summaryrefslogtreecommitdiff
path: root/src/pool.c
blob: 6ea081e876875ef3750470080190f2e2a6b3a4be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
/*
 * Memory management functions.
 *
 * Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 */

#include <sys/mman.h>
#include <errno.h>

#include <haproxy/activity.h>
#include <haproxy/api.h>
#include <haproxy/applet-t.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/cli.h>
#include <haproxy/errors.h>
#include <haproxy/global.h>
#include <haproxy/list.h>
#include <haproxy/pool.h>
#include <haproxy/stats-t.h>
#include <haproxy/stream_interface.h>
#include <haproxy/thread.h>
#include <haproxy/tools.h>


#ifdef CONFIG_HAP_POOLS
/* These ones are initialized per-thread on startup by init_pools() */
THREAD_LOCAL size_t pool_cache_bytes = 0;                /* total cache size */
THREAD_LOCAL size_t pool_cache_count = 0;                /* #cache objects   */
#endif

static struct list pools = LIST_HEAD_INIT(pools);
int mem_poison_byte = -1;

#ifdef DEBUG_FAIL_ALLOC
static int mem_fail_rate = 0;
#endif

static int using_default_allocator = 1;
static int(*my_mallctl)(const char *, void *, size_t *, void *, size_t) = NULL;

/* ask the allocator to trim memory pools.
 * This must run under thread isolation so that competing threads trying to
 * allocate or release memory do not prevent the allocator from completing
 * its job. We just have to be careful as callers might already be isolated
 * themselves.
 */
static void trim_all_pools(void)
{
	int isolated = thread_isolated();

	if (!isolated)
		thread_isolate();

	if (my_mallctl) {
		unsigned int i, narenas = 0;
		size_t len = sizeof(narenas);

		if (my_mallctl("arenas.narenas", &narenas, &len, NULL, 0) == 0) {
			for (i = 0; i < narenas; i ++) {
				char mib[32] = {0};
				snprintf(mib, sizeof(mib), "arena.%u.purge", i);
				(void)my_mallctl(mib, NULL, NULL, NULL, 0);
			}
		}
	} else {
#if defined(HA_HAVE_MALLOC_TRIM)
		if (using_default_allocator)
			malloc_trim(0);
#elif defined(HA_HAVE_MALLOC_ZONE)
		if (using_default_allocator) {
			vm_address_t *zones;
			unsigned int i, nzones;

			if (malloc_get_all_zones(0, NULL, &zones, &nzones) == KERN_SUCCESS) {
				for (i = 0; i < nzones; i ++) {
					malloc_zone_t *zone = (malloc_zone_t *)zones[i];

					/* we cannot purge anonymous zones */
					if (zone->zone_name)
						malloc_zone_pressure_relief(zone, 0);
				}
			}
		}
#endif
	}

	if (!isolated)
		thread_release();
}

/* check if we're using the same allocator as the one that provides
 * malloc_trim() and mallinfo(). The principle is that on glibc, both
 * malloc_trim() and mallinfo() are provided, and using mallinfo() we
 * can check if malloc() is performed through glibc or any other one
 * the executable was linked against (e.g. jemalloc). Prior to this we
 * have to check whether we're running on jemalloc by verifying if the
 * mallctl() function is provided. Its pointer will be used later.
 */
static void detect_allocator(void)
{
#if defined(__ELF__)
	extern int mallctl(const char *, void *, size_t *, void *, size_t) __attribute__((weak));

	my_mallctl = mallctl;
#endif

	if (!my_mallctl) {
		my_mallctl = get_sym_curr_addr("mallctl");
		using_default_allocator = (my_mallctl == NULL);
	}

	if (!my_mallctl) {
#if defined(HA_HAVE_MALLOC_TRIM)
#ifdef HA_HAVE_MALLINFO2
		struct mallinfo2 mi1, mi2;
#else
		struct mallinfo mi1, mi2;
#endif
		void *ptr;

#ifdef HA_HAVE_MALLINFO2
		mi1 = mallinfo2();
#else
		mi1 = mallinfo();
#endif
		ptr = DISGUISE(malloc(1));
#ifdef HA_HAVE_MALLINFO2
		mi2 = mallinfo2();
#else
		mi2 = mallinfo();
#endif
		free(DISGUISE(ptr));

		using_default_allocator = !!memcmp(&mi1, &mi2, sizeof(mi1));
#elif defined(HA_HAVE_MALLOC_ZONE)
		using_default_allocator = (malloc_default_zone() != NULL);
#endif
	}
}

static int is_trim_enabled(void)
{
	return using_default_allocator;
}

/* Try to find an existing shared pool with the same characteristics and
 * returns it, otherwise creates this one. NULL is returned if no memory
 * is available for a new creation. Two flags are supported :
 *   - MEM_F_SHARED to indicate that the pool may be shared with other users
 *   - MEM_F_EXACT to indicate that the size must not be rounded up
 */
struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags)
{
	struct pool_head *pool;
	struct pool_head *entry;
	struct list *start;
	unsigned int align;
	int thr __maybe_unused;

	/* We need to store a (void *) at the end of the chunks. Since we know
	 * that the malloc() function will never return such a small size,
	 * let's round the size up to something slightly bigger, in order to
	 * ease merging of entries. Note that the rounding is a power of two.
	 * This extra (void *) is not accounted for in the size computation
	 * so that the visible parts outside are not affected.
	 *
	 * Note: for the LRU cache, we need to store 2 doubly-linked lists.
	 */

	if (!(flags & MEM_F_EXACT)) {
		align = 4 * sizeof(void *); // 2 lists = 4 pointers min
		size  = ((size + POOL_EXTRA + align - 1) & -align) - POOL_EXTRA;
	}

	/* TODO: thread: we do not lock pool list for now because all pools are
	 * created during HAProxy startup (so before threads creation) */
	start = &pools;
	pool = NULL;

	list_for_each_entry(entry, &pools, list) {
		if (entry->size == size) {
			/* either we can share this place and we take it, or
			 * we look for a shareable one or for the next position
			 * before which we will insert a new one.
			 */
			if ((flags & entry->flags & MEM_F_SHARED)
#ifdef DEBUG_DONT_SHARE_POOLS
			    && strcmp(name, entry->name) == 0
#endif
			    ) {
				/* we can share this one */
				pool = entry;
				DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name);
				break;
			}
		}
		else if (entry->size > size) {
			/* insert before this one */
			start = &entry->list;
			break;
		}
	}

	if (!pool) {
		if (!pool)
			pool = calloc(1, sizeof(*pool));

		if (!pool)
			return NULL;
		if (name)
			strlcpy2(pool->name, name, sizeof(pool->name));
		pool->size = size;
		pool->flags = flags;
		LIST_APPEND(start, &pool->list);

#ifdef CONFIG_HAP_POOLS
		/* update per-thread pool cache if necessary */
		for (thr = 0; thr < MAX_THREADS; thr++) {
			LIST_INIT(&pool->cache[thr].list);
		}
#endif
	}
	pool->users++;
	return pool;
}

/* Tries to allocate an object for the pool <pool> using the system's allocator
 * and directly returns it. The pool's allocated counter is checked and updated,
 * but no other checks are performed.
 */
void *pool_get_from_os(struct pool_head *pool)
{
	if (!pool->limit || pool->allocated < pool->limit) {
		void *ptr = pool_alloc_area(pool->size + POOL_EXTRA);
		if (ptr) {
			_HA_ATOMIC_INC(&pool->allocated);
			return ptr;
		}
		_HA_ATOMIC_INC(&pool->failed);
	}
	activity[tid].pool_fail++;
	return NULL;

}

/* Releases a pool item back to the operating system and atomically updates
 * the allocation counter.
 */
void pool_put_to_os(struct pool_head *pool, void *ptr)
{
#ifdef DEBUG_UAF
	/* This object will be released for real in order to detect a use after
	 * free. We also force a write to the area to ensure we crash on double
	 * free or free of a const area.
	 */
	*(uint32_t *)ptr = 0xDEADADD4;
#endif /* DEBUG_UAF */

	pool_free_area(ptr, pool->size + POOL_EXTRA);
	_HA_ATOMIC_DEC(&pool->allocated);
}

/* Tries to allocate an object for the pool <pool> using the system's allocator
 * and directly returns it. The pool's counters are updated but the object is
 * never cached, so this is usable with and without local or shared caches.
 */
void *pool_alloc_nocache(struct pool_head *pool)
{
	void *ptr = NULL;

	ptr = pool_get_from_os(pool);
	if (!ptr)
		return NULL;

	swrate_add_scaled(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used, POOL_AVG_SAMPLES/4);
	_HA_ATOMIC_INC(&pool->used);

	/* keep track of where the element was allocated from */
	POOL_DEBUG_SET_MARK(pool, ptr);
	return ptr;
}

/* Release a pool item back to the OS and keeps the pool's counters up to date.
 * This is always defined even when pools are not enabled (their usage stats
 * are maintained).
 */
void pool_free_nocache(struct pool_head *pool, void *ptr)
{
	_HA_ATOMIC_DEC(&pool->used);
	swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
	pool_put_to_os(pool, ptr);
}


#ifdef CONFIG_HAP_POOLS

/* Evicts some of the oldest objects from one local cache, until its number of
 * objects is no more than 16+1/8 of the total number of locally cached objects
 * or the total size of the local cache is no more than 75% of its maximum (i.e.
 * we don't want a single cache to use all the cache for itself). For this, the
 * list is scanned in reverse.
 */
void pool_evict_from_local_cache(struct pool_head *pool)
{
	struct pool_cache_head *ph = &pool->cache[tid];
	struct pool_item *pi, *to_free = NULL;
	struct pool_cache_item *item;
	uint to_free_max;

	to_free_max = pool_releasable(pool);

	while (ph->count >= 16 + pool_cache_count / 8 &&
	       pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4) {
		item = LIST_PREV(&ph->list, typeof(item), by_pool);
		ph->count--;
		pool_cache_bytes -= pool->size;
		pool_cache_count--;
		LIST_DELETE(&item->by_pool);
		LIST_DELETE(&item->by_lru);

		if (to_free_max) {
			pi = (struct pool_item *)item;
			pi->next = to_free;
			to_free = pi;
			to_free_max--;
		} else
			pool_free_nocache(pool, item);
	}

	while (to_free) {
		pi = to_free;
		to_free = pi->next;
		pool_put_to_shared_cache(pool, pi);
	}
}

/* Evicts some of the oldest objects from the local cache, pushing them to the
 * global pool.
 */
void pool_evict_from_local_caches()
{
	struct pool_cache_item *item;
	struct pool_cache_head *ph;
	struct pool_head *pool;

	do {
		item = LIST_PREV(&th_ctx->pool_lru_head, struct pool_cache_item *, by_lru);
		/* note: by definition we remove oldest objects so they also are the
		 * oldest in their own pools, thus their next is the pool's head.
		 */
		ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list);
		pool = container_of(ph - tid, struct pool_head, cache);
		LIST_DELETE(&item->by_pool);
		LIST_DELETE(&item->by_lru);
		ph->count--;
		pool_cache_count--;
		pool_cache_bytes -= pool->size;
		if (unlikely(pool_is_crowded(pool)))
			pool_free_nocache(pool, item);
		else
			pool_put_to_shared_cache(pool, (struct pool_item *)item);
	} while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8);
}

/* Frees an object to the local cache, possibly pushing oldest objects to the
 * shared cache, which itself may decide to release some of them to the OS.
 * While it is unspecified what the object becomes past this point, it is
 * guaranteed to be released from the users' perpective.
 */
void pool_put_to_cache(struct pool_head *pool, void *ptr)
{
	struct pool_cache_item *item = (struct pool_cache_item *)ptr;
	struct pool_cache_head *ph = &pool->cache[tid];

	LIST_INSERT(&ph->list, &item->by_pool);
	LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
	ph->count++;
	pool_cache_count++;
	pool_cache_bytes += pool->size;

	if (unlikely(pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) {
		if (ph->count >= 16 + pool_cache_count / 8)
			pool_evict_from_local_cache(pool);
		if (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE)
			pool_evict_from_local_caches();
	}
}

#if defined(CONFIG_HAP_NO_GLOBAL_POOLS)

/* legacy stuff */
void pool_flush(struct pool_head *pool)
{
}

/* This function might ask the malloc library to trim its buffers. */
void pool_gc(struct pool_head *pool_ctx)
{
	trim_all_pools();
}

#else /* CONFIG_HAP_NO_GLOBAL_POOLS */

/* Tries to refill the local cache <pch> from the shared one for pool <pool>.
 * This is only used when pools are in use and shared pools are enabled. No
 * malloc() is attempted, and poisonning is never performed. The purpose is to
 * get the fastest possible refilling so that the caller can easily check if
 * the cache has enough objects for its use.
 */
void pool_refill_local_from_shared(struct pool_head *pool, struct pool_cache_head *pch)
{
	struct pool_cache_item *item;
	struct pool_item *ret;

	/* we'll need to reference the first element to figure the next one. We
	 * must temporarily lock it so that nobody allocates then releases it,
	 * or the dereference could fail.
	 */
	ret = _HA_ATOMIC_LOAD(&pool->free_list);
	do {
		while (unlikely(ret == POOL_BUSY)) {
			__ha_cpu_relax();
			ret = _HA_ATOMIC_LOAD(&pool->free_list);
		}
		if (ret == NULL)
			return;
	} while (unlikely((ret = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));

	if (unlikely(ret == NULL)) {
		HA_ATOMIC_STORE(&pool->free_list, NULL);
		return;
	}

	/* this releases the lock */
	HA_ATOMIC_STORE(&pool->free_list, ret->next);
	HA_ATOMIC_INC(&pool->used);

	/* keep track of where the element was allocated from */
	POOL_DEBUG_SET_MARK(pool, ret);

	/* now store the retrieved object into the local cache */
	item = (struct pool_cache_item *)ret;
	LIST_INSERT(&pch->list, &item->by_pool);
	LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
	pch->count++;
	pool_cache_count++;
	pool_cache_bytes += pool->size;
}

/* Adds cache item entry <item> to the shared cache. The caller is advised to
 * first check using pool_is_crowded() if it's wise to add this object there.
 * Both the pool and the item must be valid. Use pool_free() for normal
 * operations.
 */
void pool_put_to_shared_cache(struct pool_head *pool, struct pool_item *item)
{
	struct pool_item *free_list;

	_HA_ATOMIC_DEC(&pool->used);
	free_list = _HA_ATOMIC_LOAD(&pool->free_list);
	do {
		while (unlikely(free_list == POOL_BUSY)) {
			__ha_cpu_relax();
			free_list = _HA_ATOMIC_LOAD(&pool->free_list);
		}
		_HA_ATOMIC_STORE(&item->next, free_list);
		__ha_barrier_atomic_store();
	} while (!_HA_ATOMIC_CAS(&pool->free_list, &free_list, item));
	__ha_barrier_atomic_store();
	swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
}

/*
 * This function frees whatever can be freed in pool <pool>.
 */
void pool_flush(struct pool_head *pool)
{
	struct pool_item *next, *temp;

	if (!pool)
		return;

	/* The loop below atomically detaches the head of the free list and
	 * replaces it with a NULL. Then the list can be released.
	 */
	next = pool->free_list;
	do {
		while (unlikely(next == POOL_BUSY)) {
			__ha_cpu_relax();
			next = _HA_ATOMIC_LOAD(&pool->free_list);
		}
		if (next == NULL)
			return;
	} while (unlikely((next = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
	_HA_ATOMIC_STORE(&pool->free_list, NULL);
	__ha_barrier_atomic_store();

	while (next) {
		temp = next;
		next = temp->next;
		pool_put_to_os(pool, temp);
	}
	/* here, we should have pool->allocated == pool->used */
}

/*
 * This function frees whatever can be freed in all pools, but respecting
 * the minimum thresholds imposed by owners. It makes sure to be alone to
 * run by using thread_isolate(). <pool_ctx> is unused.
 */
void pool_gc(struct pool_head *pool_ctx)
{
	struct pool_head *entry;
	int isolated = thread_isolated();

	if (!isolated)
		thread_isolate();

	list_for_each_entry(entry, &pools, list) {
		struct pool_item *temp;

		while (entry->free_list &&
		       (int)(entry->allocated - entry->used) > (int)entry->minavail) {
			temp = entry->free_list;
			entry->free_list = temp->next;
			pool_put_to_os(entry, temp);
		}
	}

	trim_all_pools();

	if (!isolated)
		thread_release();
}
#endif /* CONFIG_HAP_NO_GLOBAL_POOLS */

#else  /* CONFIG_HAP_POOLS */

/* legacy stuff */
void pool_flush(struct pool_head *pool)
{
}

/* This function might ask the malloc library to trim its buffers. */
void pool_gc(struct pool_head *pool_ctx)
{
	trim_all_pools();
}

#endif /* CONFIG_HAP_POOLS */


#ifdef DEBUG_UAF

/************* use-after-free allocator *************/

/* allocates an area of size <size> and returns it. The semantics are similar
 * to those of malloc(). However the allocation is rounded up to 4kB so that a
 * full page is allocated. This ensures the object can be freed alone so that
 * future dereferences are easily detected. The returned object is always
 * 16-bytes aligned to avoid issues with unaligned structure objects. In case
 * some padding is added, the area's start address is copied at the end of the
 * padding to help detect underflows.
 */
void *pool_alloc_area_uaf(size_t size)
{
	size_t pad = (4096 - size) & 0xFF0;
	void *ret;

	ret = mmap(NULL, (size + 4095) & -4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
	if (ret != MAP_FAILED) {
		/* let's dereference the page before returning so that the real
		 * allocation in the system is performed without holding the lock.
		 */
		*(int *)ret = 0;
		if (pad >= sizeof(void *))
			*(void **)(ret + pad - sizeof(void *)) = ret + pad;
		ret += pad;
	} else {
		ret = NULL;
	}
	return ret;
}

/* frees an area <area> of size <size> allocated by pool_alloc_area(). The
 * semantics are identical to free() except that the size must absolutely match
 * the one passed to pool_alloc_area(). In case some padding is added, the
 * area's start address is compared to the one at the end of the padding, and
 * a segfault is triggered if they don't match, indicating an underflow.
 */
void pool_free_area_uaf(void *area, size_t size)
{
	size_t pad = (4096 - size) & 0xFF0;

	if (pad >= sizeof(void *) && *(void **)(area - sizeof(void *)) != area)
		ABORT_NOW();

	munmap(area - pad, (size + 4095) & -4096);
}

#endif /* DEBUG_UAF */

/*
 * This function destroys a pool by freeing it completely, unless it's still
 * in use. This should be called only under extreme circumstances. It always
 * returns NULL if the resulting pool is empty, easing the clearing of the old
 * pointer, otherwise it returns the pool.
 * .
 */
void *pool_destroy(struct pool_head *pool)
{
	if (pool) {
		pool_flush(pool);
		if (pool->used)
			return pool;
		pool->users--;
		if (!pool->users) {
			LIST_DELETE(&pool->list);
			/* note that if used == 0, the cache is empty */
			free(pool);
		}
	}
	return NULL;
}

/* This destroys all pools on exit. It is *not* thread safe. */
void pool_destroy_all()
{
	struct pool_head *entry, *back;

	list_for_each_entry_safe(entry, back, &pools, list)
		pool_destroy(entry);
}

/* This function dumps memory usage information into the trash buffer. */
void dump_pools_to_trash()
{
	struct pool_head *entry;
	unsigned long allocated, used;
	int nbpools;
#ifdef CONFIG_HAP_POOLS
	unsigned long cached_bytes = 0;
	uint cached = 0;
#endif

	allocated = used = nbpools = 0;
	chunk_printf(&trash, "Dumping pools usage. Use SIGQUIT to flush them.\n");
	list_for_each_entry(entry, &pools, list) {
#ifdef CONFIG_HAP_POOLS
		int i;
		for (cached = i = 0; i < global.nbthread; i++)
			cached += entry->cache[i].count;
		cached_bytes += cached * entry->size;
#endif
		chunk_appendf(&trash, "  - Pool %s (%u bytes) : %u allocated (%u bytes), %u used"
#ifdef CONFIG_HAP_POOLS
			      " (~%u by thread caches)"
#endif
			      ", needed_avg %u, %u failures, %u users, @%p%s\n",
		              entry->name, entry->size, entry->allocated,
		              entry->size * entry->allocated, entry->used,
#ifdef CONFIG_HAP_POOLS
		              cached,
#endif
		              swrate_avg(entry->needed_avg, POOL_AVG_SAMPLES), entry->failed,
		              entry->users, entry,
		              (entry->flags & MEM_F_SHARED) ? " [SHARED]" : "");

		allocated += entry->allocated * entry->size;
		used += entry->used * entry->size;
		nbpools++;
	}
	chunk_appendf(&trash, "Total: %d pools, %lu bytes allocated, %lu used"
#ifdef CONFIG_HAP_POOLS
		      " (~%lu by thread caches)"
#endif
		      ".\n",
	              nbpools, allocated, used
#ifdef CONFIG_HAP_POOLS
	              , cached_bytes
#endif
		      );
}

/* Dump statistics on pools usage. */
void dump_pools(void)
{
	dump_pools_to_trash();
	qfprintf(stderr, "%s", trash.area);
}

/* This function returns the total number of failed pool allocations */
int pool_total_failures()
{
	struct pool_head *entry;
	int failed = 0;

	list_for_each_entry(entry, &pools, list)
		failed += entry->failed;
	return failed;
}

/* This function returns the total amount of memory allocated in pools (in bytes) */
unsigned long pool_total_allocated()
{
	struct pool_head *entry;
	unsigned long allocated = 0;

	list_for_each_entry(entry, &pools, list)
		allocated += entry->allocated * entry->size;
	return allocated;
}

/* This function returns the total amount of memory used in pools (in bytes) */
unsigned long pool_total_used()
{
	struct pool_head *entry;
	unsigned long used = 0;

	list_for_each_entry(entry, &pools, list)
		used += entry->used * entry->size;
	return used;
}

/* This function dumps memory usage information onto the stream interface's
 * read buffer. It returns 0 as long as it does not complete, non-zero upon
 * completion. No state is used.
 */
static int cli_io_handler_dump_pools(struct appctx *appctx)
{
	struct stream_interface *si = appctx->owner;

	dump_pools_to_trash();
	if (ci_putchk(si_ic(si), &trash) == -1) {
		si_rx_room_blk(si);
		return 0;
	}
	return 1;
}

/* callback used to create early pool <name> of size <size> and store the
 * resulting pointer into <ptr>. If the allocation fails, it quits with after
 * emitting an error message.
 */
void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size)
{
	*ptr = create_pool(name, size, MEM_F_SHARED);
	if (!*ptr) {
		ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n",
			 name, size, strerror(errno));
		exit(1);
	}
}

/* Initializes all per-thread arrays on startup */
static void init_pools()
{
#ifdef CONFIG_HAP_POOLS
	int thr;

	for (thr = 0; thr < MAX_THREADS; thr++) {
		LIST_INIT(&ha_thread_ctx[thr].pool_lru_head);
	}
#endif
	detect_allocator();
}

INITCALL0(STG_PREPARE, init_pools);

/* Report in build options if trim is supported */
static void pools_register_build_options(void)
{
	if (is_trim_enabled()) {
		char *ptr = NULL;
		memprintf(&ptr, "Support for malloc_trim() is enabled.");
		hap_register_build_opts(ptr, 1);
	}
}
INITCALL0(STG_REGISTER, pools_register_build_options);

/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
	{ { "show", "pools",  NULL }, "show pools                              : report information about the memory pools usage", NULL, cli_io_handler_dump_pools },
	{{},}
}};

INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);

#ifdef DEBUG_FAIL_ALLOC

int mem_should_fail(const struct pool_head *pool)
{
	int ret = 0;

	if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) {
		if (mem_fail_rate > statistical_prng_range(100))
			ret = 1;
		else
			ret = 0;
	}
	return ret;

}

/* config parser for global "tune.fail-alloc" */
static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx,
                                       const struct proxy *defpx, const char *file, int line,
                                       char **err)
{
	if (too_many_args(1, args, err, NULL))
		return -1;
	mem_fail_rate = atoi(args[1]);
	if (mem_fail_rate < 0 || mem_fail_rate > 100) {
	    memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]);
	    return -1;
	}
	return 0;
}
#endif

/* register global config keywords */
static struct cfg_kw_list mem_cfg_kws = {ILH, {
#ifdef DEBUG_FAIL_ALLOC
	{ CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc },
#endif
	{ 0, NULL, NULL }
}};

INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws);

/*
 * Local variables:
 *  c-indent-level: 8
 *  c-basic-offset: 8
 * End:
 */