specific about which version we export.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This wires in the definitions of the constraint tuple classes. The
key changes are in:
* `GHC.Builtin.Types`, where the `mk_ctuple` function is used to
define constraint tuple type constructors, data constructors, and
superclass selector functions, and
* `GHC.Builtin.Uniques`. In addition to wiring in the `Unique`s for
constraint tuple type and data constructors, we now must wire in
the superclass selector functions. Luckily, this proves to be not
that challenging. See the newly added comments.
Historical note: constraint tuples used to be wired-in until about
five years ago, when commit 130e93aab220bdf14d08028771f83df210da340b
turned them into known-key names. This was done as part of a larger
refactor to reduce the number of special cases for constraint tuples,
but the commit message notes that the main reason that constraint
tuples were made known-key (as opposed to boxed/unboxed tuples, which
are wired in) is because it was awkward to wire in the superclass
selectors. This commit solves the problem of wiring in superclass
selectors.
Fixes #18635.
-------------------------
Metric Decrease:
T10421
T12150
T12227
T12234
T12425
T13056
T13253-spj
T18282
T18304
T5321FD
T5321Fun
T5837
T9961
Metric Decrease (test_env='x86_64-linux-deb9-unreg-hadrian'):
T12707
Metric Decrease (test_env='x86_64-darwin'):
T4029
-------------------------
|
|
|
|
|
|
|
|
|
|
|
| |
Change the constructors for the primop union, and also names of the
literal conversion functions.
"2" runs into trouble when we need to do conversions from fixed-width
types, and end up with thing like "Int642Word".
Only the names internal to GHC are changed, as I don't want to worry
about breaking changes ATM.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FastStrings can be compared in 2 ways: by Unique or lexically. We don't
want to bless one particular way with an "Ord" instance because it leads
to bugs (#18562) or to suboptimal code (e.g. using lexical comparison
while a Unique comparison would suffice).
UTF-8 encoding has the advantage that sorting strings by their encoded
bytes also sorts them by their Unicode code points, without having to
decode the actual code points. BUT GHC uses Modified UTF-8 which
diverges from UTF-8 by encoding \0 as 0xC080 instead of 0x00 (to avoid
null bytes in the middle of a String so that the string can still be
null-terminated). This patch adds a new `utf8CompareShortByteString`
function that performs sorting by bytes but that also takes Modified
UTF-8 into account. It is much more performant than decoding the strings
into [Char] to perform comparisons (which we did in the previous patch).
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Add three pseudoops to primops.txt.pp, so that Haddock renders
the documentation
- Update comments
- Remove special case for "->" - it's no longer exported from GHC.Prim
- Remove reference to Note [Compiling GHC.Prim] - the ad-hoc fix is no
longer there after updates to levity polymorphism.
- Document GHC.Prim
- Remove the comment that lazy is levity-polymorphic.
As far as I can tell, it never was: in 80e399639,
only the unfolding was given an open type variable.
- Remove haddock hack in GHC.Magic - no longer neccessary after
adding realWorld# to primops.txt.pp.
|
|
|
|
|
|
|
|
|
| |
There were four categories of primops: Monadic, Dyadic, Compare, GenPrimOp.
The compiler does not treat Monadic and Dyadic in any special way,
we can just replace them with GenPrimOp.
Compare is still used in isComparisonPrimOp.
|
|
|
|
|
| |
Move uniqFromMask from Unique.Supply to Unique.
Move the the functions that call mkUnique from Unique to Builtin.Uniques
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
|
|
|
|
| |
There's one backwards compatibility issue: GHC.Prim no longer exports
Void#, we now manually re-export it from GHC.Exts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are three problems with the current API:
1. It is hard to properly write instances for ``Quote m => m (TExp a)`` as the type is the composition
of two type constructors. Doing so in your program involves making your own newtype and
doing a lot of wrapping/unwrapping.
For example, if I want to create a language which I can either run immediately or
generate code from I could write the following with the new API. ::
class Lang r where
_int :: Int -> r Int
_if :: r Bool -> r a -> r a -> r a
instance Lang Identity where
_int = Identity
_if (Identity b) (Identity t) (Identity f) = Identity (if b then t else f)
instance Quote m => Lang (Code m) where
_int = liftTyped
_if cb ct cf = [|| if $$cb then $$ct else $$cf ||]
2. When doing code generation it is common to want to store code fragments in
a map. When doing typed code generation, these code fragments contain a
type index so it is desirable to store them in one of the parameterised
map data types such as ``DMap`` from ``dependent-map`` or ``MapF`` from
``parameterized-utils``.
::
compiler :: Env -> AST a -> Code Q a
data AST a where ...
data Ident a = ...
type Env = MapF Ident (Code Q)
newtype Code m a = Code (m (TExp a))
In this example, the ``MapF`` maps an ``Ident String`` directly to a ``Code Q String``.
Using one of these map types currently requires creating your own newtype and constantly
wrapping every quotation and unwrapping it when using a splice. Achievable, but
it creates even more syntactic noise than normal metaprogramming.
3. ``m (TExp a)`` is ugly to read and write, understanding ``Code m a`` is
easier. This is a weak reason but one everyone
can surely agree with.
Updates text submodule.
|
| |
|