summaryrefslogtreecommitdiff
path: root/gtk/gtkkineticscrolling.c
blob: 29bf08567406226a7a028ae31ac79bb7296eb516 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* GTK - The GIMP Toolkit
 * Copyright (C) 2014 Lieven van der Heide
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library. If not, see <http://www.gnu.org/licenses/>.
 */

#include "config.h"
#include "gtkkineticscrolling.h"

#include <stdio.h>

#include "fallback-c89.c"

/*
 * All our curves are second degree linear differential equations, and
 * so they can always be written as linear combinations of 2 base
 * solutions. c1 and c2 are the coefficients to these two base solutions,
 * and are computed from the initial position and velocity.
 *
 * In the case of simple deceleration, the differential equation is
 *
 *   y'' = -my'
 *
 * With m the resistence factor. For this we use the following 2
 * base solutions:
 *
 *   f1(x) = 1
 *   f2(x) = exp(-mx)
 *
 * In the case of overshoot, the differential equation is
 *
 *   y'' = -my' - ky
 *
 * With m the resistance, and k the spring stiffness constant. We let
 * k = m^2 / 4, so that the system is critically damped (ie, returns to its
 * equilibrium position as quickly as possible, without oscillating), and offset
 * the whole thing, such that the equilibrium position is at 0. This gives the
 * base solutions
 *
 *   f1(x) = exp(-mx / 2)
 *   f2(x) = t exp(-mx / 2)
*/

typedef enum {
  GTK_KINETIC_SCROLLING_PHASE_DECELERATING,
  GTK_KINETIC_SCROLLING_PHASE_OVERSHOOTING,
  GTK_KINETIC_SCROLLING_PHASE_FINISHED,
} GtkKineticScrollingPhase;

struct _GtkKineticScrolling
{
  GtkKineticScrollingPhase phase;
  gdouble lower;
  gdouble upper;
  gdouble overshoot_width;
  gdouble decel_friction;
  gdouble overshoot_friction;

  gdouble c1;
  gdouble c2;
  gdouble equilibrium_position;

  gdouble t;
  gdouble position;
  gdouble velocity;
};

static void gtk_kinetic_scrolling_init_overshoot (GtkKineticScrolling *data,
                                                  gdouble              equilibrium_position,
                                                  gdouble              initial_position,
                                                  gdouble              initial_velocity);

GtkKineticScrolling *
gtk_kinetic_scrolling_new (gdouble lower,
                           gdouble upper,
                           gdouble overshoot_width,
                           gdouble decel_friction,
                           gdouble overshoot_friction,
                           gdouble initial_position,
                           gdouble initial_velocity)
{
  GtkKineticScrolling *data;

  data = g_slice_new0 (GtkKineticScrolling);
  data->lower = lower;
  data->upper = upper;
  data->decel_friction = decel_friction;
  data->overshoot_friction = overshoot_friction;
  if(initial_position < lower)
    {
      gtk_kinetic_scrolling_init_overshoot (data,
                                            lower,
                                            initial_position,
                                            initial_velocity);
    }
  else if(initial_position > upper)
    {
      gtk_kinetic_scrolling_init_overshoot (data,
                                            upper,
                                            initial_position,
                                            initial_velocity);
    }
  else
    {
      data->phase = GTK_KINETIC_SCROLLING_PHASE_DECELERATING;
      data->c1 = initial_velocity / decel_friction + initial_position;
      data->c2 = -initial_velocity / decel_friction;
      data->t = 0;
      data->position = initial_position;
      data->velocity = initial_velocity;
    }

  return data;
}

void
gtk_kinetic_scrolling_free (GtkKineticScrolling *kinetic)
{
  g_slice_free (GtkKineticScrolling, kinetic);
}

static void
gtk_kinetic_scrolling_init_overshoot (GtkKineticScrolling *data,
                                      gdouble              equilibrium_position,
                                      gdouble              initial_position,
                                      gdouble              initial_velocity)
{
  data->phase = GTK_KINETIC_SCROLLING_PHASE_OVERSHOOTING;
  data->equilibrium_position = equilibrium_position;
  data->c1 = initial_position - equilibrium_position;
  data->c2 = initial_velocity + data->overshoot_friction / 2 * data->c1;
  data->t = 0;
}

gboolean
gtk_kinetic_scrolling_tick (GtkKineticScrolling *data,
                            gdouble              time_delta,
                            gdouble             *position)
{
  switch(data->phase)
    {
    case GTK_KINETIC_SCROLLING_PHASE_DECELERATING:
      {
        gdouble last_position = data->position;
        gdouble last_time = data->t;
        gdouble exp_part;

        data->t += time_delta;

        exp_part = exp (-data->decel_friction * data->t);
        data->position = data->c1 + data->c2 * exp_part;
        data->velocity = -data->decel_friction * data->c2 * exp_part;

        if(data->position < data->lower)
          {
            gtk_kinetic_scrolling_init_overshoot(data,data->lower,data->position,data->velocity);
          }
        else if (data->position > data->upper)
          {
            gtk_kinetic_scrolling_init_overshoot(data, data->upper, data->position, data->velocity);
          }
        else if (fabs(data->velocity) < 1 ||
                 (last_time != 0.0 && fabs(data->position - last_position) < 1))
          {
            data->phase = GTK_KINETIC_SCROLLING_PHASE_FINISHED;
            data->position = round(data->position);
            data->velocity = 0;
          }
        break;
      }

    case GTK_KINETIC_SCROLLING_PHASE_OVERSHOOTING:
      {
        gdouble exp_part, pos;

        data->t += time_delta;
        exp_part = exp(-data->overshoot_friction / 2 * data->t);
        pos = exp_part * (data->c1 + data->c2 * data->t);

        if (pos < data->lower - 50 || pos > data->upper + 50)
          {
            pos = CLAMP (pos, data->lower - 50, data->upper + 50);
            gtk_kinetic_scrolling_init_overshoot (data, data->equilibrium_position, pos, 0);
          }
        else
          data->velocity = data->c2 * exp_part - data->overshoot_friction / 2 * pos;

        data->position = pos + data->equilibrium_position;

        if(fabs (pos) < 0.1)
          {
            data->phase = GTK_KINETIC_SCROLLING_PHASE_FINISHED;
            data->position = data->equilibrium_position;
            data->velocity = 0;
          }
        break;
      }

    case GTK_KINETIC_SCROLLING_PHASE_FINISHED:
      break;
    }

  if (position)
    *position = data->position;

  return data->phase != GTK_KINETIC_SCROLLING_PHASE_FINISHED;
}