summaryrefslogtreecommitdiff
path: root/includes/rts/Constants.h
diff options
context:
space:
mode:
authorSimon Marlow <marlowsd@gmail.com>2012-10-03 09:30:56 +0100
committerSimon Marlow <marlowsd@gmail.com>2012-10-08 09:04:40 +0100
commita7c0387d20c1c9994d1100b14fbb8fb4e28a259e (patch)
treeb95d0a512f951a4a463f1aa5178b0cd5c4fdb410 /includes/rts/Constants.h
parentaed37acd4d157791381800d5de960a2461bcbef3 (diff)
downloadhaskell-a7c0387d20c1c9994d1100b14fbb8fb4e28a259e.tar.gz
Produce new-style Cmm from the Cmm parser
The main change here is that the Cmm parser now allows high-level cmm code with argument-passing and function calls. For example: foo ( gcptr a, bits32 b ) { if (b > 0) { // we can make tail calls passing arguments: jump stg_ap_0_fast(a); } return (x,y); } More details on the new cmm syntax are in Note [Syntax of .cmm files] in CmmParse.y. The old syntax is still more-or-less supported for those occasional code fragments that really need to explicitly manipulate the stack. However there are a couple of differences: it is now obligatory to give a list of live GlobalRegs on every jump, e.g. jump %ENTRY_CODE(Sp(0)) [R1]; Again, more details in Note [Syntax of .cmm files]. I have rewritten most of the .cmm files in the RTS into the new syntax, except for AutoApply.cmm which is generated by the genapply program: this file could be generated in the new syntax instead and would probably be better off for it, but I ran out of enthusiasm. Some other changes in this batch: - The PrimOp calling convention is gone, primops now use the ordinary NativeNodeCall convention. This means that primops and "foreign import prim" code must be written in high-level cmm, but they can now take more than 10 arguments. - CmmSink now does constant-folding (should fix #7219) - .cmm files now go through the cmmPipeline, and as a result we generate better code in many cases. All the object files generated for the RTS .cmm files are now smaller. Performance should be better too, but I haven't measured it yet. - RET_DYN frames are removed from the RTS, lots of code goes away - we now have some more canned GC points to cover unboxed-tuples with 2-4 pointers, which will reduce code size a little.
Diffstat (limited to 'includes/rts/Constants.h')
-rw-r--r--includes/rts/Constants.h24
1 files changed, 0 insertions, 24 deletions
diff --git a/includes/rts/Constants.h b/includes/rts/Constants.h
index cd741be7e0..2fab041c22 100644
--- a/includes/rts/Constants.h
+++ b/includes/rts/Constants.h
@@ -118,11 +118,6 @@
pushed in one of the heap check fragments in HeapStackCheck.hc
(ie. currently the generic heap checks - 3 words for StgRetDyn,
18 words for the saved registers, see StgMacros.h).
-
- In the event of an unboxed tuple or let-no-escape stack/heap check
- failure, there will be other words on the stack which are covered
- by the RET_DYN frame. These will have been accounted for by stack
- checks however, so we don't need to allow for them here.
-------------------------------------------------------------------------- */
#define RESERVED_STACK_WORDS 21
@@ -277,25 +272,6 @@
*/
#define TSO_SQUEEZED 128
-/* -----------------------------------------------------------------------------
- RET_DYN stack frames
- -------------------------------------------------------------------------- */
-
-/* VERY MAGIC CONSTANTS!
- * must agree with code in HeapStackCheck.c, stg_gen_chk, and
- * RESERVED_STACK_WORDS in Constants.h.
- */
-#define RET_DYN_BITMAP_SIZE 8
-#define RET_DYN_NONPTR_REGS_SIZE 10
-
-/* Sanity check that RESERVED_STACK_WORDS is reasonable. We can't
- * just derive RESERVED_STACK_WORDS because it's used in Haskell code
- * too.
- */
-#if RESERVED_STACK_WORDS != (3 + RET_DYN_BITMAP_SIZE + RET_DYN_NONPTR_REGS_SIZE)
-#error RESERVED_STACK_WORDS may be wrong!
-#endif
-
/*
* The number of times we spin in a spin lock before yielding (see
* #3758). To tune this value, use the benchmark in #3758: run the