summaryrefslogtreecommitdiff
path: root/compiler/deSugar/Check.lhs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/deSugar/Check.lhs')
-rw-r--r--compiler/deSugar/Check.lhs698
1 files changed, 698 insertions, 0 deletions
diff --git a/compiler/deSugar/Check.lhs b/compiler/deSugar/Check.lhs
new file mode 100644
index 0000000000..9aac5ce777
--- /dev/null
+++ b/compiler/deSugar/Check.lhs
@@ -0,0 +1,698 @@
+%
+% (c) The GRASP/AQUA Project, Glasgow University, 1997-1998
+%
+% Author: Juan J. Quintela <quintela@krilin.dc.fi.udc.es>
+\section{Module @Check@ in @deSugar@}
+
+\begin{code}
+
+
+module Check ( check , ExhaustivePat ) where
+
+
+import HsSyn
+import TcHsSyn ( hsPatType, mkVanillaTuplePat )
+import TcType ( tcTyConAppTyCon )
+import DsUtils ( EquationInfo(..), MatchResult(..),
+ CanItFail(..), firstPat )
+import MatchLit ( tidyLitPat, tidyNPat )
+import Id ( Id, idType )
+import DataCon ( DataCon, dataConTyCon, dataConOrigArgTys, dataConFieldLabels )
+import Name ( Name, mkInternalName, getOccName, isDataSymOcc,
+ getName, mkVarOccFS )
+import TysWiredIn
+import PrelNames ( unboundKey )
+import TyCon ( tyConDataCons, tupleTyConBoxity, isTupleTyCon )
+import BasicTypes ( Boxity(..) )
+import SrcLoc ( noSrcLoc, Located(..), unLoc, noLoc )
+import UniqSet
+import Util ( takeList, splitAtList, notNull )
+import Outputable
+import FastString
+
+#include "HsVersions.h"
+\end{code}
+
+This module performs checks about if one list of equations are:
+\begin{itemize}
+\item Overlapped
+\item Non exhaustive
+\end{itemize}
+To discover that we go through the list of equations in a tree-like fashion.
+
+If you like theory, a similar algorithm is described in:
+\begin{quotation}
+ {\em Two Techniques for Compiling Lazy Pattern Matching},
+ Luc Maranguet,
+ INRIA Rocquencourt (RR-2385, 1994)
+\end{quotation}
+The algorithm is based on the first technique, but there are some differences:
+\begin{itemize}
+\item We don't generate code
+\item We have constructors and literals (not only literals as in the
+ article)
+\item We don't use directions, we must select the columns from
+ left-to-right
+\end{itemize}
+(By the way the second technique is really similar to the one used in
+ @Match.lhs@ to generate code)
+
+This function takes the equations of a pattern and returns:
+\begin{itemize}
+\item The patterns that are not recognized
+\item The equations that are not overlapped
+\end{itemize}
+It simplify the patterns and then call @check'@ (the same semantics), and it
+needs to reconstruct the patterns again ....
+
+The problem appear with things like:
+\begin{verbatim}
+ f [x,y] = ....
+ f (x:xs) = .....
+\end{verbatim}
+We want to put the two patterns with the same syntax, (prefix form) and
+then all the constructors are equal:
+\begin{verbatim}
+ f (: x (: y [])) = ....
+ f (: x xs) = .....
+\end{verbatim}
+(more about that in @simplify_eqns@)
+
+We would prefer to have a @WarningPat@ of type @String@, but Strings and the
+Pretty Printer are not friends.
+
+We use @InPat@ in @WarningPat@ instead of @OutPat@
+because we need to print the
+warning messages in the same way they are introduced, i.e. if the user
+wrote:
+\begin{verbatim}
+ f [x,y] = ..
+\end{verbatim}
+He don't want a warning message written:
+\begin{verbatim}
+ f (: x (: y [])) ........
+\end{verbatim}
+Then we need to use InPats.
+\begin{quotation}
+ Juan Quintela 5 JUL 1998\\
+ User-friendliness and compiler writers are no friends.
+\end{quotation}
+
+\begin{code}
+type WarningPat = InPat Name
+type ExhaustivePat = ([WarningPat], [(Name, [HsLit])])
+type EqnNo = Int
+type EqnSet = UniqSet EqnNo
+
+
+check :: [EquationInfo] -> ([ExhaustivePat], [EquationInfo])
+ -- Second result is the shadowed equations
+check qs = (untidy_warns, shadowed_eqns)
+ where
+ (warns, used_nos) = check' ([1..] `zip` map simplify_eqn qs)
+ untidy_warns = map untidy_exhaustive warns
+ shadowed_eqns = [eqn | (eqn,i) <- qs `zip` [1..],
+ not (i `elementOfUniqSet` used_nos)]
+
+untidy_exhaustive :: ExhaustivePat -> ExhaustivePat
+untidy_exhaustive ([pat], messages) =
+ ([untidy_no_pars pat], map untidy_message messages)
+untidy_exhaustive (pats, messages) =
+ (map untidy_pars pats, map untidy_message messages)
+
+untidy_message :: (Name, [HsLit]) -> (Name, [HsLit])
+untidy_message (string, lits) = (string, map untidy_lit lits)
+\end{code}
+
+The function @untidy@ does the reverse work of the @simplify_pat@ funcion.
+
+\begin{code}
+
+type NeedPars = Bool
+
+untidy_no_pars :: WarningPat -> WarningPat
+untidy_no_pars p = untidy False p
+
+untidy_pars :: WarningPat -> WarningPat
+untidy_pars p = untidy True p
+
+untidy :: NeedPars -> WarningPat -> WarningPat
+untidy b (L loc p) = L loc (untidy' b p)
+ where
+ untidy' _ p@(WildPat _) = p
+ untidy' _ p@(VarPat name) = p
+ untidy' _ (LitPat lit) = LitPat (untidy_lit lit)
+ untidy' _ p@(ConPatIn name (PrefixCon [])) = p
+ untidy' b (ConPatIn name ps) = pars b (L loc (ConPatIn name (untidy_con ps)))
+ untidy' _ (ListPat pats ty) = ListPat (map untidy_no_pars pats) ty
+ untidy' _ (TuplePat pats box ty) = TuplePat (map untidy_no_pars pats) box ty
+ untidy' _ (PArrPat _ _) = panic "Check.untidy: Shouldn't get a parallel array here!"
+ untidy' _ (SigPatIn _ _) = panic "Check.untidy: SigPat"
+
+untidy_con (PrefixCon pats) = PrefixCon (map untidy_pars pats)
+untidy_con (InfixCon p1 p2) = InfixCon (untidy_pars p1) (untidy_pars p2)
+untidy_con (RecCon bs) = RecCon [(f,untidy_pars p) | (f,p) <- bs]
+
+pars :: NeedPars -> WarningPat -> Pat Name
+pars True p = ParPat p
+pars _ p = unLoc p
+
+untidy_lit :: HsLit -> HsLit
+untidy_lit (HsCharPrim c) = HsChar c
+untidy_lit lit = lit
+\end{code}
+
+This equation is the same that check, the only difference is that the
+boring work is done, that work needs to be done only once, this is
+the reason top have two functions, check is the external interface,
+@check'@ is called recursively.
+
+There are several cases:
+
+\begin{itemize}
+\item There are no equations: Everything is OK.
+\item There are only one equation, that can fail, and all the patterns are
+ variables. Then that equation is used and the same equation is
+ non-exhaustive.
+\item All the patterns are variables, and the match can fail, there are
+ more equations then the results is the result of the rest of equations
+ and this equation is used also.
+
+\item The general case, if all the patterns are variables (here the match
+ can't fail) then the result is that this equation is used and this
+ equation doesn't generate non-exhaustive cases.
+
+\item In the general case, there can exist literals ,constructors or only
+ vars in the first column, we actuate in consequence.
+
+\end{itemize}
+
+
+\begin{code}
+
+check' :: [(EqnNo, EquationInfo)]
+ -> ([ExhaustivePat], -- Pattern scheme that might not be matched at all
+ EqnSet) -- Eqns that are used (others are overlapped)
+
+check' [] = ([([],[])],emptyUniqSet)
+
+check' ((n, EqnInfo { eqn_pats = ps, eqn_rhs = MatchResult can_fail _ }) : rs)
+ | first_eqn_all_vars && case can_fail of { CantFail -> True; CanFail -> False }
+ = ([], unitUniqSet n) -- One eqn, which can't fail
+
+ | first_eqn_all_vars && null rs -- One eqn, but it can fail
+ = ([(takeList ps (repeat nlWildPat),[])], unitUniqSet n)
+
+ | first_eqn_all_vars -- Several eqns, first can fail
+ = (pats, addOneToUniqSet indexs n)
+ where
+ first_eqn_all_vars = all_vars ps
+ (pats,indexs) = check' rs
+
+check' qs
+ | literals = split_by_literals qs
+ | constructors = split_by_constructor qs
+ | only_vars = first_column_only_vars qs
+ | otherwise = pprPanic "Check.check': Not implemented :-(" (ppr first_pats)
+ where
+ -- Note: RecPats will have been simplified to ConPats
+ -- at this stage.
+ first_pats = ASSERT2( okGroup qs, pprGroup qs ) map firstPatN qs
+ constructors = any is_con first_pats
+ literals = any is_lit first_pats
+ only_vars = all is_var first_pats
+\end{code}
+
+Here begins the code to deal with literals, we need to split the matrix
+in different matrix beginning by each literal and a last matrix with the
+rest of values.
+
+\begin{code}
+split_by_literals :: [(EqnNo, EquationInfo)] -> ([ExhaustivePat], EqnSet)
+split_by_literals qs = process_literals used_lits qs
+ where
+ used_lits = get_used_lits qs
+\end{code}
+
+@process_explicit_literals@ is a function that process each literal that appears
+in the column of the matrix.
+
+\begin{code}
+process_explicit_literals :: [HsLit] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
+process_explicit_literals lits qs = (concat pats, unionManyUniqSets indexs)
+ where
+ pats_indexs = map (\x -> construct_literal_matrix x qs) lits
+ (pats,indexs) = unzip pats_indexs
+\end{code}
+
+
+@process_literals@ calls @process_explicit_literals@ to deal with the literals
+that appears in the matrix and deal also with the rest of the cases. It
+must be one Variable to be complete.
+
+\begin{code}
+
+process_literals :: [HsLit] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
+process_literals used_lits qs
+ | null default_eqns = ([make_row_vars used_lits (head qs)] ++ pats,indexs)
+ | otherwise = (pats_default,indexs_default)
+ where
+ (pats,indexs) = process_explicit_literals used_lits qs
+ default_eqns = ASSERT2( okGroup qs, pprGroup qs )
+ [remove_var q | q <- qs, is_var (firstPatN q)]
+ (pats',indexs') = check' default_eqns
+ pats_default = [(nlWildPat:ps,constraints) | (ps,constraints) <- (pats')] ++ pats
+ indexs_default = unionUniqSets indexs' indexs
+\end{code}
+
+Here we have selected the literal and we will select all the equations that
+begins for that literal and create a new matrix.
+
+\begin{code}
+construct_literal_matrix :: HsLit -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
+construct_literal_matrix lit qs =
+ (map (\ (xs,ys) -> (new_lit:xs,ys)) pats,indexs)
+ where
+ (pats,indexs) = (check' (remove_first_column_lit lit qs))
+ new_lit = nlLitPat lit
+
+remove_first_column_lit :: HsLit
+ -> [(EqnNo, EquationInfo)]
+ -> [(EqnNo, EquationInfo)]
+remove_first_column_lit lit qs
+ = ASSERT2( okGroup qs, pprGroup qs )
+ [(n, shift_pat eqn) | q@(n,eqn) <- qs, is_var_lit lit (firstPatN q)]
+ where
+ shift_pat eqn@(EqnInfo { eqn_pats = _:ps}) = eqn { eqn_pats = ps }
+ shift_pat eqn@(EqnInfo { eqn_pats = []}) = panic "Check.shift_var: no patterns"
+\end{code}
+
+This function splits the equations @qs@ in groups that deal with the
+same constructor.
+
+\begin{code}
+split_by_constructor :: [(EqnNo, EquationInfo)] -> ([ExhaustivePat], EqnSet)
+split_by_constructor qs
+ | notNull unused_cons = need_default_case used_cons unused_cons qs
+ | otherwise = no_need_default_case used_cons qs
+ where
+ used_cons = get_used_cons qs
+ unused_cons = get_unused_cons used_cons
+\end{code}
+
+The first column of the patterns matrix only have vars, then there is
+nothing to do.
+
+\begin{code}
+first_column_only_vars :: [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
+first_column_only_vars qs = (map (\ (xs,ys) -> (nlWildPat:xs,ys)) pats,indexs)
+ where
+ (pats, indexs) = check' (map remove_var qs)
+\end{code}
+
+This equation takes a matrix of patterns and split the equations by
+constructor, using all the constructors that appears in the first column
+of the pattern matching.
+
+We can need a default clause or not ...., it depends if we used all the
+constructors or not explicitly. The reasoning is similar to @process_literals@,
+the difference is that here the default case is not always needed.
+
+\begin{code}
+no_need_default_case :: [Pat Id] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
+no_need_default_case cons qs = (concat pats, unionManyUniqSets indexs)
+ where
+ pats_indexs = map (\x -> construct_matrix x qs) cons
+ (pats,indexs) = unzip pats_indexs
+
+need_default_case :: [Pat Id] -> [DataCon] -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
+need_default_case used_cons unused_cons qs
+ | null default_eqns = (pats_default_no_eqns,indexs)
+ | otherwise = (pats_default,indexs_default)
+ where
+ (pats,indexs) = no_need_default_case used_cons qs
+ default_eqns = ASSERT2( okGroup qs, pprGroup qs )
+ [remove_var q | q <- qs, is_var (firstPatN q)]
+ (pats',indexs') = check' default_eqns
+ pats_default = [(make_whole_con c:ps,constraints) |
+ c <- unused_cons, (ps,constraints) <- pats'] ++ pats
+ new_wilds = make_row_vars_for_constructor (head qs)
+ pats_default_no_eqns = [(make_whole_con c:new_wilds,[]) | c <- unused_cons] ++ pats
+ indexs_default = unionUniqSets indexs' indexs
+
+construct_matrix :: Pat Id -> [(EqnNo, EquationInfo)] -> ([ExhaustivePat],EqnSet)
+construct_matrix con qs =
+ (map (make_con con) pats,indexs)
+ where
+ (pats,indexs) = (check' (remove_first_column con qs))
+\end{code}
+
+Here remove first column is more difficult that with literals due to the fact
+that constructors can have arguments.
+
+For instance, the matrix
+\begin{verbatim}
+ (: x xs) y
+ z y
+\end{verbatim}
+is transformed in:
+\begin{verbatim}
+ x xs y
+ _ _ y
+\end{verbatim}
+
+\begin{code}
+remove_first_column :: Pat Id -- Constructor
+ -> [(EqnNo, EquationInfo)]
+ -> [(EqnNo, EquationInfo)]
+remove_first_column (ConPatOut (L _ con) _ _ _ (PrefixCon con_pats) _) qs
+ = ASSERT2( okGroup qs, pprGroup qs )
+ [(n, shift_var eqn) | q@(n, eqn) <- qs, is_var_con con (firstPatN q)]
+ where
+ new_wilds = [WildPat (hsPatType arg_pat) | arg_pat <- con_pats]
+ shift_var eqn@(EqnInfo { eqn_pats = ConPatOut _ _ _ _ (PrefixCon ps') _ : ps})
+ = eqn { eqn_pats = map unLoc ps' ++ ps }
+ shift_var eqn@(EqnInfo { eqn_pats = WildPat _ : ps })
+ = eqn { eqn_pats = new_wilds ++ ps }
+ shift_var _ = panic "Check.Shift_var:No done"
+
+make_row_vars :: [HsLit] -> (EqnNo, EquationInfo) -> ExhaustivePat
+make_row_vars used_lits (_, EqnInfo { eqn_pats = pats})
+ = (nlVarPat new_var:takeList (tail pats) (repeat nlWildPat),[(new_var,used_lits)])
+ where
+ new_var = hash_x
+
+hash_x = mkInternalName unboundKey {- doesn't matter much -}
+ (mkVarOccFS FSLIT("#x"))
+ noSrcLoc
+
+make_row_vars_for_constructor :: (EqnNo, EquationInfo) -> [WarningPat]
+make_row_vars_for_constructor (_, EqnInfo { eqn_pats = pats})
+ = takeList (tail pats) (repeat nlWildPat)
+
+compare_cons :: Pat Id -> Pat Id -> Bool
+compare_cons (ConPatOut (L _ id1) _ _ _ _ _) (ConPatOut (L _ id2) _ _ _ _ _) = id1 == id2
+
+remove_dups :: [Pat Id] -> [Pat Id]
+remove_dups [] = []
+remove_dups (x:xs) | or (map (\y -> compare_cons x y) xs) = remove_dups xs
+ | otherwise = x : remove_dups xs
+
+get_used_cons :: [(EqnNo, EquationInfo)] -> [Pat Id]
+get_used_cons qs = remove_dups [pat | q <- qs, let pat = firstPatN q,
+ isConPatOut pat]
+
+isConPatOut (ConPatOut {}) = True
+isConPatOut other = False
+
+remove_dups' :: [HsLit] -> [HsLit]
+remove_dups' [] = []
+remove_dups' (x:xs) | x `elem` xs = remove_dups' xs
+ | otherwise = x : remove_dups' xs
+
+
+get_used_lits :: [(EqnNo, EquationInfo)] -> [HsLit]
+get_used_lits qs = remove_dups' all_literals
+ where
+ all_literals = get_used_lits' qs
+
+get_used_lits' :: [(EqnNo, EquationInfo)] -> [HsLit]
+get_used_lits' [] = []
+get_used_lits' (q:qs)
+ | Just lit <- get_lit (firstPatN q) = lit : get_used_lits' qs
+ | otherwise = get_used_lits qs
+
+get_lit :: Pat id -> Maybe HsLit
+-- Get a representative HsLit to stand for the OverLit
+-- It doesn't matter which one, because they will only be compared
+-- with other HsLits gotten in the same way
+get_lit (LitPat lit) = Just lit
+get_lit (NPat (HsIntegral i _) mb _ _) = Just (HsIntPrim (mb_neg mb i))
+get_lit (NPat (HsFractional f _) mb _ _) = Just (HsFloatPrim (mb_neg mb f))
+get_lit other_pat = Nothing
+
+mb_neg :: Num a => Maybe b -> a -> a
+mb_neg Nothing v = v
+mb_neg (Just _) v = -v
+
+get_unused_cons :: [Pat Id] -> [DataCon]
+get_unused_cons used_cons = unused_cons
+ where
+ (ConPatOut _ _ _ _ _ ty) = head used_cons
+ ty_con = tcTyConAppTyCon ty -- Newtype observable
+ all_cons = tyConDataCons ty_con
+ used_cons_as_id = map (\ (ConPatOut (L _ d) _ _ _ _ _) -> d) used_cons
+ unused_cons = uniqSetToList
+ (mkUniqSet all_cons `minusUniqSet` mkUniqSet used_cons_as_id)
+
+all_vars :: [Pat Id] -> Bool
+all_vars [] = True
+all_vars (WildPat _:ps) = all_vars ps
+all_vars _ = False
+
+remove_var :: (EqnNo, EquationInfo) -> (EqnNo, EquationInfo)
+remove_var (n, eqn@(EqnInfo { eqn_pats = WildPat _ : ps})) = (n, eqn { eqn_pats = ps })
+remove_var _ = panic "Check.remove_var: equation does not begin with a variable"
+
+-----------------------
+eqnPats :: (EqnNo, EquationInfo) -> [Pat Id]
+eqnPats (_, eqn) = eqn_pats eqn
+
+okGroup :: [(EqnNo, EquationInfo)] -> Bool
+-- True if all equations have at least one pattern, and
+-- all have the same number of patterns
+okGroup [] = True
+okGroup (e:es) = n_pats > 0 && and [length (eqnPats e) == n_pats | e <- es]
+ where
+ n_pats = length (eqnPats e)
+
+-- Half-baked print
+pprGroup es = vcat (map pprEqnInfo es)
+pprEqnInfo e = ppr (eqnPats e)
+
+
+firstPatN :: (EqnNo, EquationInfo) -> Pat Id
+firstPatN (_, eqn) = firstPat eqn
+
+is_con :: Pat Id -> Bool
+is_con (ConPatOut _ _ _ _ _ _) = True
+is_con _ = False
+
+is_lit :: Pat Id -> Bool
+is_lit (LitPat _) = True
+is_lit (NPat _ _ _ _) = True
+is_lit _ = False
+
+is_var :: Pat Id -> Bool
+is_var (WildPat _) = True
+is_var _ = False
+
+is_var_con :: DataCon -> Pat Id -> Bool
+is_var_con con (WildPat _) = True
+is_var_con con (ConPatOut (L _ id) _ _ _ _ _) | id == con = True
+is_var_con con _ = False
+
+is_var_lit :: HsLit -> Pat Id -> Bool
+is_var_lit lit (WildPat _) = True
+is_var_lit lit pat
+ | Just lit' <- get_lit pat = lit == lit'
+ | otherwise = False
+\end{code}
+
+The difference beteewn @make_con@ and @make_whole_con@ is that
+@make_wole_con@ creates a new constructor with all their arguments, and
+@make_con@ takes a list of argumntes, creates the contructor getting their
+arguments from the list. See where \fbox{\ ???\ } are used for details.
+
+We need to reconstruct the patterns (make the constructors infix and
+similar) at the same time that we create the constructors.
+
+You can tell tuple constructors using
+\begin{verbatim}
+ Id.isTupleCon
+\end{verbatim}
+You can see if one constructor is infix with this clearer code :-))))))))))
+\begin{verbatim}
+ Lex.isLexConSym (Name.occNameString (Name.getOccName con))
+\end{verbatim}
+
+ Rather clumsy but it works. (Simon Peyton Jones)
+
+
+We don't mind the @nilDataCon@ because it doesn't change the way to
+print the messsage, we are searching only for things like: @[1,2,3]@,
+not @x:xs@ ....
+
+In @reconstruct_pat@ we want to ``undo'' the work
+that we have done in @simplify_pat@.
+In particular:
+\begin{tabular}{lll}
+ @((,) x y)@ & returns to be & @(x, y)@
+\\ @((:) x xs)@ & returns to be & @(x:xs)@
+\\ @(x:(...:[])@ & returns to be & @[x,...]@
+\end{tabular}
+%
+The difficult case is the third one becouse we need to follow all the
+contructors until the @[]@ to know that we need to use the second case,
+not the second. \fbox{\ ???\ }
+%
+\begin{code}
+isInfixCon con = isDataSymOcc (getOccName con)
+
+is_nil (ConPatIn con (PrefixCon [])) = unLoc con == getName nilDataCon
+is_nil _ = False
+
+is_list (ListPat _ _) = True
+is_list _ = False
+
+return_list id q = id == consDataCon && (is_nil q || is_list q)
+
+make_list p q | is_nil q = ListPat [p] placeHolderType
+make_list p (ListPat ps ty) = ListPat (p:ps) ty
+make_list _ _ = panic "Check.make_list: Invalid argument"
+
+make_con :: Pat Id -> ExhaustivePat -> ExhaustivePat
+make_con (ConPatOut (L _ id) _ _ _ _ _) (lp:lq:ps, constraints)
+ | return_list id q = (noLoc (make_list lp q) : ps, constraints)
+ | isInfixCon id = (nlInfixConPat (getName id) lp lq : ps, constraints)
+ where q = unLoc lq
+
+make_con (ConPatOut (L _ id) _ _ _ (PrefixCon pats) ty) (ps, constraints)
+ | isTupleTyCon tc = (noLoc (TuplePat pats_con (tupleTyConBoxity tc) ty) : rest_pats, constraints)
+ | isPArrFakeCon id = (noLoc (PArrPat pats_con placeHolderType) : rest_pats, constraints)
+ | otherwise = (nlConPat name pats_con : rest_pats, constraints)
+ where
+ name = getName id
+ (pats_con, rest_pats) = splitAtList pats ps
+ tc = dataConTyCon id
+
+-- reconstruct parallel array pattern
+--
+-- * don't check for the type only; we need to make sure that we are really
+-- dealing with one of the fake constructors and not with the real
+-- representation
+
+make_whole_con :: DataCon -> WarningPat
+make_whole_con con | isInfixCon con = nlInfixConPat name nlWildPat nlWildPat
+ | otherwise = nlConPat name pats
+ where
+ name = getName con
+ pats = [nlWildPat | t <- dataConOrigArgTys con]
+\end{code}
+
+This equation makes the same thing as @tidy@ in @Match.lhs@, the
+difference is that here we can do all the tidy in one place and in the
+@Match@ tidy it must be done one column each time due to bookkeeping
+constraints.
+
+\begin{code}
+
+simplify_eqn :: EquationInfo -> EquationInfo
+simplify_eqn eqn = eqn { eqn_pats = map simplify_pat (eqn_pats eqn),
+ eqn_rhs = simplify_rhs (eqn_rhs eqn) }
+ where
+ -- Horrible hack. The simplify_pat stuff converts NPlusK pats to WildPats
+ -- which of course loses the info that they can fail to match. So we
+ -- stick in a CanFail as if it were a guard.
+ -- The Right Thing to do is for the whole system to treat NPlusK pats properly
+ simplify_rhs (MatchResult can_fail body)
+ | any has_nplusk_pat (eqn_pats eqn) = MatchResult CanFail body
+ | otherwise = MatchResult can_fail body
+
+has_nplusk_lpat :: LPat Id -> Bool
+has_nplusk_lpat (L _ p) = has_nplusk_pat p
+
+has_nplusk_pat :: Pat Id -> Bool
+has_nplusk_pat (NPlusKPat _ _ _ _) = True
+has_nplusk_pat (ParPat p) = has_nplusk_lpat p
+has_nplusk_pat (AsPat _ p) = has_nplusk_lpat p
+has_nplusk_pat (SigPatOut p _ ) = has_nplusk_lpat p
+has_nplusk_pat (ConPatOut _ _ _ _ ps ty) = any has_nplusk_lpat (hsConArgs ps)
+has_nplusk_pat (ListPat ps _) = any has_nplusk_lpat ps
+has_nplusk_pat (TuplePat ps _ _) = any has_nplusk_lpat ps
+has_nplusk_pat (PArrPat ps _) = any has_nplusk_lpat ps
+has_nplusk_pat (LazyPat p) = False -- Why?
+has_nplusk_pat (BangPat p) = has_nplusk_lpat p -- I think
+has_nplusk_pat p = False -- VarPat, VarPatOut, WildPat, LitPat, NPat, TypePat, DictPat
+
+simplify_lpat :: LPat Id -> LPat Id
+simplify_lpat p = fmap simplify_pat p
+
+simplify_pat :: Pat Id -> Pat Id
+simplify_pat pat@(WildPat gt) = pat
+simplify_pat (VarPat id) = WildPat (idType id)
+simplify_pat (VarPatOut id _) = WildPat (idType id) -- Ignore the bindings
+simplify_pat (ParPat p) = unLoc (simplify_lpat p)
+simplify_pat (LazyPat p) = unLoc (simplify_lpat p)
+simplify_pat (BangPat p) = unLoc (simplify_lpat p)
+simplify_pat (AsPat id p) = unLoc (simplify_lpat p)
+simplify_pat (SigPatOut p _) = unLoc (simplify_lpat p) -- I'm not sure this is right
+
+simplify_pat (ConPatOut (L loc id) tvs dicts binds ps ty)
+ = ConPatOut (L loc id) tvs dicts binds (simplify_con id ps) ty
+
+simplify_pat (ListPat ps ty) =
+ unLoc $ foldr (\ x y -> mkPrefixConPat consDataCon [x,y] list_ty)
+ (mkNilPat list_ty)
+ (map simplify_lpat ps)
+ where list_ty = mkListTy ty
+
+-- introduce fake parallel array constructors to be able to handle parallel
+-- arrays with the existing machinery for constructor pattern
+--
+simplify_pat (PArrPat ps ty)
+ = mk_simple_con_pat (parrFakeCon (length ps))
+ (PrefixCon (map simplify_lpat ps))
+ (mkPArrTy ty)
+
+simplify_pat (TuplePat ps boxity ty)
+ = mk_simple_con_pat (tupleCon boxity arity)
+ (PrefixCon (map simplify_lpat ps))
+ ty
+ where
+ arity = length ps
+
+-- unpack string patterns fully, so we can see when they overlap with
+-- each other, or even explicit lists of Chars.
+simplify_pat pat@(LitPat (HsString s)) =
+ foldr (\c pat -> mk_simple_con_pat consDataCon (PrefixCon [mk_char_lit c,noLoc pat]) stringTy)
+ (mk_simple_con_pat nilDataCon (PrefixCon []) stringTy) (unpackFS s)
+ where
+ mk_char_lit c = noLoc (mk_simple_con_pat charDataCon (PrefixCon [nlLitPat (HsCharPrim c)]) charTy)
+
+simplify_pat pat@(LitPat lit) = unLoc (tidyLitPat lit (noLoc pat))
+
+simplify_pat pat@(NPat lit mb_neg _ lit_ty) = unLoc (tidyNPat lit mb_neg lit_ty (noLoc pat))
+
+simplify_pat (NPlusKPat id hslit hsexpr1 hsexpr2)
+ = WildPat (idType (unLoc id))
+
+simplify_pat (DictPat dicts methods)
+ = case num_of_d_and_ms of
+ 0 -> simplify_pat (TuplePat [] Boxed unitTy)
+ 1 -> simplify_pat (head dict_and_method_pats)
+ _ -> simplify_pat (mkVanillaTuplePat (map noLoc dict_and_method_pats) Boxed)
+ where
+ num_of_d_and_ms = length dicts + length methods
+ dict_and_method_pats = map VarPat (dicts ++ methods)
+
+mk_simple_con_pat con args ty = ConPatOut (noLoc con) [] [] emptyLHsBinds args ty
+
+-----------------
+simplify_con con (PrefixCon ps) = PrefixCon (map simplify_lpat ps)
+simplify_con con (InfixCon p1 p2) = PrefixCon [simplify_lpat p1, simplify_lpat p2]
+simplify_con con (RecCon fs)
+ | null fs = PrefixCon [nlWildPat | t <- dataConOrigArgTys con]
+ -- Special case for null patterns; maybe not a record at all
+ | otherwise = PrefixCon (map (simplify_lpat.snd) all_pats)
+ where
+ -- pad out all the missing fields with WildPats.
+ field_pats = map (\ f -> (f, nlWildPat)) (dataConFieldLabels con)
+ all_pats = foldr (\ (id,p) acc -> insertNm (getName (unLoc id)) p acc)
+ field_pats fs
+
+ insertNm nm p [] = [(nm,p)]
+ insertNm nm p (x@(n,_):xs)
+ | nm == n = (nm,p):xs
+ | otherwise = x : insertNm nm p xs
+\end{code}