diff options
Diffstat (limited to 'compiler/utils/UnVarGraph.hs')
| -rw-r--r-- | compiler/utils/UnVarGraph.hs | 136 |
1 files changed, 136 insertions, 0 deletions
diff --git a/compiler/utils/UnVarGraph.hs b/compiler/utils/UnVarGraph.hs new file mode 100644 index 0000000000..228f3b5220 --- /dev/null +++ b/compiler/utils/UnVarGraph.hs @@ -0,0 +1,136 @@ +{- + +Copyright (c) 2014 Joachim Breitner + +A data structure for undirected graphs of variables +(or in plain terms: Sets of unordered pairs of numbers) + + +This is very specifically tailored for the use in CallArity. In particular it +stores the graph as a union of complete and complete bipartite graph, which +would be very expensive to store as sets of edges or as adjanceny lists. + +It does not normalize the graphs. This means that g `unionUnVarGraph` g is +equal to g, but twice as expensive and large. + +-} +module UnVarGraph + ( UnVarSet + , emptyUnVarSet, mkUnVarSet, varEnvDom, unionUnVarSet, unionUnVarSets + , delUnVarSet + , elemUnVarSet, isEmptyUnVarSet + , UnVarGraph + , emptyUnVarGraph + , unionUnVarGraph, unionUnVarGraphs + , completeGraph, completeBipartiteGraph + , neighbors + , delNode + ) where + +import Id +import VarEnv +import UniqFM +import Outputable +import Data.List +import Bag +import Unique + +import qualified Data.IntSet as S + +-- We need a type for sets of variables (UnVarSet). +-- We do not use VarSet, because for that we need to have the actual variable +-- at hand, and we do not have that when we turn the domain of a VarEnv into a UnVarSet. +-- Therefore, use a IntSet directly (which is likely also a bit more efficient). + +-- Set of uniques, i.e. for adjancet nodes +newtype UnVarSet = UnVarSet (S.IntSet) + deriving Eq + +k :: Var -> Int +k v = getKey (getUnique v) + +emptyUnVarSet :: UnVarSet +emptyUnVarSet = UnVarSet S.empty + +elemUnVarSet :: Var -> UnVarSet -> Bool +elemUnVarSet v (UnVarSet s) = k v `S.member` s + + +isEmptyUnVarSet :: UnVarSet -> Bool +isEmptyUnVarSet (UnVarSet s) = S.null s + +delUnVarSet :: UnVarSet -> Var -> UnVarSet +delUnVarSet (UnVarSet s) v = UnVarSet $ k v `S.delete` s + +mkUnVarSet :: [Var] -> UnVarSet +mkUnVarSet vs = UnVarSet $ S.fromList $ map k vs + +varEnvDom :: VarEnv a -> UnVarSet +varEnvDom ae = UnVarSet $ ufmToSet_Directly ae + +unionUnVarSet :: UnVarSet -> UnVarSet -> UnVarSet +unionUnVarSet (UnVarSet set1) (UnVarSet set2) = UnVarSet (set1 `S.union` set2) + +unionUnVarSets :: [UnVarSet] -> UnVarSet +unionUnVarSets = foldr unionUnVarSet emptyUnVarSet + +instance Outputable UnVarSet where + ppr (UnVarSet s) = braces $ + hcat $ punctuate comma [ ppr (getUnique i) | i <- S.toList s] + + +-- The graph type. A list of complete bipartite graphs +data Gen = CBPG UnVarSet UnVarSet -- complete bipartite + | CG UnVarSet -- complete +newtype UnVarGraph = UnVarGraph (Bag Gen) + +emptyUnVarGraph :: UnVarGraph +emptyUnVarGraph = UnVarGraph emptyBag + +unionUnVarGraph :: UnVarGraph -> UnVarGraph -> UnVarGraph +{- +Premature optimisation, it seems. +unionUnVarGraph (UnVarGraph [CBPG s1 s2]) (UnVarGraph [CG s3, CG s4]) + | s1 == s3 && s2 == s4 + = pprTrace "unionUnVarGraph fired" empty $ + completeGraph (s1 `unionUnVarSet` s2) +unionUnVarGraph (UnVarGraph [CBPG s1 s2]) (UnVarGraph [CG s3, CG s4]) + | s2 == s3 && s1 == s4 + = pprTrace "unionUnVarGraph fired2" empty $ + completeGraph (s1 `unionUnVarSet` s2) +-} +unionUnVarGraph (UnVarGraph g1) (UnVarGraph g2) + = -- pprTrace "unionUnVarGraph" (ppr (length g1, length g2)) $ + UnVarGraph (g1 `unionBags` g2) + +unionUnVarGraphs :: [UnVarGraph] -> UnVarGraph +unionUnVarGraphs = foldl' unionUnVarGraph emptyUnVarGraph + +-- completeBipartiteGraph A B = { {a,b} | a ∈ A, b ∈ B } +completeBipartiteGraph :: UnVarSet -> UnVarSet -> UnVarGraph +completeBipartiteGraph s1 s2 = prune $ UnVarGraph $ unitBag $ CBPG s1 s2 + +completeGraph :: UnVarSet -> UnVarGraph +completeGraph s = prune $ UnVarGraph $ unitBag $ CG s + +neighbors :: UnVarGraph -> Var -> UnVarSet +neighbors (UnVarGraph g) v = unionUnVarSets $ concatMap go $ bagToList g + where go (CG s) = (if v `elemUnVarSet` s then [s] else []) + go (CBPG s1 s2) = (if v `elemUnVarSet` s1 then [s2] else []) ++ + (if v `elemUnVarSet` s2 then [s1] else []) + +delNode :: UnVarGraph -> Var -> UnVarGraph +delNode (UnVarGraph g) v = prune $ UnVarGraph $ mapBag go g + where go (CG s) = CG (s `delUnVarSet` v) + go (CBPG s1 s2) = CBPG (s1 `delUnVarSet` v) (s2 `delUnVarSet` v) + +prune :: UnVarGraph -> UnVarGraph +prune (UnVarGraph g) = UnVarGraph $ filterBag go g + where go (CG s) = not (isEmptyUnVarSet s) + go (CBPG s1 s2) = not (isEmptyUnVarSet s1) && not (isEmptyUnVarSet s2) + +instance Outputable Gen where + ppr (CG s) = ppr s <> char '²' + ppr (CBPG s1 s2) = ppr s1 <+> char 'x' <+> ppr s2 +instance Outputable UnVarGraph where + ppr (UnVarGraph g) = ppr g |
