summaryrefslogtreecommitdiff
path: root/src/thread_cache.cc
blob: 027c38ae7592e58f6abd43063a9118073e5b06f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright (c) 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// ---
// Author: Ken Ashcraft <opensource@google.com>

#include <config.h>
#include "thread_cache.h"
#include <errno.h>
#include <string.h>                     // for memcpy
#include <algorithm>                    // for max, min
#include "base/commandlineflags.h"      // for SpinLockHolder
#include "base/spinlock.h"              // for SpinLockHolder
#include "getenv_safe.h"                // for TCMallocGetenvSafe
#include "central_freelist.h"           // for CentralFreeListPadded
#include "maybe_threads.h"

using std::min;
using std::max;

// Note: this is initialized manually in InitModule to ensure that
// it's configured at right time
//
// DEFINE_int64(tcmalloc_max_total_thread_cache_bytes,
//              EnvToInt64("TCMALLOC_MAX_TOTAL_THREAD_CACHE_BYTES",
//                         kDefaultOverallThreadCacheSize),
//              "Bound on the total amount of bytes allocated to "
//              "thread caches. This bound is not strict, so it is possible "
//              "for the cache to go over this bound in certain circumstances. "
//              "Maximum value of this flag is capped to 1 GB.");


namespace tcmalloc {

static bool phinited = false;

volatile size_t ThreadCache::per_thread_cache_size_ = kMaxThreadCacheSize;
size_t ThreadCache::overall_thread_cache_size_ = kDefaultOverallThreadCacheSize;
ssize_t ThreadCache::unclaimed_cache_space_ = kDefaultOverallThreadCacheSize;
PageHeapAllocator<ThreadCache> threadcache_allocator;
ThreadCache* ThreadCache::thread_heaps_ = NULL;
int ThreadCache::thread_heap_count_ = 0;
ThreadCache* ThreadCache::next_memory_steal_ = NULL;
#ifdef HAVE_TLS
__thread ThreadCache::ThreadLocalData ThreadCache::threadlocal_data_
    ATTR_INITIAL_EXEC CACHELINE_ALIGNED;
#endif
bool ThreadCache::tsd_inited_ = false;
pthread_key_t ThreadCache::heap_key_;

void ThreadCache::Init(pthread_t tid) {
  size_ = 0;

  max_size_ = 0;
  IncreaseCacheLimitLocked();
  if (max_size_ == 0) {
    // There isn't enough memory to go around.  Just give the minimum to
    // this thread.
    SetMaxSize(kMinThreadCacheSize);

    // Take unclaimed_cache_space_ negative.
    unclaimed_cache_space_ -= kMinThreadCacheSize;
    ASSERT(unclaimed_cache_space_ < 0);
  }

  next_ = NULL;
  prev_ = NULL;
  tid_  = tid;
  in_setspecific_ = false;
  for (uint32 cl = 0; cl < Static::num_size_classes(); ++cl) {
    list_[cl].Init(Static::sizemap()->class_to_size(cl));
  }

  uint32_t sampler_seed;
  memcpy(&sampler_seed, &tid, sizeof(sampler_seed));
  sampler_.Init(sampler_seed);
}

void ThreadCache::Cleanup() {
  // Put unused memory back into central cache
  for (uint32 cl = 0; cl < Static::num_size_classes(); ++cl) {
    if (list_[cl].length() > 0) {
      ReleaseToCentralCache(&list_[cl], cl, list_[cl].length());
    }
  }
}

// Remove some objects of class "cl" from central cache and add to thread heap.
// On success, return the first object for immediate use; otherwise return NULL.
void* ThreadCache::FetchFromCentralCache(uint32 cl, int32_t byte_size) {
  FreeList* list = &list_[cl];
  ASSERT(list->empty());
  const int batch_size = Static::sizemap()->num_objects_to_move(cl);

  const int num_to_move = min<int>(list->max_length(), batch_size);
  void *start, *end;
  int fetch_count = Static::central_cache()[cl].RemoveRange(
      &start, &end, num_to_move);

  ASSERT((start == NULL) == (fetch_count == 0));
  if (--fetch_count >= 0) {
    size_ += byte_size * fetch_count;
    list->PushRange(fetch_count, SLL_Next(start), end);
  }

  // Increase max length slowly up to batch_size.  After that,
  // increase by batch_size in one shot so that the length is a
  // multiple of batch_size.
  if (list->max_length() < batch_size) {
    list->set_max_length(list->max_length() + 1);
  } else {
    // Don't let the list get too long.  In 32 bit builds, the length
    // is represented by a 16 bit int, so we need to watch out for
    // integer overflow.
    int new_length = min<int>(list->max_length() + batch_size,
                              kMaxDynamicFreeListLength);
    // The list's max_length must always be a multiple of batch_size,
    // and kMaxDynamicFreeListLength is not necessarily a multiple
    // of batch_size.
    new_length -= new_length % batch_size;
    ASSERT(new_length % batch_size == 0);
    list->set_max_length(new_length);
  }
  return start;
}

void ThreadCache::ListTooLong(FreeList* list, uint32 cl) {
  size_ += list->object_size();

  const int batch_size = Static::sizemap()->num_objects_to_move(cl);
  ReleaseToCentralCache(list, cl, batch_size);

  // If the list is too long, we need to transfer some number of
  // objects to the central cache.  Ideally, we would transfer
  // num_objects_to_move, so the code below tries to make max_length
  // converge on num_objects_to_move.

  if (list->max_length() < batch_size) {
    // Slow start the max_length so we don't overreserve.
    list->set_max_length(list->max_length() + 1);
  } else if (list->max_length() > batch_size) {
    // If we consistently go over max_length, shrink max_length.  If we don't
    // shrink it, some amount of memory will always stay in this freelist.
    list->set_length_overages(list->length_overages() + 1);
    if (list->length_overages() > kMaxOverages) {
      ASSERT(list->max_length() > batch_size);
      list->set_max_length(list->max_length() - batch_size);
      list->set_length_overages(0);
    }
  }

  if (PREDICT_FALSE(size_ > max_size_)) {
    Scavenge();
  }
}

// Remove some objects of class "cl" from thread heap and add to central cache
void ThreadCache::ReleaseToCentralCache(FreeList* src, uint32 cl, int N) {
  ASSERT(src == &list_[cl]);
  if (N > src->length()) N = src->length();
  size_t delta_bytes = N * Static::sizemap()->ByteSizeForClass(cl);

  // We return prepackaged chains of the correct size to the central cache.
  // TODO: Use the same format internally in the thread caches?
  int batch_size = Static::sizemap()->num_objects_to_move(cl);
  while (N > batch_size) {
    void *tail, *head;
    src->PopRange(batch_size, &head, &tail);
    Static::central_cache()[cl].InsertRange(head, tail, batch_size);
    N -= batch_size;
  }
  void *tail, *head;
  src->PopRange(N, &head, &tail);
  Static::central_cache()[cl].InsertRange(head, tail, N);
  size_ -= delta_bytes;
}

// Release idle memory to the central cache
void ThreadCache::Scavenge() {
  // If the low-water mark for the free list is L, it means we would
  // not have had to allocate anything from the central cache even if
  // we had reduced the free list size by L.  We aim to get closer to
  // that situation by dropping L/2 nodes from the free list.  This
  // may not release much memory, but if so we will call scavenge again
  // pretty soon and the low-water marks will be high on that call.
  for (int cl = 0; cl < Static::num_size_classes(); cl++) {
    FreeList* list = &list_[cl];
    const int lowmark = list->lowwatermark();
    if (lowmark > 0) {
      const int drop = (lowmark > 1) ? lowmark/2 : 1;
      ReleaseToCentralCache(list, cl, drop);

      // Shrink the max length if it isn't used.  Only shrink down to
      // batch_size -- if the thread was active enough to get the max_length
      // above batch_size, it will likely be that active again.  If
      // max_length shinks below batch_size, the thread will have to
      // go through the slow-start behavior again.  The slow-start is useful
      // mainly for threads that stay relatively idle for their entire
      // lifetime.
      const int batch_size = Static::sizemap()->num_objects_to_move(cl);
      if (list->max_length() > batch_size) {
        list->set_max_length(
            max<int>(list->max_length() - batch_size, batch_size));
      }
    }
    list->clear_lowwatermark();
  }

  IncreaseCacheLimit();
}

void ThreadCache::IncreaseCacheLimit() {
  SpinLockHolder h(Static::pageheap_lock());
  IncreaseCacheLimitLocked();
}

void ThreadCache::IncreaseCacheLimitLocked() {
  if (unclaimed_cache_space_ > 0) {
    // Possibly make unclaimed_cache_space_ negative.
    unclaimed_cache_space_ -= kStealAmount;
    SetMaxSize(max_size_ + kStealAmount);
    return;
  }
  // Don't hold pageheap_lock too long.  Try to steal from 10 other
  // threads before giving up.  The i < 10 condition also prevents an
  // infinite loop in case none of the existing thread heaps are
  // suitable places to steal from.
  for (int i = 0; i < 10;
       ++i, next_memory_steal_ = next_memory_steal_->next_) {
    // Reached the end of the linked list.  Start at the beginning.
    if (next_memory_steal_ == NULL) {
      ASSERT(thread_heaps_ != NULL);
      next_memory_steal_ = thread_heaps_;
    }
    if (next_memory_steal_ == this ||
        next_memory_steal_->max_size_ <= kMinThreadCacheSize) {
      continue;
    }
    next_memory_steal_->SetMaxSize(next_memory_steal_->max_size_ - kStealAmount);
    SetMaxSize(max_size_ + kStealAmount);

    next_memory_steal_ = next_memory_steal_->next_;
    return;
  }
}

int ThreadCache::GetSamplePeriod() {
  return sampler_.GetSamplePeriod();
}

void ThreadCache::InitModule() {
  {
    SpinLockHolder h(Static::pageheap_lock());
    if (phinited) {
      return;
    }
    const char *tcb = TCMallocGetenvSafe("TCMALLOC_MAX_TOTAL_THREAD_CACHE_BYTES");
    if (tcb) {
      set_overall_thread_cache_size(strtoll(tcb, NULL, 10));
    }
    Static::InitStaticVars();
    threadcache_allocator.Init();
    phinited = 1;
  }

  // We do "late" part of initialization without holding lock since
  // there is chance it'll recurse into malloc
  Static::InitLateMaybeRecursive();
}

void ThreadCache::InitTSD() {
  ASSERT(!tsd_inited_);
  perftools_pthread_key_create(&heap_key_, DestroyThreadCache);
  tsd_inited_ = true;

#ifdef PTHREADS_CRASHES_IF_RUN_TOO_EARLY
  // We may have used a fake pthread_t for the main thread.  Fix it.
  pthread_t zero;
  memset(&zero, 0, sizeof(zero));
  SpinLockHolder h(Static::pageheap_lock());
  for (ThreadCache* h = thread_heaps_; h != NULL; h = h->next_) {
    if (h->tid_ == zero) {
      h->tid_ = pthread_self();
    }
  }
#endif
}

ThreadCache* ThreadCache::CreateCacheIfNecessary() {
  if (!tsd_inited_) {
#ifndef NDEBUG
    // tests that freeing nullptr very early is working
    free(NULL);
#endif

    InitModule();
  }

  // Initialize per-thread data if necessary
  ThreadCache* heap = NULL;

  bool seach_condition = true;
#ifdef HAVE_TLS
  static __thread ThreadCache** current_heap_ptr;
  if (tsd_inited_) {
    // In most common case we're avoiding expensive linear search
    // through all heaps (see below). Working TLS enables faster
    // protection from malloc recursion in pthread_setspecific
    seach_condition = false;

    if (current_heap_ptr != NULL) {
      // we're being recursively called by pthread_setspecific below.
      return *current_heap_ptr;
    }
    current_heap_ptr = &heap;
  }
#endif

  {
    SpinLockHolder h(Static::pageheap_lock());
    // On some old glibc's, and on freebsd's libc (as of freebsd 8.1),
    // calling pthread routines (even pthread_self) too early could
    // cause a segfault.  Since we can call pthreads quite early, we
    // have to protect against that in such situations by making a
    // 'fake' pthread.  This is not ideal since it doesn't work well
    // when linking tcmalloc statically with apps that create threads
    // before main, so we only do it if we have to.
#ifdef PTHREADS_CRASHES_IF_RUN_TOO_EARLY
    pthread_t me;
    if (!tsd_inited_) {
      memset(&me, 0, sizeof(me));
    } else {
      me = pthread_self();
    }
#else
    const pthread_t me = pthread_self();
#endif

    // This may be a recursive malloc call from pthread_setspecific()
    // In that case, the heap for this thread has already been created
    // and added to the linked list.  So we search for that first.
    if (seach_condition) {
      for (ThreadCache* h = thread_heaps_; h != NULL; h = h->next_) {
        if (h->tid_ == me) {
          heap = h;
          break;
        }
      }
    }

    if (heap == NULL) heap = NewHeap(me);
  }

  // We call pthread_setspecific() outside the lock because it may
  // call malloc() recursively.  We check for the recursive call using
  // the "in_setspecific_" flag so that we can avoid calling
  // pthread_setspecific() if we are already inside pthread_setspecific().
  if (!heap->in_setspecific_ && tsd_inited_) {
    heap->in_setspecific_ = true;
    perftools_pthread_setspecific(heap_key_, heap);
#ifdef HAVE_TLS
    // Also keep a copy in __thread for faster retrieval
    threadlocal_data_.heap = heap;
    threadlocal_data_.fast_path_heap = heap;
#endif
    heap->in_setspecific_ = false;
  }
#ifdef HAVE_TLS
  current_heap_ptr = NULL;
#endif
  return heap;
}

ThreadCache* ThreadCache::NewHeap(pthread_t tid) {
  // Create the heap and add it to the linked list
  ThreadCache *heap = threadcache_allocator.New();
  heap->Init(tid);
  heap->next_ = thread_heaps_;
  heap->prev_ = NULL;
  if (thread_heaps_ != NULL) {
    thread_heaps_->prev_ = heap;
  } else {
    // This is the only thread heap at the momment.
    ASSERT(next_memory_steal_ == NULL);
    next_memory_steal_ = heap;
  }
  thread_heaps_ = heap;
  thread_heap_count_++;
  return heap;
}

void ThreadCache::BecomeIdle() {
  if (!tsd_inited_) return;              // No caches yet
  ThreadCache* heap = GetThreadHeap();
  if (heap == NULL) return;             // No thread cache to remove
  if (heap->in_setspecific_) return;    // Do not disturb the active caller

  heap->in_setspecific_ = true;
  perftools_pthread_setspecific(heap_key_, NULL);
#ifdef HAVE_TLS
  // Also update the copy in __thread
  threadlocal_data_.heap = NULL;
  threadlocal_data_.fast_path_heap = NULL;
#endif
  heap->in_setspecific_ = false;
  if (GetThreadHeap() == heap) {
    // Somehow heap got reinstated by a recursive call to malloc
    // from pthread_setspecific.  We give up in this case.
    return;
  }

  // We can now get rid of the heap
  DeleteCache(heap);
}

void ThreadCache::BecomeTemporarilyIdle() {
  ThreadCache* heap = GetCacheIfPresent();
  if (heap)
    heap->Cleanup();
}

void ThreadCache::DestroyThreadCache(void* ptr) {
  // Note that "ptr" cannot be NULL since pthread promises not
  // to invoke the destructor on NULL values, but for safety,
  // we check anyway.
  if (ptr == NULL) return;
#ifdef HAVE_TLS
  // Prevent fast path of GetThreadHeap() from returning heap.
  threadlocal_data_.heap = NULL;
  threadlocal_data_.fast_path_heap = NULL;
#endif
  DeleteCache(reinterpret_cast<ThreadCache*>(ptr));
}

void ThreadCache::DeleteCache(ThreadCache* heap) {
  // Remove all memory from heap
  heap->Cleanup();

  // Remove from linked list
  SpinLockHolder h(Static::pageheap_lock());
  if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
  if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
  if (thread_heaps_ == heap) thread_heaps_ = heap->next_;
  thread_heap_count_--;

  if (next_memory_steal_ == heap) next_memory_steal_ = heap->next_;
  if (next_memory_steal_ == NULL) next_memory_steal_ = thread_heaps_;
  unclaimed_cache_space_ += heap->max_size_;

  threadcache_allocator.Delete(heap);
}

void ThreadCache::RecomputePerThreadCacheSize() {
  // Divide available space across threads
  int n = thread_heap_count_ > 0 ? thread_heap_count_ : 1;
  size_t space = overall_thread_cache_size_ / n;

  // Limit to allowed range
  if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
  if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;

  double ratio = space / max<double>(1, per_thread_cache_size_);
  size_t claimed = 0;
  for (ThreadCache* h = thread_heaps_; h != NULL; h = h->next_) {
    // Increasing the total cache size should not circumvent the
    // slow-start growth of max_size_.
    if (ratio < 1.0) {
      h->SetMaxSize(h->max_size_ * ratio);
    }
    claimed += h->max_size_;
  }
  unclaimed_cache_space_ = overall_thread_cache_size_ - claimed;
  per_thread_cache_size_ = space;
}

void ThreadCache::GetThreadStats(uint64_t* total_bytes, uint64_t* class_count) {
  for (ThreadCache* h = thread_heaps_; h != NULL; h = h->next_) {
    *total_bytes += h->Size();
    if (class_count) {
      for (int cl = 0; cl < Static::num_size_classes(); ++cl) {
        class_count[cl] += h->freelist_length(cl);
      }
    }
  }
}

void ThreadCache::set_overall_thread_cache_size(size_t new_size) {
  // Clip the value to a reasonable range
  if (new_size < kMinThreadCacheSize) new_size = kMinThreadCacheSize;
  if (new_size > (1<<30)) new_size = (1<<30);     // Limit to 1GB
  overall_thread_cache_size_ = new_size;

  RecomputePerThreadCacheSize();
}

}  // namespace tcmalloc