1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
|
/*
* Copyright © 2003 Davide Libenzi
* 2018 Benjamin Otte
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Authors: Davide Libenzi <davidel@xmailserver.org>
* Benjamin Otte <otte@gnome.org>
*/
#include "config.h"
#include "gskdiffprivate.h"
#define XDL_MAX_COST_MIN 256
#define XDL_HEUR_MIN_COST 256
#define XDL_LINE_MAX G_MAXSSIZE
#define XDL_SNAKE_CNT 20
#define XDL_K_HEUR 4
#define MAXCOST 20
struct _GskDiffSettings {
GCompareDataFunc compare_func;
GskKeepFunc keep_func;
GskDeleteFunc delete_func;
GskInsertFunc insert_func;
guint allow_abort : 1;
};
typedef struct _SplitResult {
long i1, i2;
int min_lo, min_hi;
} SplitResult;
GskDiffSettings *
gsk_diff_settings_new (GCompareDataFunc compare_func,
GskKeepFunc keep_func,
GskDeleteFunc delete_func,
GskInsertFunc insert_func)
{
GskDiffSettings *settings;
settings = g_slice_new0 (GskDiffSettings);
settings->compare_func = compare_func;
settings->keep_func = keep_func;
settings->delete_func = delete_func;
settings->insert_func = insert_func;
return settings;
}
void
gsk_diff_settings_set_allow_abort (GskDiffSettings *settings,
gboolean allow_abort)
{
settings->allow_abort = allow_abort;
}
void
gsk_diff_settings_free (GskDiffSettings *settings)
{
g_slice_free (GskDiffSettings, settings);
}
/*
* See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
* Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
* the forward diagonal starting from (off1, off2) and the backward diagonal
* starting from (lim1, lim2). If the K values on the same diagonal crosses
* returns the furthest point of reach. We might end up having to expensive
* cases using this algorithm is full, so a little bit of heuristic is needed
* to cut the search and to return a suboptimal point.
*/
static GskDiffResult
split (gconstpointer *elem1,
gssize off1,
gssize lim1,
gconstpointer *elem2,
gssize off2,
gssize lim2,
gssize *kvdf,
gssize *kvdb,
gboolean need_min,
const GskDiffSettings *settings,
gpointer data,
SplitResult *spl)
{
gssize dmin = off1 - lim2, dmax = lim1 - off2;
gssize fmid = off1 - off2, bmid = lim1 - lim2;
gboolean odd = (fmid - bmid) & 1;
gssize fmin = fmid, fmax = fmid;
gssize bmin = bmid, bmax = bmid;
gssize ec, d, i1, i2, prev1, best, dd, v, k;
/*
* Set initial diagonal values for both forward and backward path.
*/
kvdf[fmid] = off1;
kvdb[bmid] = lim1;
for (ec = 1;; ec++)
{
gboolean got_snake = FALSE;
/*
* We need to extent the diagonal "domain" by one. If the next
* values exits the box boundaries we need to change it in the
* opposite direction because (max - min) must be a power of two.
* Also we initialize the external K value to -1 so that we can
* avoid extra conditions check inside the core loop.
*/
if (fmin > dmin)
kvdf[--fmin - 1] = -1;
else
++fmin;
if (fmax < dmax)
kvdf[++fmax + 1] = -1;
else
--fmax;
for (d = fmax; d >= fmin; d -= 2)
{
if (kvdf[d - 1] >= kvdf[d + 1])
i1 = kvdf[d - 1] + 1;
else
i1 = kvdf[d + 1];
prev1 = i1;
i2 = i1 - d;
for (; i1 < lim1 && i2 < lim2; i1++, i2++)
{
if (settings->compare_func (elem1[i1], elem2[i2], data) != 0)
break;
}
if (i1 - prev1 > XDL_SNAKE_CNT)
got_snake = TRUE;
kvdf[d] = i1;
if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1)
{
spl->i1 = i1;
spl->i2 = i2;
spl->min_lo = spl->min_hi = 1;
return GSK_DIFF_OK;
}
}
/*
* We need to extent the diagonal "domain" by one. If the next
* values exits the box boundaries we need to change it in the
* opposite direction because (max - min) must be a power of two.
* Also we initialize the external K value to -1 so that we can
* avoid extra conditions check inside the core loop.
*/
if (bmin > dmin)
kvdb[--bmin - 1] = XDL_LINE_MAX;
else
++bmin;
if (bmax < dmax)
kvdb[++bmax + 1] = XDL_LINE_MAX;
else
--bmax;
for (d = bmax; d >= bmin; d -= 2)
{
if (kvdb[d - 1] < kvdb[d + 1])
i1 = kvdb[d - 1];
else
i1 = kvdb[d + 1] - 1;
prev1 = i1;
i2 = i1 - d;
for (; i1 > off1 && i2 > off2; i1--, i2--)
{
if (settings->compare_func (elem1[i1 - 1], elem2[i2 - 1], data) != 0)
break;
}
if (prev1 - i1 > XDL_SNAKE_CNT)
got_snake = TRUE;
kvdb[d] = i1;
if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d])
{
spl->i1 = i1;
spl->i2 = i2;
spl->min_lo = spl->min_hi = 1;
return GSK_DIFF_OK;
}
}
if (need_min)
continue;
/*
* If the edit cost is above the heuristic trigger and if
* we got a good snake, we sample current diagonals to see
* if some of them have reached an "interesting" path. Our
* measure is a function of the distance from the diagonal
* corner (i1 + i2) penalized with the distance from the
* mid diagonal itself. If this value is above the current
* edit cost times a magic factor (XDL_K_HEUR) we consider
* it interesting.
*/
if (got_snake && ec > XDL_HEUR_MIN_COST)
{
for (best = 0, d = fmax; d >= fmin; d -= 2)
{
dd = d > fmid ? d - fmid: fmid - d;
i1 = kvdf[d];
i2 = i1 - d;
v = (i1 - off1) + (i2 - off2) - dd;
if (v > XDL_K_HEUR * ec && v > best &&
off1 + XDL_SNAKE_CNT <= i1 && i1 < lim1 &&
off2 + XDL_SNAKE_CNT <= i2 && i2 < lim2)
{
for (k = 1; ; k++)
{
if (settings->compare_func (elem1[i1 - k], elem2[i2 - k], data) != 0)
break;
if (k == XDL_SNAKE_CNT)
{
best = v;
spl->i1 = i1;
spl->i2 = i2;
break;
}
}
}
}
if (best > 0)
{
spl->min_lo = 1;
spl->min_hi = 0;
return GSK_DIFF_OK;
}
for (best = 0, d = bmax; d >= bmin; d -= 2)
{
dd = d > bmid ? d - bmid: bmid - d;
i1 = kvdb[d];
i2 = i1 - d;
v = (lim1 - i1) + (lim2 - i2) - dd;
if (v > XDL_K_HEUR * ec && v > best &&
off1 < i1 && i1 <= lim1 - XDL_SNAKE_CNT &&
off2 < i2 && i2 <= lim2 - XDL_SNAKE_CNT)
{
for (k = 0; ; k++)
{
if (settings->compare_func (elem1[i1 + k], elem2[i2 + k], data) != 0)
break;
if (k == XDL_SNAKE_CNT - 1)
{
best = v;
spl->i1 = i1;
spl->i2 = i2;
break;
}
}
}
}
if (best > 0)
{
spl->min_lo = 0;
spl->min_hi = 1;
return GSK_DIFF_OK;
}
}
/*
* Enough is enough. We spent too much time here and now we collect
* the furthest reaching path using the (i1 + i2) measure.
*/
if (ec >= MAXCOST)
{
gssize fbest, fbest1, bbest, bbest1;
if (settings->allow_abort)
return GSK_DIFF_ABORTED;
fbest = fbest1 = -1;
for (d = fmax; d >= fmin; d -= 2)
{
i1 = MIN (kvdf[d], lim1);
i2 = i1 - d;
if (lim2 < i2)
i1 = lim2 + d, i2 = lim2;
if (fbest < i1 + i2)
{
fbest = i1 + i2;
fbest1 = i1;
}
}
bbest = bbest1 = XDL_LINE_MAX;
for (d = bmax; d >= bmin; d -= 2)
{
i1 = MAX (off1, kvdb[d]);
i2 = i1 - d;
if (i2 < off2)
i1 = off2 + d, i2 = off2;
if (i1 + i2 < bbest)
{
bbest = i1 + i2;
bbest1 = i1;
}
}
if ((lim1 + lim2) - bbest < fbest - (off1 + off2))
{
spl->i1 = fbest1;
spl->i2 = fbest - fbest1;
spl->min_lo = 1;
spl->min_hi = 0;
}
else
{
spl->i1 = bbest1;
spl->i2 = bbest - bbest1;
spl->min_lo = 0;
spl->min_hi = 1;
}
return GSK_DIFF_OK;
}
}
}
/*
* Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling
* the box splitting function. Note that the real job (marking changed lines)
* is done in the two boundary reaching checks.
*/
static GskDiffResult
compare (gconstpointer *elem1,
gssize off1,
gssize lim1,
gconstpointer *elem2,
gssize off2,
gssize lim2,
gssize *kvdf,
gssize *kvdb,
gboolean need_min,
const GskDiffSettings *settings,
gpointer data)
{
/*
* Shrink the box by walking through each diagonal snake (SW and NE).
*/
for (; off1 < lim1 && off2 < lim2; off1++, off2++)
{
if (settings->compare_func (elem1[off1], elem2[off2], data) != 0)
break;
settings->keep_func (elem1[off1], elem2[off2], data);
}
for (; off1 < lim1 && off2 < lim2; lim1--, lim2--)
{
if (settings->compare_func (elem1[lim1 - 1], elem2[lim2 - 1], data) != 0)
break;
settings-> keep_func (elem1[lim1 - 1], elem2[lim2 - 1], data);
}
/*
* If one dimension is empty, then all records on the other one must
* be obviously changed.
*/
if (off1 == lim1)
{
for (; off2 < lim2; off2++)
{
settings->insert_func (elem2[off2], off2, data);
}
}
else if (off2 == lim2)
{
for (; off1 < lim1; off1++)
{
settings->delete_func (elem1[off1], off1, data);
}
}
else
{
SplitResult spl = { 0, };
GskDiffResult res;
/*
* Divide ...
*/
res = split (elem1, off1, lim1,
elem2, off2, lim2,
kvdf, kvdb, need_min,
settings, data,
&spl);
if (res != GSK_DIFF_OK)
return res;
/*
* ... et Impera.
*/
res = compare (elem1, off1, spl.i1,
elem2, off2, spl.i2,
kvdf, kvdb, spl.min_lo,
settings, data);
if (res != GSK_DIFF_OK)
return res;
res = compare (elem1, spl.i1, lim1,
elem2, spl.i2, lim2,
kvdf, kvdb, spl.min_hi,
settings, data);
if (res != GSK_DIFF_OK)
return res;
}
return GSK_DIFF_OK;
}
#if 0
ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3;
if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) {
xdl_free_env(xe);
return -1;
}
kvdf = kvd;
kvdb = kvdf + ndiags;
kvdf += xe->xdf2.nreff + 1;
kvdb += xe->xdf2.nreff + 1;
xenv.mxcost = xdl_bogosqrt(ndiags);
if (xenv.mxcost < XDL_MAX_COST_MIN)
xenv.mxcost = XDL_MAX_COST_MIN;
xenv.snake_cnt = XDL_SNAKE_CNT;
xenv.heur_min = XDL_HEUR_MIN_COST;
dd1.nrec = xe->xdf1.nreff;
dd1.ha = xe->xdf1.ha;
dd1.rchg = xe->xdf1.rchg;
dd1.rindex = xe->xdf1.rindex;
dd2.nrec = xe->xdf2.nreff;
dd2.ha = xe->xdf2.ha;
dd2.rchg = xe->xdf2.rchg;
dd2.rindex = xe->xdf2.rindex;
#endif
GskDiffResult
gsk_diff (gconstpointer *elem1,
gsize n1,
gconstpointer *elem2,
gsize n2,
const GskDiffSettings *settings,
gpointer data)
{
gsize ndiags;
gssize *kvd, *kvdf, *kvdb;
GskDiffResult res;
ndiags = n1 + n2 + 3;
kvd = g_new (gssize, 2 * ndiags + 2);
kvdf = kvd;
kvdb = kvd + ndiags;
kvdf += n2 + 1;
kvdb += n2 + 1;
res = compare (elem1, 0, n1,
elem2, 0, n2,
kvdf, kvdb, FALSE,
settings, data);
g_free (kvd);
return res;
}
|