summaryrefslogtreecommitdiff
path: root/gdk-pixbuf/pixops/pixbuf-transform-math.ltx
diff options
context:
space:
mode:
Diffstat (limited to 'gdk-pixbuf/pixops/pixbuf-transform-math.ltx')
-rw-r--r--gdk-pixbuf/pixops/pixbuf-transform-math.ltx112
1 files changed, 112 insertions, 0 deletions
diff --git a/gdk-pixbuf/pixops/pixbuf-transform-math.ltx b/gdk-pixbuf/pixops/pixbuf-transform-math.ltx
new file mode 100644
index 0000000000..19e231308d
--- /dev/null
+++ b/gdk-pixbuf/pixops/pixbuf-transform-math.ltx
@@ -0,0 +1,112 @@
+\documentclass{article}
+
+\begin{document}
+
+\title{Some image transform math}
+\author{Owen Taylor}
+\date{18 February 2003}
+\maketitle
+
+\section{Basics}
+
+The transform process is composed of three steps;
+first we reconstruct a continuous image from the
+source data \(A_{i,j}\):
+\[a(u,v) = \sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j}F\left( {u - i \atop v - j} \right) \]
+Then we transform from destination coordinates to source coordinates:
+\[b(x,y) = a\left(u(x,y) \atop v(x,y)\right)
+ = a\left(t_{00}x + t_{01}y + t_{02} \atop t_{10}x + t_{11}y + t_{12} \right)\]
+Finally, we resample using a sampling function \(G\):
+\[B_{x_0,y_0} = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} b(x,y)G\left( {x - x_0 \atop y - y_0} \right) dxdy\]
+Putting all of these together:
+\[B_{x_0,y_0} =
+\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}
+\sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j}
+F\left( {u(x,y) - i \atop v(x,y) - j} \right)
+G\left( {x - x_0 \atop y - y_0} \right) dxdy\]
+We can reverse the order of the integrals and the sums:
+\[B_{x_0,y_0} =
+\sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j}
+\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}
+F\left( {u(x,y) - i \atop v(x,y) - j} \right)
+G\left( {x - x_0 \atop y - y_0} \right) dxdy\]
+Which shows that the destination pixel values are a linear combination of the
+source pixel values. But the coefficents depend on \(x_0\) and \(y_0\).
+To simplify this a bit, define:
+\[i_0 = \lfloor u(x_0,y_0) \rfloor = \lfloor {t_{00}x_0 + t_{01}y_0 + t_{02}} \rfloor \]
+\[j_0 = \lfloor v(x_0,y_0) \rfloor = \lfloor {t_{10}x_0 + t_{11}y_0 + t_{12}} \rfloor \]
+\[\Delta_u = u(x_0,y_0) - i_0 = t_{00}x_0 + t_{01}y_0 + t_{02} - \lfloor {t_{00}x_0 + t_{01}y_0 + t_{02}} \rfloor \]
+\[\Delta_v = v(x_0,y_0) - j_0 = t_{10}x_0 + t_{11}y_0 + t_{12} - \lfloor {t_{10}x_0 + t_{11}y_0 + t_{12}} \rfloor \]
+Then making the transforms \(x' = x - x_0\), \(y' = y - x_0\), \(i' = i - i_0\), \(j' = j - x_0\)
+\begin{eqnarray*}
+F(u,v) & = & F\left( {t_{00}x + t_{01}y + t_{02} - i \atop t_{10}x + t_{11}y + t_{12} - j} \right)\\
+ & = & F\left( {t_{00}(x'+x_0) + t_{01}(y'+y_0) + t_{02} - (i'+i_0) \atop
+ t_{10}(x'+x_0) + t_{11}(y'+y_0) + t_{12} - (j'+j_0)} \right) \\
+ & = & F\left( {\Delta_u + t_{00}x' + t_{01}y' - i' \atop
+ \Delta_v + t_{10}x' + t_{11}y' - j'} \right)
+\end{eqnarray*}
+Using that, we can then reparameterize the sums and integrals and
+define coefficients that depend only on \((\Delta_u,\Delta_v)\),
+which we'll call the \emph{phase} at the point \((x_0,y_0)\):
+\[
+B_{x_0,y_0} =
+\sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i_0+i,j_0+j} C_{i,j}(\Delta_u,\Delta_v)
+\]
+\[
+C_{i,j}(\Delta_u,\Delta_v) =
+\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}
+F\left( {\Delta_u + t_{00}x + t_{01}y - i \atop
+ \Delta_v + t_{10}x + t_{11}y - j} \right)
+G\left( {x \atop y} \right) dxdy
+\]
+\section{Separability}
+A frequent special case is when the reconstruction and sampling functions
+are of the form:
+\[F(u,v) = f(u)f(v)\]
+\[G(x,y) = g(x)g(y)\]
+If we also have a transform that is purely a scale and translation;
+(\(t_{10} = 0\), \(t_{01} = 0\)), then we can separate
+\(C_{i,j}(\Delta_u,\Delta_v)\) into the product of a \(x\) portion
+and a \(y\) portion:
+\[C_{i,j}(\Delta_u,\Delta_v) = c_{i}(\Delta_u) c_{j}(\Delta_v)\]
+\[c_{i}(\Delta_u) = \int_{-\infty}^{\infty} f(\Delta_u + t_{00}x - i)g(x)dx\]
+\[c_{j}(\Delta_v) = \int_{-\infty}^{\infty} f(\Delta_v + t_{11}y - j)g(y)dy\]
+
+\section{Some filters}
+gdk-pixbuf provides 4 standard filters for scaling, under the names ``NEAREST'',
+``TILES'', ``BILINEAR'', and ``HYPER''. All of turn out to be separable
+as discussed in the previous section.
+For ``NEAREST'' filter, the reconstruction function is simple replication
+and the sampling function is a delta function\footnote{A delta function is an infinitely narrow spike, such that:
+\[\int_{-\infty}^{\infty}\delta(x)f(x) = f(0)\]}:
+\[f(t) = \cases{1, & if \(0 \le t \le 1\); \cr
+ 0, & otherwise}\]
+\[g(t) = \delta(t - 0.5)\]
+For ``TILES'', the reconstruction function is again replication, but we
+replace the delta-function for sampling with a box filter:
+\[f(t) = \cases{1, & if \(0 \le t \le 1\); \cr
+ 0, & otherwise}\]
+\[g(t) = \cases{1, & if \(0 \le t \le 1\); \cr
+ 0, & otherwise}\]
+The ``HYPER'' filter (in practice, it was originally intended to be
+something else) uses bilinear interpolation for reconstruction and
+a box filter for sampling:
+\[f(t) = \cases{1 - |t - 0.5|, & if \(-0.5 \le t \le 1.5\); \cr
+ 0, & otherwise}\]
+\[g(t) = \cases{1, & if \(0 \le t \le 1\); \cr
+ 0, & otherwise}\]
+The ``BILINEAR'' filter is defined in a somewhat more complicated way;
+the definition depends on the scale factor in the transform (\(t_{00}\)
+or \(t_{01}]\). In the \(x\) direction, for \(t_{00} < 1\), it is
+the same as for ``TILES'':
+\[f_u(t) = \cases{1, & if \(0 \le t \le 1\); \cr
+ 0, & otherwise}\]
+\[g_u(t) = \cases{1, & if \(0 \le t \le 1\); \cr
+ 0, & otherwise}\]
+but for \(t_{10} > 1\), we use bilinear reconstruction and delta-function
+sampling:
+\[f_u(t) = \cases{1 - |t - 0.5|, & if \(-0.5 \le t \le 1.5\); \cr
+ 0, & otherwise}\]
+\[g_u(t) = \delta(t - 0.5)\]
+The behavior in the \(y\) direction depends in the same way on \(t_{11}\).
+\end{document} \ No newline at end of file