diff options
author | Edward Z. Yang <ezyang@cs.stanford.edu> | 2015-03-09 13:14:13 -0700 |
---|---|---|
committer | Edward Z. Yang <ezyang@cs.stanford.edu> | 2015-03-09 13:15:07 -0700 |
commit | fe3cf4d277b55f99feb9e143705d414f8ca7133b (patch) | |
tree | b1cf9ff4f7718755fc4f1664da7641a825d3ce97 | |
parent | f9344f3646156a9efff2dcfb90e1d5d67fd4f5a1 (diff) | |
download | haskell-fe3cf4d277b55f99feb9e143705d414f8ca7133b.tar.gz |
Revert "Refactor Digraph to use Data.Graph when possible"
This breaks the build with GHC 7.6 bootstrapping, since the Functor SCC
instance is not available.
This reverts commit c439af5f5baa2c8af3434652554135230edbf5c3.
-rw-r--r-- | compiler/utils/Digraph.hs | 300 | ||||
-rw-r--r-- | compiler/utils/Outputable.hs | 5 |
2 files changed, 264 insertions, 41 deletions
diff --git a/compiler/utils/Digraph.hs b/compiler/utils/Digraph.hs index 448935bea6..8f5df0ce05 100644 --- a/compiler/utils/Digraph.hs +++ b/compiler/utils/Digraph.hs @@ -17,6 +17,13 @@ module Digraph( -- For backwards compatability with the simpler version of Digraph stronglyConnCompFromEdgedVertices, stronglyConnCompFromEdgedVerticesR, + + -- No friendly interface yet, not used but exported to avoid warnings + tabulate, preArr, + components, undirected, + back, cross, forward, + path, + bcc, do_label, bicomps, collect ) where #include "HsVersions.h" @@ -28,11 +35,6 @@ module Digraph( -- by David King and John Launchbury -- -- Also included is some additional code for printing tree structures ... --- --- If you ever find yourself in need of algorithms for classifying edges, --- or finding connected/biconnected components, consult the history; Sigbjorn --- Finne contributed some implementations in 1997, although we've since --- removed them since they were not used anywhere in GHC. ------------------------------------------------------------------------------ @@ -54,10 +56,6 @@ import Data.Array.ST import qualified Data.Map as Map import qualified Data.Set as Set -import qualified Data.Graph as G -import Data.Graph hiding (Graph, Edge, transposeG, reachable) -import Data.Tree - {- ************************************************************************ * * @@ -211,6 +209,32 @@ findCycle graph {- ************************************************************************ * * +* SCC +* * +************************************************************************ +-} + +data SCC vertex = AcyclicSCC vertex + | CyclicSCC [vertex] + +instance Functor SCC where + fmap f (AcyclicSCC v) = AcyclicSCC (f v) + fmap f (CyclicSCC vs) = CyclicSCC (fmap f vs) + +flattenSCCs :: [SCC a] -> [a] +flattenSCCs = concatMap flattenSCC + +flattenSCC :: SCC a -> [a] +flattenSCC (AcyclicSCC v) = [v] +flattenSCC (CyclicSCC vs) = vs + +instance Outputable a => Outputable (SCC a) where + ppr (AcyclicSCC v) = text "NONREC" $$ (nest 3 (ppr v)) + ppr (CyclicSCC vs) = text "REC" $$ (nest 3 (vcat (map ppr vs))) + +{- +************************************************************************ +* * * Strongly Connected Component wrappers for Graph * * ************************************************************************ @@ -266,7 +290,7 @@ topologicalSortG graph = map (gr_vertex_to_node graph) result dfsTopSortG :: Graph node -> [[node]] dfsTopSortG graph = - map (map (gr_vertex_to_node graph) . flatten) $ dfs g (topSort g) + map (map (gr_vertex_to_node graph) . flattenTree) $ dfs g (topSort g) where g = gr_int_graph graph @@ -292,9 +316,7 @@ edgesG graph = map (\(v1, v2) -> Edge (v2n v1) (v2n v2)) $ edges (gr_int_graph g where v2n = gr_vertex_to_node graph transposeG :: Graph node -> Graph node -transposeG graph = Graph (G.transposeG (gr_int_graph graph)) - (gr_vertex_to_node graph) - (gr_node_to_vertex graph) +transposeG graph = Graph (transpose (gr_int_graph graph)) (gr_vertex_to_node graph) (gr_node_to_vertex graph) outdegreeG :: Graph node -> node -> Maybe Int outdegreeG = degreeG outdegree @@ -302,7 +324,7 @@ outdegreeG = degreeG outdegree indegreeG :: Graph node -> node -> Maybe Int indegreeG = degreeG indegree -degreeG :: (G.Graph -> Table Int) -> Graph node -> node -> Maybe Int +degreeG :: (IntGraph -> Table Int) -> Graph node -> node -> Maybe Int degreeG degree graph node = let table = degree (gr_int_graph graph) in fmap ((!) table) $ gr_node_to_vertex graph node @@ -314,8 +336,7 @@ emptyG :: Graph node -> Bool emptyG g = graphEmpty (gr_int_graph g) componentsG :: Graph node -> [[node]] -componentsG graph = map (map (gr_vertex_to_node graph) . flatten) - $ components (gr_int_graph graph) +componentsG graph = map (map (gr_vertex_to_node graph) . flattenTree) $ components (gr_int_graph graph) {- ************************************************************************ @@ -334,43 +355,261 @@ instance Outputable node => Outputable (Graph node) where instance Outputable node => Outputable (Edge node) where ppr (Edge from to) = ppr from <+> text "->" <+> ppr to -graphEmpty :: G.Graph -> Bool +{- +************************************************************************ +* * +* IntGraphs +* * +************************************************************************ +-} + +type Vertex = Int +type Table a = Array Vertex a +type IntGraph = Table [Vertex] +type Bounds = (Vertex, Vertex) +type IntEdge = (Vertex, Vertex) + +vertices :: IntGraph -> [Vertex] +vertices = indices + +edges :: IntGraph -> [IntEdge] +edges g = [ (v, w) | v <- vertices g, w <- g!v ] + +mapT :: (Vertex -> a -> b) -> Table a -> Table b +mapT f t = array (bounds t) [ (v, f v (t ! v)) | v <- indices t ] + +buildG :: Bounds -> [IntEdge] -> IntGraph +buildG bounds edges = accumArray (flip (:)) [] bounds edges + +transpose :: IntGraph -> IntGraph +transpose g = buildG (bounds g) (reverseE g) + +reverseE :: IntGraph -> [IntEdge] +reverseE g = [ (w, v) | (v, w) <- edges g ] + +outdegree :: IntGraph -> Table Int +outdegree = mapT numEdges + where numEdges _ ws = length ws + +indegree :: IntGraph -> Table Int +indegree = outdegree . transpose + +graphEmpty :: IntGraph -> Bool graphEmpty g = lo > hi where (lo, hi) = bounds g {- ************************************************************************ * * -* IntGraphs +* Trees and forests * * ************************************************************************ -} -type IntGraph = G.Graph +data Tree a = Node a (Forest a) +type Forest a = [Tree a] + +mapTree :: (a -> b) -> (Tree a -> Tree b) +mapTree f (Node x ts) = Node (f x) (map (mapTree f) ts) + +flattenTree :: Tree a -> [a] +flattenTree (Node x ts) = x : concatMap flattenTree ts + +instance Show a => Show (Tree a) where + showsPrec _ t s = showTree t ++ s + +showTree :: Show a => Tree a -> String +showTree = drawTree . mapTree show + +drawTree :: Tree String -> String +drawTree = unlines . draw + +draw :: Tree String -> [String] +draw (Node x ts) = grp this (space (length this)) (stLoop ts) + where this = s1 ++ x ++ " " + + space n = replicate n ' ' + + stLoop [] = [""] + stLoop [t] = grp s2 " " (draw t) + stLoop (t:ts) = grp s3 s4 (draw t) ++ [s4] ++ rsLoop ts + + rsLoop [] = [] + rsLoop [t] = grp s5 " " (draw t) + rsLoop (t:ts) = grp s6 s4 (draw t) ++ [s4] ++ rsLoop ts + + grp fst rst = zipWith (++) (fst:repeat rst) + + [s1,s2,s3,s4,s5,s6] = ["- ", "--", "-+", " |", " `", " +"] {- +************************************************************************ +* * +* Depth first search +* * +************************************************************************ +-} + +type Set s = STArray s Vertex Bool + +mkEmpty :: Bounds -> ST s (Set s) +mkEmpty bnds = newArray bnds False + +contains :: Set s -> Vertex -> ST s Bool +contains m v = readArray m v + +include :: Set s -> Vertex -> ST s () +include m v = writeArray m v True + +dff :: IntGraph -> Forest Vertex +dff g = dfs g (vertices g) + +dfs :: IntGraph -> [Vertex] -> Forest Vertex +dfs g vs = prune (bounds g) (map (generate g) vs) + +generate :: IntGraph -> Vertex -> Tree Vertex +generate g v = Node v (map (generate g) (g!v)) + +prune :: Bounds -> Forest Vertex -> Forest Vertex +prune bnds ts = runST (mkEmpty bnds >>= \m -> + chop m ts) + +chop :: Set s -> Forest Vertex -> ST s (Forest Vertex) +chop _ [] = return [] +chop m (Node v ts : us) + = contains m v >>= \visited -> + if visited then + chop m us + else + include m v >>= \_ -> + chop m ts >>= \as -> + chop m us >>= \bs -> + return (Node v as : bs) + +{- +************************************************************************ +* * +* Algorithms +* * +************************************************************************ + ------------------------------------------------------------ --- Depth first search numbering +-- Algorithm 1: depth first search numbering ------------------------------------------------------------ -} --- Data.Tree has flatten for Tree, but nothing for Forest +preorder :: Tree a -> [a] +preorder (Node a ts) = a : preorderF ts + preorderF :: Forest a -> [a] -preorderF ts = concat (map flatten ts) +preorderF ts = concat (map preorder ts) + +tabulate :: Bounds -> [Vertex] -> Table Int +tabulate bnds vs = array bnds (zip vs [1..]) + +preArr :: Bounds -> Forest Vertex -> Table Int +preArr bnds = tabulate bnds . preorderF + +{- +------------------------------------------------------------ +-- Algorithm 2: topological sorting +------------------------------------------------------------ +-} + +postorder :: Tree a -> [a] -> [a] +postorder (Node a ts) = postorderF ts . (a :) + +postorderF :: Forest a -> [a] -> [a] +postorderF ts = foldr (.) id $ map postorder ts + +postOrd :: IntGraph -> [Vertex] +postOrd g = postorderF (dff g) [] + +topSort :: IntGraph -> [Vertex] +topSort = reverse . postOrd + +{- +------------------------------------------------------------ +-- Algorithm 3: connected components +------------------------------------------------------------ +-} + +components :: IntGraph -> Forest Vertex +components = dff . undirected + +undirected :: IntGraph -> IntGraph +undirected g = buildG (bounds g) (edges g ++ reverseE g) {- ------------------------------------------------------------ --- Finding reachable vertices +-- Algorithm 4: strongly connected components +------------------------------------------------------------ +-} + +scc :: IntGraph -> Forest Vertex +scc g = dfs g (reverse (postOrd (transpose g))) + +{- +------------------------------------------------------------ +-- Algorithm 5: Classifying edges +------------------------------------------------------------ +-} + +back :: IntGraph -> Table Int -> IntGraph +back g post = mapT select g + where select v ws = [ w | w <- ws, post!v < post!w ] + +cross :: IntGraph -> Table Int -> Table Int -> IntGraph +cross g pre post = mapT select g + where select v ws = [ w | w <- ws, post!v > post!w, pre!v > pre!w ] + +forward :: IntGraph -> IntGraph -> Table Int -> IntGraph +forward g tree pre = mapT select g + where select v ws = [ w | w <- ws, pre!v < pre!w ] \\ tree!v + +{- +------------------------------------------------------------ +-- Algorithm 6: Finding reachable vertices ------------------------------------------------------------ -} --- This generalizes reachable which was found in Data.Graph reachable :: IntGraph -> [Vertex] -> [Vertex] reachable g vs = preorderF (dfs g vs) +path :: IntGraph -> Vertex -> Vertex -> Bool +path g v w = w `elem` (reachable g [v]) + {- ------------------------------------------------------------ --- Total ordering on groups of vertices +-- Algorithm 7: Biconnected components +------------------------------------------------------------ +-} + +bcc :: IntGraph -> Forest [Vertex] +bcc g = (concat . map bicomps . map (do_label g dnum)) forest + where forest = dff g + dnum = preArr (bounds g) forest + +do_label :: IntGraph -> Table Int -> Tree Vertex -> Tree (Vertex,Int,Int) +do_label g dnum (Node v ts) = Node (v,dnum!v,lv) us + where us = map (do_label g dnum) ts + lv = minimum ([dnum!v] ++ [dnum!w | w <- g!v] + ++ [lu | Node (_,_,lu) _ <- us]) + +bicomps :: Tree (Vertex, Int, Int) -> Forest [Vertex] +bicomps (Node (v,_,_) ts) + = [ Node (v:vs) us | (_,Node vs us) <- map collect ts] + +collect :: Tree (Vertex, Int, Int) -> (Int, Tree [Vertex]) +collect (Node (v,dv,lv) ts) = (lv, Node (v:vs) cs) + where collected = map collect ts + vs = concat [ ws | (lw, Node ws _) <- collected, lw<dv] + cs = concat [ if lw<dv then us else [Node (v:ws) us] + | (lw, Node ws us) <- collected ] + +{- +------------------------------------------------------------ +-- Algorithm 8: Total ordering on groups of vertices ------------------------------------------------------------ The plan here is to extract a list of groups of elements of the graph @@ -386,17 +625,6 @@ and their associated edges from the graph. This probably isn't very efficient and certainly isn't very clever. -} -type Set s = STArray s Vertex Bool - -mkEmpty :: Bounds -> ST s (Set s) -mkEmpty bnds = newArray bnds False - -contains :: Set s -> Vertex -> ST s Bool -contains m v = readArray m v - -include :: Set s -> Vertex -> ST s () -include m v = writeArray m v True - vertexGroups :: IntGraph -> [[Vertex]] vertexGroups g = runST (mkEmpty (bounds g) >>= \provided -> vertexGroupsS provided g next_vertices) where next_vertices = noOutEdges g diff --git a/compiler/utils/Outputable.hs b/compiler/utils/Outputable.hs index c557224fc1..6c7ae08379 100644 --- a/compiler/utils/Outputable.hs +++ b/compiler/utils/Outputable.hs @@ -105,7 +105,6 @@ import Data.Word import System.IO ( Handle ) import System.FilePath import Text.Printf -import Data.Graph (SCC(..)) import GHC.Fingerprint import GHC.Show ( showMultiLineString ) @@ -770,10 +769,6 @@ instance (Outputable elt) => Outputable (IM.IntMap elt) where instance Outputable Fingerprint where ppr (Fingerprint w1 w2) = text (printf "%016x%016x" w1 w2) -instance Outputable a => Outputable (SCC a) where - ppr (AcyclicSCC v) = text "NONREC" $$ (nest 3 (ppr v)) - ppr (CyclicSCC vs) = text "REC" $$ (nest 3 (vcat (map ppr vs))) - {- ************************************************************************ * * |