diff options
| author | simonpj <unknown> | 2001-03-07 12:35:50 +0000 |
|---|---|---|
| committer | simonpj <unknown> | 2001-03-07 12:35:50 +0000 |
| commit | 022d0e46321bf867d996c2ea39a0bc5e6b70a31d (patch) | |
| tree | f5eea62ee974442adedc7ded74b6c2359f50514e | |
| parent | 3258c3d51e2e704040d632a8101b5a86ba74329d (diff) | |
| download | haskell-022d0e46321bf867d996c2ea39a0bc5e6b70a31d.tar.gz | |
[project @ 2001-03-07 12:35:50 by simonpj]
Remove DOS Ctrl-Ms
| -rw-r--r-- | ghc/compiler/simplCore/SetLevels.lhs | 1480 |
1 files changed, 740 insertions, 740 deletions
diff --git a/ghc/compiler/simplCore/SetLevels.lhs b/ghc/compiler/simplCore/SetLevels.lhs index 57e548c134..0d2ece8e01 100644 --- a/ghc/compiler/simplCore/SetLevels.lhs +++ b/ghc/compiler/simplCore/SetLevels.lhs @@ -1,740 +1,740 @@ -%
-% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-%
-\section{SetLevels}
-
- ***************************
- Overview
- ***************************
-
-1. We attach binding levels to Core bindings, in preparation for floating
- outwards (@FloatOut@).
-
-2. We also let-ify many expressions (notably case scrutinees), so they
- will have a fighting chance of being floated sensible.
-
-3. We clone the binders of any floatable let-binding, so that when it is
- floated out it will be unique. (This used to be done by the simplifier
- but the latter now only ensures that there's no shadowing; indeed, even
- that may not be true.)
-
- NOTE: this can't be done using the uniqAway idea, because the variable
- must be unique in the whole program, not just its current scope,
- because two variables in different scopes may float out to the
- same top level place
-
- NOTE: Very tiresomely, we must apply this substitution to
- the rules stored inside a variable too.
-
- We do *not* clone top-level bindings, because some of them must not change,
- but we *do* clone bindings that are heading for the top level
-
-4. In the expression
- case x of wild { p -> ...wild... }
- we substitute x for wild in the RHS of the case alternatives:
- case x of wild { p -> ...x... }
- This means that a sub-expression involving x is not "trapped" inside the RHS.
- And it's not inconvenient because we already have a substitution.
-
- Note that this is EXACTLY BACKWARDS from the what the simplifier does.
- The simplifier tries to get rid of occurrences of x, in favour of wild,
- in the hope that there will only be one remaining occurrence of x, namely
- the scrutinee of the case, and we can inline it.
-
-\begin{code}
-module SetLevels (
- setLevels,
-
- Level(..), tOP_LEVEL,
-
- incMinorLvl, ltMajLvl, ltLvl, isTopLvl
- ) where
-
-#include "HsVersions.h"
-
-import CoreSyn
-
-import CoreUtils ( exprType, exprIsTrivial, exprIsBottom, mkPiType )
-import CoreFVs -- all of it
-import Subst
-import Id ( Id, idType, mkSysLocal, isOneShotLambda, zapDemandIdInfo,
- idSpecialisation, idWorkerInfo, setIdInfo
- )
-import IdInfo ( workerExists, vanillaIdInfo, )
-import Var ( Var )
-import VarSet
-import VarEnv
-import Name ( getOccName )
-import OccName ( occNameUserString )
-import Type ( isUnLiftedType, Type )
-import BasicTypes ( TopLevelFlag(..) )
-import UniqSupply
-import Util ( sortLt, isSingleton, count )
-import Outputable
-\end{code}
-
-%************************************************************************
-%* *
-\subsection{Level numbers}
-%* *
-%************************************************************************
-
-\begin{code}
-data Level = Level Int -- Level number of enclosing lambdas
- Int -- Number of big-lambda and/or case expressions between
- -- here and the nearest enclosing lambda
-\end{code}
-
-The {\em level number} on a (type-)lambda-bound variable is the
-nesting depth of the (type-)lambda which binds it. The outermost lambda
-has level 1, so (Level 0 0) means that the variable is bound outside any lambda.
-
-On an expression, it's the maximum level number of its free
-(type-)variables. On a let(rec)-bound variable, it's the level of its
-RHS. On a case-bound variable, it's the number of enclosing lambdas.
-
-Top-level variables: level~0. Those bound on the RHS of a top-level
-definition but ``before'' a lambda; e.g., the \tr{x} in (levels shown
-as ``subscripts'')...
-\begin{verbatim}
-a_0 = let b_? = ... in
- x_1 = ... b ... in ...
-\end{verbatim}
-
-The main function @lvlExpr@ carries a ``context level'' (@ctxt_lvl@).
-That's meant to be the level number of the enclosing binder in the
-final (floated) program. If the level number of a sub-expression is
-less than that of the context, then it might be worth let-binding the
-sub-expression so that it will indeed float. This context level starts
-at @Level 0 0@.
-
-\begin{code}
-type LevelledExpr = TaggedExpr Level
-type LevelledBind = TaggedBind Level
-
-tOP_LEVEL = Level 0 0
-
-incMajorLvl :: Level -> Level
-incMajorLvl (Level major minor) = Level (major+1) 0
-
-incMinorLvl :: Level -> Level
-incMinorLvl (Level major minor) = Level major (minor+1)
-
-maxLvl :: Level -> Level -> Level
-maxLvl l1@(Level maj1 min1) l2@(Level maj2 min2)
- | (maj1 > maj2) || (maj1 == maj2 && min1 > min2) = l1
- | otherwise = l2
-
-ltLvl :: Level -> Level -> Bool
-ltLvl (Level maj1 min1) (Level maj2 min2)
- = (maj1 < maj2) || (maj1 == maj2 && min1 < min2)
-
-ltMajLvl :: Level -> Level -> Bool
- -- Tells if one level belongs to a difft *lambda* level to another
-ltMajLvl (Level maj1 _) (Level maj2 _) = maj1 < maj2
-
-isTopLvl :: Level -> Bool
-isTopLvl (Level 0 0) = True
-isTopLvl other = False
-
-instance Outputable Level where
- ppr (Level maj min) = hcat [ char '<', int maj, char ',', int min, char '>' ]
-
-instance Eq Level where
- (Level maj1 min1) == (Level maj2 min2) = maj1==maj2 && min1==min2
-\end{code}
-
-%************************************************************************
-%* *
-\subsection{Main level-setting code}
-%* *
-%************************************************************************
-
-\begin{code}
-setLevels :: Bool -- True <=> float lambdas to top level
- -> [CoreBind]
- -> UniqSupply
- -> [LevelledBind]
-
-setLevels float_lams binds us
- = initLvl us (do_them binds)
- where
- -- "do_them"'s main business is to thread the monad along
- -- It gives each top binding the same empty envt, because
- -- things unbound in the envt have level number zero implicitly
- do_them :: [CoreBind] -> LvlM [LevelledBind]
-
- do_them [] = returnLvl []
- do_them (b:bs)
- = lvlTopBind init_env b `thenLvl` \ (lvld_bind, _) ->
- do_them bs `thenLvl` \ lvld_binds ->
- returnLvl (lvld_bind : lvld_binds)
-
- init_env = initialEnv float_lams
-
-lvlTopBind env (NonRec binder rhs)
- = lvlBind TopLevel tOP_LEVEL env (AnnNonRec binder (freeVars rhs))
- -- Rhs can have no free vars!
-
-lvlTopBind env (Rec pairs)
- = lvlBind TopLevel tOP_LEVEL env (AnnRec [(b,freeVars rhs) | (b,rhs) <- pairs])
-\end{code}
-
-%************************************************************************
-%* *
-\subsection{Setting expression levels}
-%* *
-%************************************************************************
-
-\begin{code}
-lvlExpr :: Level -- ctxt_lvl: Level of enclosing expression
- -> LevelEnv -- Level of in-scope names/tyvars
- -> CoreExprWithFVs -- input expression
- -> LvlM LevelledExpr -- Result expression
-\end{code}
-
-The @ctxt_lvl@ is, roughly, the level of the innermost enclosing
-binder. Here's an example
-
- v = \x -> ...\y -> let r = case (..x..) of
- ..x..
- in ..
-
-When looking at the rhs of @r@, @ctxt_lvl@ will be 1 because that's
-the level of @r@, even though it's inside a level-2 @\y@. It's
-important that @ctxt_lvl@ is 1 and not 2 in @r@'s rhs, because we
-don't want @lvlExpr@ to turn the scrutinee of the @case@ into an MFE
---- because it isn't a *maximal* free expression.
-
-If there were another lambda in @r@'s rhs, it would get level-2 as well.
-
-\begin{code}
-lvlExpr _ _ (_, AnnType ty) = returnLvl (Type ty)
-lvlExpr _ env (_, AnnVar v) = returnLvl (lookupVar env v)
-lvlExpr _ env (_, AnnLit lit) = returnLvl (Lit lit)
-
-lvlExpr ctxt_lvl env (_, AnnApp fun arg)
- = lvl_fun fun `thenLvl` \ fun' ->
- lvlMFE False ctxt_lvl env arg `thenLvl` \ arg' ->
- returnLvl (App fun' arg')
- where
- lvl_fun (_, AnnCase _ _ _) = lvlMFE True ctxt_lvl env fun
- lvl_fun other = lvlExpr ctxt_lvl env fun
- -- We don't do MFE on partial applications generally,
- -- but we do if the function is big and hairy, like a case
-
-lvlExpr ctxt_lvl env (_, AnnNote InlineMe expr)
--- Don't float anything out of an InlineMe; hence the tOP_LEVEL
- = lvlExpr tOP_LEVEL env expr `thenLvl` \ expr' ->
- returnLvl (Note InlineMe expr')
-
-lvlExpr ctxt_lvl env (_, AnnNote note expr)
- = lvlExpr ctxt_lvl env expr `thenLvl` \ expr' ->
- returnLvl (Note note expr')
-
--- We don't split adjacent lambdas. That is, given
--- \x y -> (x+1,y)
--- we don't float to give
--- \x -> let v = x+y in \y -> (v,y)
--- Why not? Because partial applications are fairly rare, and splitting
--- lambdas makes them more expensive.
-
-lvlExpr ctxt_lvl env expr@(_, AnnLam bndr rhs)
- = lvlMFE True new_lvl new_env body `thenLvl` \ new_body ->
- returnLvl (glue_binders new_bndrs expr new_body)
- where
- (bndrs, body) = collect_binders expr
- (new_lvl, new_bndrs) = lvlLamBndrs ctxt_lvl bndrs
- new_env = extendLvlEnv env new_bndrs
-
-lvlExpr ctxt_lvl env (_, AnnLet bind body)
- = lvlBind NotTopLevel ctxt_lvl env bind `thenLvl` \ (bind', new_env) ->
- lvlExpr ctxt_lvl new_env body `thenLvl` \ body' ->
- returnLvl (Let bind' body')
-
-lvlExpr ctxt_lvl env (_, AnnCase expr case_bndr alts)
- = lvlMFE True ctxt_lvl env expr `thenLvl` \ expr' ->
- let
- alts_env = extendCaseBndrLvlEnv env expr' case_bndr incd_lvl
- in
- mapLvl (lvl_alt alts_env) alts `thenLvl` \ alts' ->
- returnLvl (Case expr' (case_bndr, incd_lvl) alts')
- where
- incd_lvl = incMinorLvl ctxt_lvl
-
- lvl_alt alts_env (con, bs, rhs)
- = lvlMFE True incd_lvl new_env rhs `thenLvl` \ rhs' ->
- returnLvl (con, bs', rhs')
- where
- bs' = [ (b, incd_lvl) | b <- bs ]
- new_env = extendLvlEnv alts_env bs'
-
-collect_binders lam
- = go [] lam
- where
- go rev_bndrs (_, AnnLam b e) = go (b:rev_bndrs) e
- go rev_bndrs (_, AnnNote n e) = go rev_bndrs e
- go rev_bndrs rhs = (reverse rev_bndrs, rhs)
- -- Ignore notes, because we don't want to split
- -- a lambda like this (\x -> coerce t (\s -> ...))
- -- This happens quite a bit in state-transformer programs
-
- -- glue_binders puts the lambda back together
-glue_binders (b:bs) (_, AnnLam _ e) body = Lam b (glue_binders bs e body)
-glue_binders bs (_, AnnNote n e) body = Note n (glue_binders bs e body)
-glue_binders [] e body = body
-\end{code}
-
-@lvlMFE@ is just like @lvlExpr@, except that it might let-bind
-the expression, so that it can itself be floated.
-
-\begin{code}
-lvlMFE :: Bool -- True <=> strict context [body of case or let]
- -> Level -- Level of innermost enclosing lambda/tylam
- -> LevelEnv -- Level of in-scope names/tyvars
- -> CoreExprWithFVs -- input expression
- -> LvlM LevelledExpr -- Result expression
-
-lvlMFE strict_ctxt ctxt_lvl env (_, AnnType ty)
- = returnLvl (Type ty)
-
-lvlMFE strict_ctxt ctxt_lvl env ann_expr@(fvs, _)
- | isUnLiftedType ty -- Can't let-bind it
- || not good_destination
- || exprIsTrivial expr -- Is trivial
- || (strict_ctxt && exprIsBottom expr) -- Strict context and is bottom
- -- e.g. \x -> error "foo"
- -- No gain from floating this
- = -- Don't float it out
- lvlExpr ctxt_lvl env ann_expr
-
- | otherwise -- Float it out!
- = lvlFloatRhs abs_vars dest_lvl env ann_expr `thenLvl` \ expr' ->
- newLvlVar "lvl" abs_vars ty `thenLvl` \ var ->
- returnLvl (Let (NonRec (var,dest_lvl) expr')
- (mkVarApps (Var var) abs_vars))
- where
- expr = deAnnotate ann_expr
- ty = exprType expr
- dest_lvl = destLevel env fvs (isFunction ann_expr)
- abs_vars = abstractVars dest_lvl env fvs
-
- good_destination = dest_lvl `ltMajLvl` ctxt_lvl -- Escapes a value lambda
- || (isTopLvl dest_lvl && not strict_ctxt) -- Goes to the top
- -- A decision to float entails let-binding this thing, and we only do
- -- that if we'll escape a value lambda, or will go to the top level.
- -- But beware
- -- concat = /\ a -> foldr ..a.. (++) []
- -- was getting turned into
- -- concat = /\ a -> lvl a
- -- lvl = /\ a -> foldr ..a.. (++) []
- -- which is pretty stupid. Hence the strict_ctxt test
-\end{code}
-
-
-%************************************************************************
-%* *
-\subsection{Bindings}
-%* *
-%************************************************************************
-
-The binding stuff works for top level too.
-
-\begin{code}
-lvlBind :: TopLevelFlag -- Used solely to decide whether to clone
- -> Level -- Context level; might be Top even for bindings nested in the RHS
- -- of a top level binding
- -> LevelEnv
- -> CoreBindWithFVs
- -> LvlM (LevelledBind, LevelEnv)
-
-lvlBind top_lvl ctxt_lvl env (AnnNonRec bndr rhs@(rhs_fvs,_))
- | null abs_vars
- = -- No type abstraction; clone existing binder
- lvlExpr dest_lvl env rhs `thenLvl` \ rhs' ->
- cloneVar top_lvl env bndr ctxt_lvl dest_lvl `thenLvl` \ (env', bndr') ->
- returnLvl (NonRec (bndr', dest_lvl) rhs', env')
-
- | otherwise
- = -- Yes, type abstraction; create a new binder, extend substitution, etc
- lvlFloatRhs abs_vars dest_lvl env rhs `thenLvl` \ rhs' ->
- newPolyBndrs dest_lvl env abs_vars [bndr] `thenLvl` \ (env', [bndr']) ->
- returnLvl (NonRec (bndr', dest_lvl) rhs', env')
-
- where
- bind_fvs = rhs_fvs `unionVarSet` idFreeVars bndr
- abs_vars = abstractVars dest_lvl env bind_fvs
-
- dest_lvl | isUnLiftedType (idType bndr) = destLevel env bind_fvs False `maxLvl` Level 1 0
- | otherwise = destLevel env bind_fvs (isFunction rhs)
- -- Hack alert! We do have some unlifted bindings, for cheap primops, and
- -- it is ok to float them out; but not to the top level. If they would otherwise
- -- go to the top level, we pin them inside the topmost lambda
-\end{code}
-
-
-\begin{code}
-lvlBind top_lvl ctxt_lvl env (AnnRec pairs)
- | null abs_vars
- = cloneRecVars top_lvl env bndrs ctxt_lvl dest_lvl `thenLvl` \ (new_env, new_bndrs) ->
- mapLvl (lvlExpr ctxt_lvl new_env) rhss `thenLvl` \ new_rhss ->
- returnLvl (Rec ((new_bndrs `zip` repeat dest_lvl) `zip` new_rhss), new_env)
-
- | isSingleton pairs && count isId abs_vars > 1
- = -- Special case for self recursion where there are
- -- several variables carried around: build a local loop:
- -- poly_f = \abs_vars. \lam_vars . letrec f = \lam_vars. rhs in f lam_vars
- -- This just makes the closures a bit smaller. If we don't do
- -- this, allocation rises significantly on some programs
- --
- -- We could elaborate it for the case where there are several
- -- mutually functions, but it's quite a bit more complicated
- --
- -- This all seems a bit ad hoc -- sigh
- let
- (bndr,rhs) = head pairs
- (rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
- rhs_env = extendLvlEnv env abs_vars_w_lvls
- in
- cloneVar NotTopLevel rhs_env bndr rhs_lvl rhs_lvl `thenLvl` \ (rhs_env', new_bndr) ->
- let
- (lam_bndrs, rhs_body) = collect_binders rhs
- (body_lvl, new_lam_bndrs) = lvlLamBndrs rhs_lvl lam_bndrs
- body_env = extendLvlEnv rhs_env' new_lam_bndrs
- in
- lvlExpr body_lvl body_env rhs_body `thenLvl` \ new_rhs_body ->
- newPolyBndrs dest_lvl env abs_vars [bndr] `thenLvl` \ (poly_env, [poly_bndr]) ->
- returnLvl (Rec [((poly_bndr,dest_lvl), mkLams abs_vars_w_lvls $
- glue_binders new_lam_bndrs rhs $
- Let (Rec [((new_bndr,rhs_lvl), mkLams new_lam_bndrs new_rhs_body)])
- (mkVarApps (Var new_bndr) lam_bndrs))],
- poly_env)
-
- | otherwise
- = newPolyBndrs dest_lvl env abs_vars bndrs `thenLvl` \ (new_env, new_bndrs) ->
- mapLvl (lvlFloatRhs abs_vars dest_lvl new_env) rhss `thenLvl` \ new_rhss ->
- returnLvl (Rec ((new_bndrs `zip` repeat dest_lvl) `zip` new_rhss), new_env)
-
- where
- (bndrs,rhss) = unzip pairs
-
- -- Finding the free vars of the binding group is annoying
- bind_fvs = (unionVarSets [ idFreeVars bndr `unionVarSet` rhs_fvs
- | (bndr, (rhs_fvs,_)) <- pairs])
- `minusVarSet`
- mkVarSet bndrs
-
- dest_lvl = destLevel env bind_fvs (all isFunction rhss)
- abs_vars = abstractVars dest_lvl env bind_fvs
-
-----------------------------------------------------
--- Three help functons for the type-abstraction case
-
-lvlFloatRhs abs_vars dest_lvl env rhs
- = lvlExpr rhs_lvl rhs_env rhs `thenLvl` \ rhs' ->
- returnLvl (mkLams abs_vars_w_lvls rhs')
- where
- (rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
- rhs_env = extendLvlEnv env abs_vars_w_lvls
-\end{code}
-
-
-%************************************************************************
-%* *
-\subsection{Deciding floatability}
-%* *
-%************************************************************************
-
-\begin{code}
-lvlLamBndrs :: Level -> [CoreBndr] -> (Level, [(CoreBndr, Level)])
--- Compute the levels for the binders of a lambda group
--- The binders returned are exactly the same as the ones passed,
--- but they are now paired with a level
-lvlLamBndrs lvl []
- = (lvl, [])
-
-lvlLamBndrs lvl bndrs
- = go (incMinorLvl lvl)
- False -- Havn't bumped major level in this group
- [] bndrs
- where
- go old_lvl bumped_major rev_lvld_bndrs (bndr:bndrs)
- | isId bndr && -- Go to the next major level if this is a value binder,
- not bumped_major && -- and we havn't already gone to the next level (one jump per group)
- not (isOneShotLambda bndr) -- and it isn't a one-shot lambda
- = go new_lvl True ((bndr,new_lvl) : rev_lvld_bndrs) bndrs
-
- | otherwise
- = go old_lvl bumped_major ((bndr,old_lvl) : rev_lvld_bndrs) bndrs
-
- where
- new_lvl = incMajorLvl old_lvl
-
- go old_lvl _ rev_lvld_bndrs []
- = (old_lvl, reverse rev_lvld_bndrs)
- -- a lambda like this (\x -> coerce t (\s -> ...))
- -- This happens quite a bit in state-transformer programs
-\end{code}
-
-\begin{code}
-abstractVars :: Level -> LevelEnv -> VarSet -> [Var]
- -- Find the variables in fvs, free vars of the target expresion,
- -- whose level is less than than the supplied level
- -- These are the ones we are going to abstract out
-abstractVars dest_lvl env fvs
- = uniq (sortLt lt [var | fv <- varSetElems fvs, var <- absVarsOf dest_lvl env fv])
- where
- -- Sort the variables so we don't get
- -- mixed-up tyvars and Ids; it's just messy
- v1 `lt` v2 = case (isId v1, isId v2) of
- (True, False) -> False
- (False, True) -> True
- other -> v1 < v2 -- Same family
- uniq :: [Var] -> [Var]
- -- Remove adjacent duplicates; the sort will have brought them together
- uniq (v1:v2:vs) | v1 == v2 = uniq (v2:vs)
- | otherwise = v1 : uniq (v2:vs)
- uniq vs = vs
-
- -- Destintion level is the max Id level of the expression
- -- (We'll abstract the type variables, if any.)
-destLevel :: LevelEnv -> VarSet -> Bool -> Level
-destLevel env fvs is_function
- | floatLams env
- && is_function = tOP_LEVEL -- Send functions to top level; see
- -- the comments with isFunction
- | otherwise = maxIdLevel env fvs
-
-isFunction :: CoreExprWithFVs -> Bool
--- The idea here is that we want to float *functions* to
--- the top level. This saves no work, but
--- (a) it can make the host function body a lot smaller,
--- and hence inlinable.
--- (b) it can also save allocation when the function is recursive:
--- h = \x -> letrec f = \y -> ...f...y...x...
--- in f x
--- becomes
--- f = \x y -> ...(f x)...y...x...
--- h = \x -> f x x
--- No allocation for f now.
--- We may only want to do this if there are sufficiently few free
--- variables. We certainly only want to do it for values, and not for
--- constructors. So the simple thing is just to look for lambdas
-isFunction (_, AnnLam b e) | isId b = True
- | otherwise = isFunction e
-isFunction (_, AnnNote n e) = isFunction e
-isFunction other = False
-\end{code}
-
-
-%************************************************************************
-%* *
-\subsection{Free-To-Level Monad}
-%* *
-%************************************************************************
-
-\begin{code}
-type LevelEnv = (Bool, -- True <=> Float lambdas too
- VarEnv Level, -- Domain is *post-cloned* TyVars and Ids
- Subst, -- Domain is pre-cloned Ids; tracks the in-scope set
- -- so that subtitution is capture-avoiding
- IdEnv ([Var], LevelledExpr)) -- Domain is pre-cloned Ids
- -- We clone let-bound variables so that they are still
- -- distinct when floated out; hence the SubstEnv/IdEnv.
- -- (see point 3 of the module overview comment).
- -- We also use these envs when making a variable polymorphic
- -- because we want to float it out past a big lambda.
- --
- -- The SubstEnv and IdEnv always implement the same mapping, but the
- -- SubstEnv maps to CoreExpr and the IdEnv to LevelledExpr
- -- Since the range is always a variable or type application,
- -- there is never any difference between the two, but sadly
- -- the types differ. The SubstEnv is used when substituting in
- -- a variable's IdInfo; the IdEnv when we find a Var.
- --
- -- In addition the IdEnv records a list of tyvars free in the
- -- type application, just so we don't have to call freeVars on
- -- the type application repeatedly.
- --
- -- The domain of the both envs is *pre-cloned* Ids, though
- --
- -- The domain of the VarEnv Level is the *post-cloned* Ids
-
-initialEnv :: Bool -> LevelEnv
-initialEnv float_lams = (float_lams, emptyVarEnv, emptySubst, emptyVarEnv)
-
-floatLams :: LevelEnv -> Bool
-floatLams (float_lams, _, _, _) = float_lams
-
-extendLvlEnv :: LevelEnv -> [(Var,Level)] -> LevelEnv
--- Used when *not* cloning
-extendLvlEnv (float_lams, lvl_env, subst, id_env) prs
- = (float_lams,
- foldl add_lvl lvl_env prs,
- foldl del_subst subst prs,
- foldl del_id id_env prs)
- where
- add_lvl env (v,l) = extendVarEnv env v l
- del_subst env (v,_) = extendInScope env v
- del_id env (v,_) = delVarEnv env v
- -- We must remove any clone for this variable name in case of
- -- shadowing. This bit me in the following case
- -- (in nofib/real/gg/Spark.hs):
- --
- -- case ds of wild {
- -- ... -> case e of wild {
- -- ... -> ... wild ...
- -- }
- -- }
- --
- -- The inside occurrence of @wild@ was being replaced with @ds@,
- -- incorrectly, because the SubstEnv was still lying around. Ouch!
- -- KSW 2000-07.
-
--- extendCaseBndrLvlEnv adds the mapping case-bndr->scrut-var if it can
--- (see point 4 of the module overview comment)
-extendCaseBndrLvlEnv (float_lams, lvl_env, subst, id_env) (Var scrut_var) case_bndr lvl
- = (float_lams,
- extendVarEnv lvl_env case_bndr lvl,
- extendSubst subst case_bndr (DoneEx (Var scrut_var)),
- extendVarEnv id_env case_bndr ([scrut_var], Var scrut_var))
-
-extendCaseBndrLvlEnv env scrut case_bndr lvl
- = extendLvlEnv env [(case_bndr,lvl)]
-
-extendPolyLvlEnv dest_lvl (float_lams, lvl_env, subst, id_env) abs_vars bndr_pairs
- = (float_lams,
- foldl add_lvl lvl_env bndr_pairs,
- foldl add_subst subst bndr_pairs,
- foldl add_id id_env bndr_pairs)
- where
- add_lvl env (v,v') = extendVarEnv env v' dest_lvl
- add_subst env (v,v') = extendSubst env v (DoneEx (mkVarApps (Var v') abs_vars))
- add_id env (v,v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars)
-
-extendCloneLvlEnv lvl (float_lams, lvl_env, _, id_env) new_subst bndr_pairs
- = (float_lams,
- foldl add_lvl lvl_env bndr_pairs,
- new_subst,
- foldl add_id id_env bndr_pairs)
- where
- add_lvl env (v,v') = extendVarEnv env v' lvl
- add_id env (v,v') = extendVarEnv env v ([v'], Var v')
-
-
-maxIdLevel :: LevelEnv -> VarSet -> Level
-maxIdLevel (_, lvl_env,_,id_env) var_set
- = foldVarSet max_in tOP_LEVEL var_set
- where
- max_in in_var lvl = foldr max_out lvl (case lookupVarEnv id_env in_var of
- Just (abs_vars, _) -> abs_vars
- Nothing -> [in_var])
-
- max_out out_var lvl
- | isId out_var = case lookupVarEnv lvl_env out_var of
- Just lvl' -> maxLvl lvl' lvl
- Nothing -> lvl
- | otherwise = lvl -- Ignore tyvars in *maxIdLevel*
-
-lookupVar :: LevelEnv -> Id -> LevelledExpr
-lookupVar (_, _, _, id_env) v = case lookupVarEnv id_env v of
- Just (_, expr) -> expr
- other -> Var v
-
-absVarsOf :: Level -> LevelEnv -> Var -> [Var]
- -- If f is free in the exression, and f maps to poly_f a b c in the
- -- current substitution, then we must report a b c as candidate type
- -- variables
-absVarsOf dest_lvl (_, lvl_env, _, id_env) v
- | isId v
- = [final_av | av <- lookup_avs v, abstract_me av, final_av <- add_tyvars av]
-
- | otherwise
- = if abstract_me v then [v] else []
-
- where
- abstract_me v = case lookupVarEnv lvl_env v of
- Just lvl -> dest_lvl `ltLvl` lvl
- Nothing -> False
-
- lookup_avs v = case lookupVarEnv id_env v of
- Just (abs_vars, _) -> abs_vars
- Nothing -> [v]
-
- -- We are going to lambda-abstract, so nuke any IdInfo,
- -- and add the tyvars of the Id
- add_tyvars v | isId v = zap v : varSetElems (idFreeTyVars v)
- | otherwise = [v]
-
- zap v = WARN( workerExists (idWorkerInfo v)
- || not (isEmptyCoreRules (idSpecialisation v)),
- text "absVarsOf: discarding info on" <+> ppr v )
- setIdInfo v vanillaIdInfo
-\end{code}
-
-\begin{code}
-type LvlM result = UniqSM result
-
-initLvl = initUs_
-thenLvl = thenUs
-returnLvl = returnUs
-mapLvl = mapUs
-\end{code}
-
-\begin{code}
-newPolyBndrs dest_lvl env abs_vars bndrs
- = getUniquesUs (length bndrs) `thenLvl` \ uniqs ->
- let
- new_bndrs = zipWith mk_poly_bndr bndrs uniqs
- in
- returnLvl (extendPolyLvlEnv dest_lvl env abs_vars (bndrs `zip` new_bndrs), new_bndrs)
- where
- mk_poly_bndr bndr uniq = mkSysLocal (_PK_ str) uniq poly_ty
- where
- str = "poly_" ++ occNameUserString (getOccName bndr)
- poly_ty = foldr mkPiType (idType bndr) abs_vars
-
-
-newLvlVar :: String
- -> [CoreBndr] -> Type -- Abstract wrt these bndrs
- -> LvlM Id
-newLvlVar str vars body_ty
- = getUniqueUs `thenLvl` \ uniq ->
- returnUs (mkSysLocal (_PK_ str) uniq (foldr mkPiType body_ty vars))
-
--- The deeply tiresome thing is that we have to apply the substitution
--- to the rules inside each Id. Grr. But it matters.
-
-cloneVar :: TopLevelFlag -> LevelEnv -> Id -> Level -> Level -> LvlM (LevelEnv, Id)
-cloneVar TopLevel env v ctxt_lvl dest_lvl
- = returnUs (env, v) -- Don't clone top level things
-cloneVar NotTopLevel env@(_,_,subst,_) v ctxt_lvl dest_lvl
- = ASSERT( isId v )
- getUs `thenLvl` \ us ->
- let
- (subst', v1) = substAndCloneId subst us v
- v2 = zap_demand ctxt_lvl dest_lvl v1
- env' = extendCloneLvlEnv dest_lvl env subst' [(v,v2)]
- in
- returnUs (env', v2)
-
-cloneRecVars :: TopLevelFlag -> LevelEnv -> [Id] -> Level -> Level -> LvlM (LevelEnv, [Id])
-cloneRecVars TopLevel env vs ctxt_lvl dest_lvl
- = returnUs (env, vs) -- Don't clone top level things
-cloneRecVars NotTopLevel env@(_,_,subst,_) vs ctxt_lvl dest_lvl
- = ASSERT( all isId vs )
- getUs `thenLvl` \ us ->
- let
- (subst', vs1) = substAndCloneRecIds subst us vs
- vs2 = map (zap_demand ctxt_lvl dest_lvl) vs1
- env' = extendCloneLvlEnv dest_lvl env subst' (vs `zip` vs2)
- in
- returnUs (env', vs2)
-
- -- VERY IMPORTANT: we must zap the demand info
- -- if the thing is going to float out past a lambda
-zap_demand dest_lvl ctxt_lvl id
- | ctxt_lvl == dest_lvl = id -- Stays put
- | otherwise = zapDemandIdInfo id -- Floats out
-\end{code}
-
+% +% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 +% +\section{SetLevels} + + *************************** + Overview + *************************** + +1. We attach binding levels to Core bindings, in preparation for floating + outwards (@FloatOut@). + +2. We also let-ify many expressions (notably case scrutinees), so they + will have a fighting chance of being floated sensible. + +3. We clone the binders of any floatable let-binding, so that when it is + floated out it will be unique. (This used to be done by the simplifier + but the latter now only ensures that there's no shadowing; indeed, even + that may not be true.) + + NOTE: this can't be done using the uniqAway idea, because the variable + must be unique in the whole program, not just its current scope, + because two variables in different scopes may float out to the + same top level place + + NOTE: Very tiresomely, we must apply this substitution to + the rules stored inside a variable too. + + We do *not* clone top-level bindings, because some of them must not change, + but we *do* clone bindings that are heading for the top level + +4. In the expression + case x of wild { p -> ...wild... } + we substitute x for wild in the RHS of the case alternatives: + case x of wild { p -> ...x... } + This means that a sub-expression involving x is not "trapped" inside the RHS. + And it's not inconvenient because we already have a substitution. + + Note that this is EXACTLY BACKWARDS from the what the simplifier does. + The simplifier tries to get rid of occurrences of x, in favour of wild, + in the hope that there will only be one remaining occurrence of x, namely + the scrutinee of the case, and we can inline it. + +\begin{code} +module SetLevels ( + setLevels, + + Level(..), tOP_LEVEL, + + incMinorLvl, ltMajLvl, ltLvl, isTopLvl + ) where + +#include "HsVersions.h" + +import CoreSyn + +import CoreUtils ( exprType, exprIsTrivial, exprIsBottom, mkPiType ) +import CoreFVs -- all of it +import Subst +import Id ( Id, idType, mkSysLocal, isOneShotLambda, zapDemandIdInfo, + idSpecialisation, idWorkerInfo, setIdInfo + ) +import IdInfo ( workerExists, vanillaIdInfo, ) +import Var ( Var ) +import VarSet +import VarEnv +import Name ( getOccName ) +import OccName ( occNameUserString ) +import Type ( isUnLiftedType, Type ) +import BasicTypes ( TopLevelFlag(..) ) +import UniqSupply +import Util ( sortLt, isSingleton, count ) +import Outputable +\end{code} + +%************************************************************************ +%* * +\subsection{Level numbers} +%* * +%************************************************************************ + +\begin{code} +data Level = Level Int -- Level number of enclosing lambdas + Int -- Number of big-lambda and/or case expressions between + -- here and the nearest enclosing lambda +\end{code} + +The {\em level number} on a (type-)lambda-bound variable is the +nesting depth of the (type-)lambda which binds it. The outermost lambda +has level 1, so (Level 0 0) means that the variable is bound outside any lambda. + +On an expression, it's the maximum level number of its free +(type-)variables. On a let(rec)-bound variable, it's the level of its +RHS. On a case-bound variable, it's the number of enclosing lambdas. + +Top-level variables: level~0. Those bound on the RHS of a top-level +definition but ``before'' a lambda; e.g., the \tr{x} in (levels shown +as ``subscripts'')... +\begin{verbatim} +a_0 = let b_? = ... in + x_1 = ... b ... in ... +\end{verbatim} + +The main function @lvlExpr@ carries a ``context level'' (@ctxt_lvl@). +That's meant to be the level number of the enclosing binder in the +final (floated) program. If the level number of a sub-expression is +less than that of the context, then it might be worth let-binding the +sub-expression so that it will indeed float. This context level starts +at @Level 0 0@. + +\begin{code} +type LevelledExpr = TaggedExpr Level +type LevelledBind = TaggedBind Level + +tOP_LEVEL = Level 0 0 + +incMajorLvl :: Level -> Level +incMajorLvl (Level major minor) = Level (major+1) 0 + +incMinorLvl :: Level -> Level +incMinorLvl (Level major minor) = Level major (minor+1) + +maxLvl :: Level -> Level -> Level +maxLvl l1@(Level maj1 min1) l2@(Level maj2 min2) + | (maj1 > maj2) || (maj1 == maj2 && min1 > min2) = l1 + | otherwise = l2 + +ltLvl :: Level -> Level -> Bool +ltLvl (Level maj1 min1) (Level maj2 min2) + = (maj1 < maj2) || (maj1 == maj2 && min1 < min2) + +ltMajLvl :: Level -> Level -> Bool + -- Tells if one level belongs to a difft *lambda* level to another +ltMajLvl (Level maj1 _) (Level maj2 _) = maj1 < maj2 + +isTopLvl :: Level -> Bool +isTopLvl (Level 0 0) = True +isTopLvl other = False + +instance Outputable Level where + ppr (Level maj min) = hcat [ char '<', int maj, char ',', int min, char '>' ] + +instance Eq Level where + (Level maj1 min1) == (Level maj2 min2) = maj1==maj2 && min1==min2 +\end{code} + +%************************************************************************ +%* * +\subsection{Main level-setting code} +%* * +%************************************************************************ + +\begin{code} +setLevels :: Bool -- True <=> float lambdas to top level + -> [CoreBind] + -> UniqSupply + -> [LevelledBind] + +setLevels float_lams binds us + = initLvl us (do_them binds) + where + -- "do_them"'s main business is to thread the monad along + -- It gives each top binding the same empty envt, because + -- things unbound in the envt have level number zero implicitly + do_them :: [CoreBind] -> LvlM [LevelledBind] + + do_them [] = returnLvl [] + do_them (b:bs) + = lvlTopBind init_env b `thenLvl` \ (lvld_bind, _) -> + do_them bs `thenLvl` \ lvld_binds -> + returnLvl (lvld_bind : lvld_binds) + + init_env = initialEnv float_lams + +lvlTopBind env (NonRec binder rhs) + = lvlBind TopLevel tOP_LEVEL env (AnnNonRec binder (freeVars rhs)) + -- Rhs can have no free vars! + +lvlTopBind env (Rec pairs) + = lvlBind TopLevel tOP_LEVEL env (AnnRec [(b,freeVars rhs) | (b,rhs) <- pairs]) +\end{code} + +%************************************************************************ +%* * +\subsection{Setting expression levels} +%* * +%************************************************************************ + +\begin{code} +lvlExpr :: Level -- ctxt_lvl: Level of enclosing expression + -> LevelEnv -- Level of in-scope names/tyvars + -> CoreExprWithFVs -- input expression + -> LvlM LevelledExpr -- Result expression +\end{code} + +The @ctxt_lvl@ is, roughly, the level of the innermost enclosing +binder. Here's an example + + v = \x -> ...\y -> let r = case (..x..) of + ..x.. + in .. + +When looking at the rhs of @r@, @ctxt_lvl@ will be 1 because that's +the level of @r@, even though it's inside a level-2 @\y@. It's +important that @ctxt_lvl@ is 1 and not 2 in @r@'s rhs, because we +don't want @lvlExpr@ to turn the scrutinee of the @case@ into an MFE +--- because it isn't a *maximal* free expression. + +If there were another lambda in @r@'s rhs, it would get level-2 as well. + +\begin{code} +lvlExpr _ _ (_, AnnType ty) = returnLvl (Type ty) +lvlExpr _ env (_, AnnVar v) = returnLvl (lookupVar env v) +lvlExpr _ env (_, AnnLit lit) = returnLvl (Lit lit) + +lvlExpr ctxt_lvl env (_, AnnApp fun arg) + = lvl_fun fun `thenLvl` \ fun' -> + lvlMFE False ctxt_lvl env arg `thenLvl` \ arg' -> + returnLvl (App fun' arg') + where + lvl_fun (_, AnnCase _ _ _) = lvlMFE True ctxt_lvl env fun + lvl_fun other = lvlExpr ctxt_lvl env fun + -- We don't do MFE on partial applications generally, + -- but we do if the function is big and hairy, like a case + +lvlExpr ctxt_lvl env (_, AnnNote InlineMe expr) +-- Don't float anything out of an InlineMe; hence the tOP_LEVEL + = lvlExpr tOP_LEVEL env expr `thenLvl` \ expr' -> + returnLvl (Note InlineMe expr') + +lvlExpr ctxt_lvl env (_, AnnNote note expr) + = lvlExpr ctxt_lvl env expr `thenLvl` \ expr' -> + returnLvl (Note note expr') + +-- We don't split adjacent lambdas. That is, given +-- \x y -> (x+1,y) +-- we don't float to give +-- \x -> let v = x+y in \y -> (v,y) +-- Why not? Because partial applications are fairly rare, and splitting +-- lambdas makes them more expensive. + +lvlExpr ctxt_lvl env expr@(_, AnnLam bndr rhs) + = lvlMFE True new_lvl new_env body `thenLvl` \ new_body -> + returnLvl (glue_binders new_bndrs expr new_body) + where + (bndrs, body) = collect_binders expr + (new_lvl, new_bndrs) = lvlLamBndrs ctxt_lvl bndrs + new_env = extendLvlEnv env new_bndrs + +lvlExpr ctxt_lvl env (_, AnnLet bind body) + = lvlBind NotTopLevel ctxt_lvl env bind `thenLvl` \ (bind', new_env) -> + lvlExpr ctxt_lvl new_env body `thenLvl` \ body' -> + returnLvl (Let bind' body') + +lvlExpr ctxt_lvl env (_, AnnCase expr case_bndr alts) + = lvlMFE True ctxt_lvl env expr `thenLvl` \ expr' -> + let + alts_env = extendCaseBndrLvlEnv env expr' case_bndr incd_lvl + in + mapLvl (lvl_alt alts_env) alts `thenLvl` \ alts' -> + returnLvl (Case expr' (case_bndr, incd_lvl) alts') + where + incd_lvl = incMinorLvl ctxt_lvl + + lvl_alt alts_env (con, bs, rhs) + = lvlMFE True incd_lvl new_env rhs `thenLvl` \ rhs' -> + returnLvl (con, bs', rhs') + where + bs' = [ (b, incd_lvl) | b <- bs ] + new_env = extendLvlEnv alts_env bs' + +collect_binders lam + = go [] lam + where + go rev_bndrs (_, AnnLam b e) = go (b:rev_bndrs) e + go rev_bndrs (_, AnnNote n e) = go rev_bndrs e + go rev_bndrs rhs = (reverse rev_bndrs, rhs) + -- Ignore notes, because we don't want to split + -- a lambda like this (\x -> coerce t (\s -> ...)) + -- This happens quite a bit in state-transformer programs + + -- glue_binders puts the lambda back together +glue_binders (b:bs) (_, AnnLam _ e) body = Lam b (glue_binders bs e body) +glue_binders bs (_, AnnNote n e) body = Note n (glue_binders bs e body) +glue_binders [] e body = body +\end{code} + +@lvlMFE@ is just like @lvlExpr@, except that it might let-bind +the expression, so that it can itself be floated. + +\begin{code} +lvlMFE :: Bool -- True <=> strict context [body of case or let] + -> Level -- Level of innermost enclosing lambda/tylam + -> LevelEnv -- Level of in-scope names/tyvars + -> CoreExprWithFVs -- input expression + -> LvlM LevelledExpr -- Result expression + +lvlMFE strict_ctxt ctxt_lvl env (_, AnnType ty) + = returnLvl (Type ty) + +lvlMFE strict_ctxt ctxt_lvl env ann_expr@(fvs, _) + | isUnLiftedType ty -- Can't let-bind it + || not good_destination + || exprIsTrivial expr -- Is trivial + || (strict_ctxt && exprIsBottom expr) -- Strict context and is bottom + -- e.g. \x -> error "foo" + -- No gain from floating this + = -- Don't float it out + lvlExpr ctxt_lvl env ann_expr + + | otherwise -- Float it out! + = lvlFloatRhs abs_vars dest_lvl env ann_expr `thenLvl` \ expr' -> + newLvlVar "lvl" abs_vars ty `thenLvl` \ var -> + returnLvl (Let (NonRec (var,dest_lvl) expr') + (mkVarApps (Var var) abs_vars)) + where + expr = deAnnotate ann_expr + ty = exprType expr + dest_lvl = destLevel env fvs (isFunction ann_expr) + abs_vars = abstractVars dest_lvl env fvs + + good_destination = dest_lvl `ltMajLvl` ctxt_lvl -- Escapes a value lambda + || (isTopLvl dest_lvl && not strict_ctxt) -- Goes to the top + -- A decision to float entails let-binding this thing, and we only do + -- that if we'll escape a value lambda, or will go to the top level. + -- But beware + -- concat = /\ a -> foldr ..a.. (++) [] + -- was getting turned into + -- concat = /\ a -> lvl a + -- lvl = /\ a -> foldr ..a.. (++) [] + -- which is pretty stupid. Hence the strict_ctxt test +\end{code} + + +%************************************************************************ +%* * +\subsection{Bindings} +%* * +%************************************************************************ + +The binding stuff works for top level too. + +\begin{code} +lvlBind :: TopLevelFlag -- Used solely to decide whether to clone + -> Level -- Context level; might be Top even for bindings nested in the RHS + -- of a top level binding + -> LevelEnv + -> CoreBindWithFVs + -> LvlM (LevelledBind, LevelEnv) + +lvlBind top_lvl ctxt_lvl env (AnnNonRec bndr rhs@(rhs_fvs,_)) + | null abs_vars + = -- No type abstraction; clone existing binder + lvlExpr dest_lvl env rhs `thenLvl` \ rhs' -> + cloneVar top_lvl env bndr ctxt_lvl dest_lvl `thenLvl` \ (env', bndr') -> + returnLvl (NonRec (bndr', dest_lvl) rhs', env') + + | otherwise + = -- Yes, type abstraction; create a new binder, extend substitution, etc + lvlFloatRhs abs_vars dest_lvl env rhs `thenLvl` \ rhs' -> + newPolyBndrs dest_lvl env abs_vars [bndr] `thenLvl` \ (env', [bndr']) -> + returnLvl (NonRec (bndr', dest_lvl) rhs', env') + + where + bind_fvs = rhs_fvs `unionVarSet` idFreeVars bndr + abs_vars = abstractVars dest_lvl env bind_fvs + + dest_lvl | isUnLiftedType (idType bndr) = destLevel env bind_fvs False `maxLvl` Level 1 0 + | otherwise = destLevel env bind_fvs (isFunction rhs) + -- Hack alert! We do have some unlifted bindings, for cheap primops, and + -- it is ok to float them out; but not to the top level. If they would otherwise + -- go to the top level, we pin them inside the topmost lambda +\end{code} + + +\begin{code} +lvlBind top_lvl ctxt_lvl env (AnnRec pairs) + | null abs_vars + = cloneRecVars top_lvl env bndrs ctxt_lvl dest_lvl `thenLvl` \ (new_env, new_bndrs) -> + mapLvl (lvlExpr ctxt_lvl new_env) rhss `thenLvl` \ new_rhss -> + returnLvl (Rec ((new_bndrs `zip` repeat dest_lvl) `zip` new_rhss), new_env) + + | isSingleton pairs && count isId abs_vars > 1 + = -- Special case for self recursion where there are + -- several variables carried around: build a local loop: + -- poly_f = \abs_vars. \lam_vars . letrec f = \lam_vars. rhs in f lam_vars + -- This just makes the closures a bit smaller. If we don't do + -- this, allocation rises significantly on some programs + -- + -- We could elaborate it for the case where there are several + -- mutually functions, but it's quite a bit more complicated + -- + -- This all seems a bit ad hoc -- sigh + let + (bndr,rhs) = head pairs + (rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars + rhs_env = extendLvlEnv env abs_vars_w_lvls + in + cloneVar NotTopLevel rhs_env bndr rhs_lvl rhs_lvl `thenLvl` \ (rhs_env', new_bndr) -> + let + (lam_bndrs, rhs_body) = collect_binders rhs + (body_lvl, new_lam_bndrs) = lvlLamBndrs rhs_lvl lam_bndrs + body_env = extendLvlEnv rhs_env' new_lam_bndrs + in + lvlExpr body_lvl body_env rhs_body `thenLvl` \ new_rhs_body -> + newPolyBndrs dest_lvl env abs_vars [bndr] `thenLvl` \ (poly_env, [poly_bndr]) -> + returnLvl (Rec [((poly_bndr,dest_lvl), mkLams abs_vars_w_lvls $ + glue_binders new_lam_bndrs rhs $ + Let (Rec [((new_bndr,rhs_lvl), mkLams new_lam_bndrs new_rhs_body)]) + (mkVarApps (Var new_bndr) lam_bndrs))], + poly_env) + + | otherwise + = newPolyBndrs dest_lvl env abs_vars bndrs `thenLvl` \ (new_env, new_bndrs) -> + mapLvl (lvlFloatRhs abs_vars dest_lvl new_env) rhss `thenLvl` \ new_rhss -> + returnLvl (Rec ((new_bndrs `zip` repeat dest_lvl) `zip` new_rhss), new_env) + + where + (bndrs,rhss) = unzip pairs + + -- Finding the free vars of the binding group is annoying + bind_fvs = (unionVarSets [ idFreeVars bndr `unionVarSet` rhs_fvs + | (bndr, (rhs_fvs,_)) <- pairs]) + `minusVarSet` + mkVarSet bndrs + + dest_lvl = destLevel env bind_fvs (all isFunction rhss) + abs_vars = abstractVars dest_lvl env bind_fvs + +---------------------------------------------------- +-- Three help functons for the type-abstraction case + +lvlFloatRhs abs_vars dest_lvl env rhs + = lvlExpr rhs_lvl rhs_env rhs `thenLvl` \ rhs' -> + returnLvl (mkLams abs_vars_w_lvls rhs') + where + (rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars + rhs_env = extendLvlEnv env abs_vars_w_lvls +\end{code} + + +%************************************************************************ +%* * +\subsection{Deciding floatability} +%* * +%************************************************************************ + +\begin{code} +lvlLamBndrs :: Level -> [CoreBndr] -> (Level, [(CoreBndr, Level)]) +-- Compute the levels for the binders of a lambda group +-- The binders returned are exactly the same as the ones passed, +-- but they are now paired with a level +lvlLamBndrs lvl [] + = (lvl, []) + +lvlLamBndrs lvl bndrs + = go (incMinorLvl lvl) + False -- Havn't bumped major level in this group + [] bndrs + where + go old_lvl bumped_major rev_lvld_bndrs (bndr:bndrs) + | isId bndr && -- Go to the next major level if this is a value binder, + not bumped_major && -- and we havn't already gone to the next level (one jump per group) + not (isOneShotLambda bndr) -- and it isn't a one-shot lambda + = go new_lvl True ((bndr,new_lvl) : rev_lvld_bndrs) bndrs + + | otherwise + = go old_lvl bumped_major ((bndr,old_lvl) : rev_lvld_bndrs) bndrs + + where + new_lvl = incMajorLvl old_lvl + + go old_lvl _ rev_lvld_bndrs [] + = (old_lvl, reverse rev_lvld_bndrs) + -- a lambda like this (\x -> coerce t (\s -> ...)) + -- This happens quite a bit in state-transformer programs +\end{code} + +\begin{code} +abstractVars :: Level -> LevelEnv -> VarSet -> [Var] + -- Find the variables in fvs, free vars of the target expresion, + -- whose level is less than than the supplied level + -- These are the ones we are going to abstract out +abstractVars dest_lvl env fvs + = uniq (sortLt lt [var | fv <- varSetElems fvs, var <- absVarsOf dest_lvl env fv]) + where + -- Sort the variables so we don't get + -- mixed-up tyvars and Ids; it's just messy + v1 `lt` v2 = case (isId v1, isId v2) of + (True, False) -> False + (False, True) -> True + other -> v1 < v2 -- Same family + uniq :: [Var] -> [Var] + -- Remove adjacent duplicates; the sort will have brought them together + uniq (v1:v2:vs) | v1 == v2 = uniq (v2:vs) + | otherwise = v1 : uniq (v2:vs) + uniq vs = vs + + -- Destintion level is the max Id level of the expression + -- (We'll abstract the type variables, if any.) +destLevel :: LevelEnv -> VarSet -> Bool -> Level +destLevel env fvs is_function + | floatLams env + && is_function = tOP_LEVEL -- Send functions to top level; see + -- the comments with isFunction + | otherwise = maxIdLevel env fvs + +isFunction :: CoreExprWithFVs -> Bool +-- The idea here is that we want to float *functions* to +-- the top level. This saves no work, but +-- (a) it can make the host function body a lot smaller, +-- and hence inlinable. +-- (b) it can also save allocation when the function is recursive: +-- h = \x -> letrec f = \y -> ...f...y...x... +-- in f x +-- becomes +-- f = \x y -> ...(f x)...y...x... +-- h = \x -> f x x +-- No allocation for f now. +-- We may only want to do this if there are sufficiently few free +-- variables. We certainly only want to do it for values, and not for +-- constructors. So the simple thing is just to look for lambdas +isFunction (_, AnnLam b e) | isId b = True + | otherwise = isFunction e +isFunction (_, AnnNote n e) = isFunction e +isFunction other = False +\end{code} + + +%************************************************************************ +%* * +\subsection{Free-To-Level Monad} +%* * +%************************************************************************ + +\begin{code} +type LevelEnv = (Bool, -- True <=> Float lambdas too + VarEnv Level, -- Domain is *post-cloned* TyVars and Ids + Subst, -- Domain is pre-cloned Ids; tracks the in-scope set + -- so that subtitution is capture-avoiding + IdEnv ([Var], LevelledExpr)) -- Domain is pre-cloned Ids + -- We clone let-bound variables so that they are still + -- distinct when floated out; hence the SubstEnv/IdEnv. + -- (see point 3 of the module overview comment). + -- We also use these envs when making a variable polymorphic + -- because we want to float it out past a big lambda. + -- + -- The SubstEnv and IdEnv always implement the same mapping, but the + -- SubstEnv maps to CoreExpr and the IdEnv to LevelledExpr + -- Since the range is always a variable or type application, + -- there is never any difference between the two, but sadly + -- the types differ. The SubstEnv is used when substituting in + -- a variable's IdInfo; the IdEnv when we find a Var. + -- + -- In addition the IdEnv records a list of tyvars free in the + -- type application, just so we don't have to call freeVars on + -- the type application repeatedly. + -- + -- The domain of the both envs is *pre-cloned* Ids, though + -- + -- The domain of the VarEnv Level is the *post-cloned* Ids + +initialEnv :: Bool -> LevelEnv +initialEnv float_lams = (float_lams, emptyVarEnv, emptySubst, emptyVarEnv) + +floatLams :: LevelEnv -> Bool +floatLams (float_lams, _, _, _) = float_lams + +extendLvlEnv :: LevelEnv -> [(Var,Level)] -> LevelEnv +-- Used when *not* cloning +extendLvlEnv (float_lams, lvl_env, subst, id_env) prs + = (float_lams, + foldl add_lvl lvl_env prs, + foldl del_subst subst prs, + foldl del_id id_env prs) + where + add_lvl env (v,l) = extendVarEnv env v l + del_subst env (v,_) = extendInScope env v + del_id env (v,_) = delVarEnv env v + -- We must remove any clone for this variable name in case of + -- shadowing. This bit me in the following case + -- (in nofib/real/gg/Spark.hs): + -- + -- case ds of wild { + -- ... -> case e of wild { + -- ... -> ... wild ... + -- } + -- } + -- + -- The inside occurrence of @wild@ was being replaced with @ds@, + -- incorrectly, because the SubstEnv was still lying around. Ouch! + -- KSW 2000-07. + +-- extendCaseBndrLvlEnv adds the mapping case-bndr->scrut-var if it can +-- (see point 4 of the module overview comment) +extendCaseBndrLvlEnv (float_lams, lvl_env, subst, id_env) (Var scrut_var) case_bndr lvl + = (float_lams, + extendVarEnv lvl_env case_bndr lvl, + extendSubst subst case_bndr (DoneEx (Var scrut_var)), + extendVarEnv id_env case_bndr ([scrut_var], Var scrut_var)) + +extendCaseBndrLvlEnv env scrut case_bndr lvl + = extendLvlEnv env [(case_bndr,lvl)] + +extendPolyLvlEnv dest_lvl (float_lams, lvl_env, subst, id_env) abs_vars bndr_pairs + = (float_lams, + foldl add_lvl lvl_env bndr_pairs, + foldl add_subst subst bndr_pairs, + foldl add_id id_env bndr_pairs) + where + add_lvl env (v,v') = extendVarEnv env v' dest_lvl + add_subst env (v,v') = extendSubst env v (DoneEx (mkVarApps (Var v') abs_vars)) + add_id env (v,v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars) + +extendCloneLvlEnv lvl (float_lams, lvl_env, _, id_env) new_subst bndr_pairs + = (float_lams, + foldl add_lvl lvl_env bndr_pairs, + new_subst, + foldl add_id id_env bndr_pairs) + where + add_lvl env (v,v') = extendVarEnv env v' lvl + add_id env (v,v') = extendVarEnv env v ([v'], Var v') + + +maxIdLevel :: LevelEnv -> VarSet -> Level +maxIdLevel (_, lvl_env,_,id_env) var_set + = foldVarSet max_in tOP_LEVEL var_set + where + max_in in_var lvl = foldr max_out lvl (case lookupVarEnv id_env in_var of + Just (abs_vars, _) -> abs_vars + Nothing -> [in_var]) + + max_out out_var lvl + | isId out_var = case lookupVarEnv lvl_env out_var of + Just lvl' -> maxLvl lvl' lvl + Nothing -> lvl + | otherwise = lvl -- Ignore tyvars in *maxIdLevel* + +lookupVar :: LevelEnv -> Id -> LevelledExpr +lookupVar (_, _, _, id_env) v = case lookupVarEnv id_env v of + Just (_, expr) -> expr + other -> Var v + +absVarsOf :: Level -> LevelEnv -> Var -> [Var] + -- If f is free in the exression, and f maps to poly_f a b c in the + -- current substitution, then we must report a b c as candidate type + -- variables +absVarsOf dest_lvl (_, lvl_env, _, id_env) v + | isId v + = [final_av | av <- lookup_avs v, abstract_me av, final_av <- add_tyvars av] + + | otherwise + = if abstract_me v then [v] else [] + + where + abstract_me v = case lookupVarEnv lvl_env v of + Just lvl -> dest_lvl `ltLvl` lvl + Nothing -> False + + lookup_avs v = case lookupVarEnv id_env v of + Just (abs_vars, _) -> abs_vars + Nothing -> [v] + + -- We are going to lambda-abstract, so nuke any IdInfo, + -- and add the tyvars of the Id + add_tyvars v | isId v = zap v : varSetElems (idFreeTyVars v) + | otherwise = [v] + + zap v = WARN( workerExists (idWorkerInfo v) + || not (isEmptyCoreRules (idSpecialisation v)), + text "absVarsOf: discarding info on" <+> ppr v ) + setIdInfo v vanillaIdInfo +\end{code} + +\begin{code} +type LvlM result = UniqSM result + +initLvl = initUs_ +thenLvl = thenUs +returnLvl = returnUs +mapLvl = mapUs +\end{code} + +\begin{code} +newPolyBndrs dest_lvl env abs_vars bndrs + = getUniquesUs (length bndrs) `thenLvl` \ uniqs -> + let + new_bndrs = zipWith mk_poly_bndr bndrs uniqs + in + returnLvl (extendPolyLvlEnv dest_lvl env abs_vars (bndrs `zip` new_bndrs), new_bndrs) + where + mk_poly_bndr bndr uniq = mkSysLocal (_PK_ str) uniq poly_ty + where + str = "poly_" ++ occNameUserString (getOccName bndr) + poly_ty = foldr mkPiType (idType bndr) abs_vars + + +newLvlVar :: String + -> [CoreBndr] -> Type -- Abstract wrt these bndrs + -> LvlM Id +newLvlVar str vars body_ty + = getUniqueUs `thenLvl` \ uniq -> + returnUs (mkSysLocal (_PK_ str) uniq (foldr mkPiType body_ty vars)) + +-- The deeply tiresome thing is that we have to apply the substitution +-- to the rules inside each Id. Grr. But it matters. + +cloneVar :: TopLevelFlag -> LevelEnv -> Id -> Level -> Level -> LvlM (LevelEnv, Id) +cloneVar TopLevel env v ctxt_lvl dest_lvl + = returnUs (env, v) -- Don't clone top level things +cloneVar NotTopLevel env@(_,_,subst,_) v ctxt_lvl dest_lvl + = ASSERT( isId v ) + getUs `thenLvl` \ us -> + let + (subst', v1) = substAndCloneId subst us v + v2 = zap_demand ctxt_lvl dest_lvl v1 + env' = extendCloneLvlEnv dest_lvl env subst' [(v,v2)] + in + returnUs (env', v2) + +cloneRecVars :: TopLevelFlag -> LevelEnv -> [Id] -> Level -> Level -> LvlM (LevelEnv, [Id]) +cloneRecVars TopLevel env vs ctxt_lvl dest_lvl + = returnUs (env, vs) -- Don't clone top level things +cloneRecVars NotTopLevel env@(_,_,subst,_) vs ctxt_lvl dest_lvl + = ASSERT( all isId vs ) + getUs `thenLvl` \ us -> + let + (subst', vs1) = substAndCloneRecIds subst us vs + vs2 = map (zap_demand ctxt_lvl dest_lvl) vs1 + env' = extendCloneLvlEnv dest_lvl env subst' (vs `zip` vs2) + in + returnUs (env', vs2) + + -- VERY IMPORTANT: we must zap the demand info + -- if the thing is going to float out past a lambda +zap_demand dest_lvl ctxt_lvl id + | ctxt_lvl == dest_lvl = id -- Stays put + | otherwise = zapDemandIdInfo id -- Floats out +\end{code} + |
