1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
/* GTK - The GIMP Toolkit
*
* Copyright (C) 2014 Red Hat
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Written by:
* Jasper St. Pierre <jstpierre@mecheye.net>
* Owen Taylor <otaylor@redhat.com>
*/
#include "gtkcairoblurprivate.h"
#include <math.h>
#include <string.h>
/*
* Gets the size for a single box blur.
*
* Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
* approximating a Gaussian using box blurs. This yields quite a good
* approximation for a Gaussian. For more details, see:
* http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
* https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
*/
#define GAUSSIAN_SCALE_FACTOR ((3.0 * sqrt(2 * G_PI) / 4))
#define get_box_filter_size(radius) ((int)(GAUSSIAN_SCALE_FACTOR * (radius)))
/* Sadly, clang is picky about get_box_filter_size(2) not being a
* constant expression, thus we have to use precomputed values.
*/
#define BOX_FILTER_SIZE_2 3
#define BOX_FILTER_SIZE_3 5
#define BOX_FILTER_SIZE_4 7
#define BOX_FILTER_SIZE_5 9
#define BOX_FILTER_SIZE_6 11
#define BOX_FILTER_SIZE_7 13
#define BOX_FILTER_SIZE_8 15
#define BOX_FILTER_SIZE_9 16
#define BOX_FILTER_SIZE_10 18
/* This applies a single box blur pass to a horizontal range of pixels;
* since the box blur has the same weight for all pixels, we can
* implement an efficient sliding window algorithm where we add
* in pixels coming into the window from the right and remove
* them when they leave the windw to the left.
*
* d is the filter width; for even d shift indicates how the blurred
* result is aligned with the original - does ' x ' go to ' yy' (shift=1)
* or 'yy ' (shift=-1)
*/
static void
blur_xspan (guchar *row,
guchar *tmp_buffer,
int row_width,
int d,
int shift)
{
int offset;
int sum = 0;
int i;
if (d % 2 == 1)
offset = d / 2;
else
offset = (d - shift) / 2;
/* All the conditionals in here look slow, but the branches will
* be well predicted and there are enough different possibilities
* that trying to write this as a series of unconditional loops
* is hard and not an obvious win. The main slow down here seems
* to be the integer division per pixel; one possible optimization
* would be to accumulate into two 16-bit integer buffers and
* only divide down after all three passes. (SSE parallel implementation
* of the divide step is possible.)
*/
#define BLUR_ROW_KERNEL(D) \
for (i = -(D) + offset; i < row_width + offset; i++) \
{ \
if (i >= 0 && i < row_width) \
sum += row[i]; \
\
if (i >= offset) \
{ \
if (i >= (D)) \
sum -= row[i - (D)]; \
\
tmp_buffer[i - offset] = (sum + (D) / 2) / (D); \
} \
} \
break;
/* We unroll the values for d for radius 2-10 to avoid a generic
* divide operation (not radius 1, because its a no-op) */
switch (d)
{
case BOX_FILTER_SIZE_2: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_2);
case BOX_FILTER_SIZE_3: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_3);
case BOX_FILTER_SIZE_4: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_4);
case BOX_FILTER_SIZE_5: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_5);
case BOX_FILTER_SIZE_6: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_6);
case BOX_FILTER_SIZE_7: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_7);
case BOX_FILTER_SIZE_8: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_8);
case BOX_FILTER_SIZE_9: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_9);
case BOX_FILTER_SIZE_10: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_10);
default: BLUR_ROW_KERNEL (d);
}
memcpy (row, tmp_buffer, row_width);
}
static void
blur_rows (guchar *dst_buffer,
guchar *tmp_buffer,
int buffer_width,
int buffer_height,
int d)
{
int i;
for (i = 0; i < buffer_height; i++)
{
guchar *row = dst_buffer + i * buffer_width;
/* We want to produce a symmetric blur that spreads a pixel
* equally far to the left and right. If d is odd that happens
* naturally, but for d even, we approximate by using a blur
* on either side and then a centered blur of size d + 1.
* (technique also from the SVG specification)
*/
if (d % 2 == 1)
{
blur_xspan (row, tmp_buffer, buffer_width, d, 0);
blur_xspan (row, tmp_buffer, buffer_width, d, 0);
blur_xspan (row, tmp_buffer, buffer_width, d, 0);
}
else
{
blur_xspan (row, tmp_buffer, buffer_width, d, 1);
blur_xspan (row, tmp_buffer, buffer_width, d, -1);
blur_xspan (row, tmp_buffer, buffer_width, d + 1, 0);
}
}
}
/* Swaps width and height.
*/
static void
flip_buffer (guchar *dst_buffer,
guchar *src_buffer,
int width,
int height)
{
/* Working in blocks increases cache efficiency, compared to reading
* or writing an entire column at once
*/
#define BLOCK_SIZE 16
int i0, j0;
for (i0 = 0; i0 < width; i0 += BLOCK_SIZE)
for (j0 = 0; j0 < height; j0 += BLOCK_SIZE)
{
int max_j = MIN(j0 + BLOCK_SIZE, height);
int max_i = MIN(i0 + BLOCK_SIZE, width);
int i, j;
for (i = i0; i < max_i; i++)
for (j = j0; j < max_j; j++)
dst_buffer[i * height + j] = src_buffer[j * width + i];
}
#undef BLOCK_SIZE
}
static void
_boxblur (guchar *buffer,
int width,
int height,
int radius,
GtkBlurFlags flags)
{
guchar *flipped_buffer;
int d = get_box_filter_size (radius);
flipped_buffer = g_malloc (width * height);
if (flags & GTK_BLUR_Y)
{
/* Step 1: swap rows and columns */
flip_buffer (flipped_buffer, buffer, width, height);
/* Step 2: blur rows (really columns) */
blur_rows (flipped_buffer, buffer, height, width, d);
/* Step 3: swap rows and columns */
flip_buffer (buffer, flipped_buffer, height, width);
}
if (flags & GTK_BLUR_X)
{
/* Step 4: blur rows */
blur_rows (buffer, flipped_buffer, width, height, d);
}
g_free (flipped_buffer);
}
/*
* _gtk_cairo_blur_surface:
* @surface: a cairo image surface.
* @radius: the blur radius.
*
* Blurs the cairo image surface at the given radius.
*/
void
_gtk_cairo_blur_surface (cairo_surface_t* surface,
double radius_d,
GtkBlurFlags flags)
{
int radius = radius_d;
g_return_if_fail (surface != NULL);
g_return_if_fail (cairo_surface_get_type (surface) == CAIRO_SURFACE_TYPE_IMAGE);
g_return_if_fail (cairo_image_surface_get_format (surface) == CAIRO_FORMAT_A8);
/* The code doesn't actually do any blurring for radius 1, as it
* ends up with box filter size 1 */
if (radius <= 1)
return;
if ((flags & (GTK_BLUR_X|GTK_BLUR_Y)) == 0)
return;
/* Before we mess with the surface, execute any pending drawing. */
cairo_surface_flush (surface);
_boxblur (cairo_image_surface_get_data (surface),
cairo_image_surface_get_stride (surface),
cairo_image_surface_get_height (surface),
radius, flags);
/* Inform cairo we altered the surface contents. */
cairo_surface_mark_dirty (surface);
}
/*
* _gtk_cairo_blur_compute_pixels:
* @radius: the radius to compute the pixels for
*
* Computes the number of pixels necessary to extend an image in one
* direction to hold the image with shadow.
*
* This is just the number of pixels added by the blur radius, shadow
* offset and spread are not included.
*
* Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
* approximating a Gaussian using box blurs. This yields quite a good
* approximation for a Gaussian. Then we multiply this by 1.5 since our
* code wants the radius of the entire triple-box-blur kernel instead of
* the diameter of an individual box blur. For more details, see:
* http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
* https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
*/
int
_gtk_cairo_blur_compute_pixels (double radius)
{
return floor (radius * GAUSSIAN_SCALE_FACTOR * 1.5 + 0.5);
}
|