summaryrefslogtreecommitdiff
path: root/src/page_heap.cc
blob: a60df4a49b9ead6c9ac20a6bea350baf2503875e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright (c) 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// ---
// Author: Sanjay Ghemawat <opensource@google.com>

#include <config.h>
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>                   // for PRIuPTR
#endif
#include <gperftools/malloc_extension.h>      // for MallocRange, etc
#include "base/basictypes.h"
#include "base/commandlineflags.h"
#include "internal_logging.h"  // for ASSERT, TCMalloc_Printer, etc
#include "page_heap_allocator.h"  // for PageHeapAllocator
#include "static_vars.h"       // for Static
#include "system-alloc.h"      // for TCMalloc_SystemAlloc, etc

DEFINE_double(tcmalloc_release_rate,
              EnvToDouble("TCMALLOC_RELEASE_RATE", 1.0),
              "Rate at which we release unused memory to the system.  "
              "Zero means we never release memory back to the system.  "
              "Increase this flag to return memory faster; decrease it "
              "to return memory slower.  Reasonable rates are in the "
              "range [0,10]");

DEFINE_int64(tcmalloc_heap_limit_mb,
              EnvToInt("TCMALLOC_HEAP_LIMIT_MB", 0),
              "Limit total size of the process heap to the "
              "specified number of MiB. "
              "When we approach the limit the memory is released "
              "to the system more aggressively (more minor page faults). "
              "Zero means to allocate as long as system allows.");

namespace tcmalloc {

PageHeap::PageHeap()
    : pagemap_(MetaDataAlloc),
      pagemap_cache_(0),
      scavenge_counter_(0),
      // Start scavenging at kMaxPages list
      release_index_(kMaxPages),
      aggressive_decommit_(false) {
  COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
  DLL_Init(&large_.normal);
  DLL_Init(&large_.returned);
  for (int i = 0; i < kMaxPages; i++) {
    DLL_Init(&free_[i].normal);
    DLL_Init(&free_[i].returned);
  }
}

Span* PageHeap::SearchFreeAndLargeLists(Length n) {
  ASSERT(Check());
  ASSERT(n > 0);

  // Find first size >= n that has a non-empty list
  for (Length s = n; s < kMaxPages; s++) {
    Span* ll = &free_[s].normal;
    // If we're lucky, ll is non-empty, meaning it has a suitable span.
    if (!DLL_IsEmpty(ll)) {
      ASSERT(ll->next->location == Span::ON_NORMAL_FREELIST);
      return Carve(ll->next, n);
    }
    // Alternatively, maybe there's a usable returned span.
    ll = &free_[s].returned;
    if (!DLL_IsEmpty(ll)) {
      // We did not call EnsureLimit before, to avoid releasing the span
      // that will be taken immediately back.
      // Calling EnsureLimit here is not very expensive, as it fails only if
      // there is no more normal spans (and it fails efficiently)
      // or SystemRelease does not work (there is probably no returned spans).
      if (EnsureLimit(n)) {
        // ll may have became empty due to coalescing
        if (!DLL_IsEmpty(ll)) {
          ASSERT(ll->next->location == Span::ON_RETURNED_FREELIST);
          return Carve(ll->next, n);
        }
      }
    }
  }
  // No luck in free lists, our last chance is in a larger class.
  return AllocLarge(n);  // May be NULL
}

static const size_t kForcedCoalesceInterval = 128*1024*1024;

Span* PageHeap::New(Length n) {
  ASSERT(Check());
  ASSERT(n > 0);

  Span* result = SearchFreeAndLargeLists(n);
  if (result != NULL)
    return result;

  if (stats_.free_bytes != 0 && stats_.unmapped_bytes != 0
      && stats_.free_bytes + stats_.unmapped_bytes >= stats_.system_bytes / 4
      && (stats_.system_bytes / kForcedCoalesceInterval
          != (stats_.system_bytes + (n << kPageShift)) / kForcedCoalesceInterval)) {
    // We're about to grow heap, but there are lots of free pages.
    // tcmalloc's design decision to keep unmapped and free spans
    // separately and never coalesce them means that sometimes there
    // can be free pages span of sufficient size, but it consists of
    // "segments" of different type so page heap search cannot find
    // it. In order to prevent growing heap and wasting memory in such
    // case we're going to unmap all free pages. So that all free
    // spans are maximally coalesced.
    //
    // We're also limiting 'rate' of going into this path to be at
    // most once per 128 megs of heap growth. Otherwise programs that
    // grow heap frequently (and that means by small amount) could be
    // penalized with higher count of minor page faults.
    //
    // See also large_heap_fragmentation_unittest.cc and
    // https://code.google.com/p/gperftools/issues/detail?id=368
    ReleaseAtLeastNPages(static_cast<Length>(0x7fffffff));

    // then try again. If we are forced to grow heap because of large
    // spans fragmentation and not because of problem described above,
    // then at the very least we've just unmapped free but
    // insufficiently big large spans back to OS. So in case of really
    // unlucky memory fragmentation we'll be consuming virtual address
    // space, but not real memory
    result = SearchFreeAndLargeLists(n);
    if (result != NULL) return result;
  }

  // Grow the heap and try again.
  if (!GrowHeap(n)) {
    ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
    ASSERT(Check());
    return NULL;
  }
  return SearchFreeAndLargeLists(n);
}

Span* PageHeap::AllocLarge(Length n) {
  // find the best span (closest to n in size).
  // The following loops implements address-ordered best-fit.
  Span *best = NULL;

  // Search through normal list
  for (Span* span = large_.normal.next;
       span != &large_.normal;
       span = span->next) {
    if (span->length >= n) {
      if ((best == NULL)
          || (span->length < best->length)
          || ((span->length == best->length) && (span->start < best->start))) {
        best = span;
        ASSERT(best->location == Span::ON_NORMAL_FREELIST);
      }
    }
  }

  Span *bestNormal = best;

  // Search through released list in case it has a better fit
  for (Span* span = large_.returned.next;
       span != &large_.returned;
       span = span->next) {
    if (span->length >= n) {
      if ((best == NULL)
          || (span->length < best->length)
          || ((span->length == best->length) && (span->start < best->start))) {
        best = span;
        ASSERT(best->location == Span::ON_RETURNED_FREELIST);
      }
    }
  }

  if (best == bestNormal) {
    return best == NULL ? NULL : Carve(best, n);
  }

  // best comes from returned list.

  if (EnsureLimit(n, false)) {
    return Carve(best, n);
  }

  if (EnsureLimit(n, true)) {
    // best could have been destroyed by coalescing.
    // bestNormal is not a best-fit, and it could be destroyed as well.
    // We retry, the limit is already ensured:
    return AllocLarge(n);
  }

  // If bestNormal existed, EnsureLimit would succeeded:
  ASSERT(bestNormal == NULL);
  // We are not allowed to take best from returned list.
  return NULL;
}

Span* PageHeap::Split(Span* span, Length n) {
  ASSERT(0 < n);
  ASSERT(n < span->length);
  ASSERT(span->location == Span::IN_USE);
  ASSERT(span->sizeclass == 0);
  Event(span, 'T', n);

  const int extra = span->length - n;
  Span* leftover = NewSpan(span->start + n, extra);
  ASSERT(leftover->location == Span::IN_USE);
  Event(leftover, 'U', extra);
  RecordSpan(leftover);
  pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
  span->length = n;

  return leftover;
}

void PageHeap::CommitSpan(Span* span) {
  TCMalloc_SystemCommit(reinterpret_cast<void*>(span->start << kPageShift),
                        static_cast<size_t>(span->length << kPageShift));
  stats_.committed_bytes += span->length << kPageShift;
}

bool PageHeap::DecommitSpan(Span* span) {
  bool rv = TCMalloc_SystemRelease(reinterpret_cast<void*>(span->start << kPageShift),
                                   static_cast<size_t>(span->length << kPageShift));
  if (rv) {
    stats_.committed_bytes -= span->length << kPageShift;
  }

  return rv;
}

Span* PageHeap::Carve(Span* span, Length n) {
  ASSERT(n > 0);
  ASSERT(span->location != Span::IN_USE);
  const int old_location = span->location;
  RemoveFromFreeList(span);
  span->location = Span::IN_USE;
  Event(span, 'A', n);

  const int extra = span->length - n;
  ASSERT(extra >= 0);
  if (extra > 0) {
    Span* leftover = NewSpan(span->start + n, extra);
    leftover->location = old_location;
    Event(leftover, 'S', extra);
    RecordSpan(leftover);

    // The previous span of |leftover| was just splitted -- no need to
    // coalesce them. The next span of |leftover| was not previously coalesced
    // with |span|, i.e. is NULL or has got location other than |old_location|.
#ifndef NDEBUG
    const PageID p = leftover->start;
    const Length len = leftover->length;
    Span* next = GetDescriptor(p+len);
    ASSERT (next == NULL ||
            next->location == Span::IN_USE ||
            next->location != leftover->location);
#endif

    PrependToFreeList(leftover);  // Skip coalescing - no candidates possible
    span->length = n;
    pagemap_.set(span->start + n - 1, span);
  }
  ASSERT(Check());
  if (old_location == Span::ON_RETURNED_FREELIST) {
    // We need to recommit this address space.
    CommitSpan(span);
  }
  ASSERT(span->location == Span::IN_USE);
  ASSERT(span->length == n);
  ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
  return span;
}

void PageHeap::Delete(Span* span) {
  ASSERT(Check());
  ASSERT(span->location == Span::IN_USE);
  ASSERT(span->length > 0);
  ASSERT(GetDescriptor(span->start) == span);
  ASSERT(GetDescriptor(span->start + span->length - 1) == span);
  const Length n = span->length;
  span->sizeclass = 0;
  span->sample = 0;
  span->location = Span::ON_NORMAL_FREELIST;
  Event(span, 'D', span->length);
  MergeIntoFreeList(span);  // Coalesces if possible
  IncrementalScavenge(n);
  ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
  ASSERT(Check());
}

bool PageHeap::MayMergeSpans(Span *span, Span *other) {
  if (aggressive_decommit_) {
    return other->location != Span::IN_USE;
  }
  return span->location == other->location;
}

void PageHeap::MergeIntoFreeList(Span* span) {
  ASSERT(span->location != Span::IN_USE);

  // Coalesce -- we guarantee that "p" != 0, so no bounds checking
  // necessary.  We do not bother resetting the stale pagemap
  // entries for the pieces we are merging together because we only
  // care about the pagemap entries for the boundaries.
  //
  // Note: depending on aggressive_decommit_ mode we allow only
  // similar spans to be coalesced.
  //
  // The following applies if aggressive_decommit_ is enabled:
  //
  // Note that the adjacent spans we merge into "span" may come out of a
  // "normal" (committed) list, and cleanly merge with our IN_USE span, which
  // is implicitly committed.  If the adjacents spans are on the "returned"
  // (decommitted) list, then we must get both spans into the same state before
  // or after we coalesce them.  The current code always decomits. This is
  // achieved by blindly decommitting the entire coalesced region, which  may
  // include any combination of committed and decommitted spans, at the end of
  // the method.

  // TODO(jar): "Always decommit" causes some extra calls to commit when we are
  // called in GrowHeap() during an allocation :-/.  We need to eval the cost of
  // that oscillation, and possibly do something to reduce it.

  // TODO(jar): We need a better strategy for deciding to commit, or decommit,
  // based on memory usage and free heap sizes.

  uint64_t temp_committed = 0;

  const PageID p = span->start;
  const Length n = span->length;
  Span* prev = GetDescriptor(p-1);
  if (prev != NULL && MayMergeSpans(span, prev)) {
    // Merge preceding span into this span
    ASSERT(prev->start + prev->length == p);
    const Length len = prev->length;
    if (aggressive_decommit_ && prev->location == Span::ON_RETURNED_FREELIST) {
      // We're about to put the merge span into the returned freelist and call
      // DecommitSpan() on it, which will mark the entire span including this
      // one as released and decrease stats_.committed_bytes by the size of the
      // merged span.  To make the math work out we temporarily increase the
      // stats_.committed_bytes amount.
      temp_committed = prev->length << kPageShift;
    }
    RemoveFromFreeList(prev);
    DeleteSpan(prev);
    span->start -= len;
    span->length += len;
    pagemap_.set(span->start, span);
    Event(span, 'L', len);
  }
  Span* next = GetDescriptor(p+n);
  if (next != NULL && MayMergeSpans(span, next)) {
    // Merge next span into this span
    ASSERT(next->start == p+n);
    const Length len = next->length;
    if (aggressive_decommit_ && next->location == Span::ON_RETURNED_FREELIST) {
      // See the comment below 'if (prev->location ...' for explanation.
      temp_committed += next->length << kPageShift;
    }
    RemoveFromFreeList(next);
    DeleteSpan(next);
    span->length += len;
    pagemap_.set(span->start + span->length - 1, span);
    Event(span, 'R', len);
  }

  if (aggressive_decommit_) {
    if (DecommitSpan(span)) {
      span->location = Span::ON_RETURNED_FREELIST;
      stats_.committed_bytes += temp_committed;
    } else {
      ASSERT(temp_committed == 0);
    }
  }
  PrependToFreeList(span);
}

void PageHeap::PrependToFreeList(Span* span) {
  ASSERT(span->location != Span::IN_USE);
  SpanList* list = (span->length < kMaxPages) ? &free_[span->length] : &large_;
  if (span->location == Span::ON_NORMAL_FREELIST) {
    stats_.free_bytes += (span->length << kPageShift);
    DLL_Prepend(&list->normal, span);
  } else {
    stats_.unmapped_bytes += (span->length << kPageShift);
    DLL_Prepend(&list->returned, span);
  }
}

void PageHeap::RemoveFromFreeList(Span* span) {
  ASSERT(span->location != Span::IN_USE);
  if (span->location == Span::ON_NORMAL_FREELIST) {
    stats_.free_bytes -= (span->length << kPageShift);
  } else {
    stats_.unmapped_bytes -= (span->length << kPageShift);
  }
  DLL_Remove(span);
}

void PageHeap::IncrementalScavenge(Length n) {
  // Fast path; not yet time to release memory
  scavenge_counter_ -= n;
  if (scavenge_counter_ >= 0) return;  // Not yet time to scavenge

  const double rate = FLAGS_tcmalloc_release_rate;
  if (rate <= 1e-6) {
    // Tiny release rate means that releasing is disabled.
    scavenge_counter_ = kDefaultReleaseDelay;
    return;
  }

  Length released_pages = ReleaseAtLeastNPages(1);

  if (released_pages == 0) {
    // Nothing to scavenge, delay for a while.
    scavenge_counter_ = kDefaultReleaseDelay;
  } else {
    // Compute how long to wait until we return memory.
    // FLAGS_tcmalloc_release_rate==1 means wait for 1000 pages
    // after releasing one page.
    const double mult = 1000.0 / rate;
    double wait = mult * static_cast<double>(released_pages);
    if (wait > kMaxReleaseDelay) {
      // Avoid overflow and bound to reasonable range.
      wait = kMaxReleaseDelay;
    }
    scavenge_counter_ = static_cast<int64_t>(wait);
  }
}

Length PageHeap::ReleaseLastNormalSpan(SpanList* slist) {
  Span* s = slist->normal.prev;
  ASSERT(s->location == Span::ON_NORMAL_FREELIST);

  if (DecommitSpan(s)) {
    RemoveFromFreeList(s);
    const Length n = s->length;
    s->location = Span::ON_RETURNED_FREELIST;
    MergeIntoFreeList(s);  // Coalesces if possible.
    return n;
  }

  return 0;
}

Length PageHeap::ReleaseAtLeastNPages(Length num_pages) {
  Length released_pages = 0;

  // Round robin through the lists of free spans, releasing the last
  // span in each list.  Stop after releasing at least num_pages
  // or when there is nothing more to release.
  while (released_pages < num_pages && stats_.free_bytes > 0) {
    for (int i = 0; i < kMaxPages+1 && released_pages < num_pages;
         i++, release_index_++) {
      if (release_index_ > kMaxPages) release_index_ = 0;
      SpanList* slist = (release_index_ == kMaxPages) ?
          &large_ : &free_[release_index_];
      if (!DLL_IsEmpty(&slist->normal)) {
        Length released_len = ReleaseLastNormalSpan(slist);
        // Some systems do not support release
        if (released_len == 0) return released_pages;
        released_pages += released_len;
      }
    }
  }
  return released_pages;
}

bool PageHeap::EnsureLimit(Length n, bool withRelease)
{
  Length limit = (FLAGS_tcmalloc_heap_limit_mb*1024*1024) >> kPageShift;
  if (limit == 0) return true; //there is no limit

  // We do not use stats_.system_bytes because it does not take
  // MetaDataAllocs into account.
  Length takenPages = TCMalloc_SystemTaken >> kPageShift;
  //XXX takenPages may be slightly bigger than limit for two reasons:
  //* MetaDataAllocs ignore the limit (it is not easy to handle
  //  out of memory there)
  //* sys_alloc may round allocation up to huge page size,
  //  although smaller limit was ensured

  ASSERT(takenPages >= stats_.unmapped_bytes >> kPageShift);
  takenPages -= stats_.unmapped_bytes >> kPageShift;

  if (takenPages + n > limit && withRelease) {
    takenPages -= ReleaseAtLeastNPages(takenPages + n - limit);
  }

  return takenPages + n <= limit;
}

void PageHeap::RegisterSizeClass(Span* span, size_t sc) {
  // Associate span object with all interior pages as well
  ASSERT(span->location == Span::IN_USE);
  ASSERT(GetDescriptor(span->start) == span);
  ASSERT(GetDescriptor(span->start+span->length-1) == span);
  Event(span, 'C', sc);
  span->sizeclass = sc;
  for (Length i = 1; i < span->length-1; i++) {
    pagemap_.set(span->start+i, span);
  }
}

void PageHeap::GetSmallSpanStats(SmallSpanStats* result) {
  for (int s = 0; s < kMaxPages; s++) {
    result->normal_length[s] = DLL_Length(&free_[s].normal);
    result->returned_length[s] = DLL_Length(&free_[s].returned);
  }
}

void PageHeap::GetLargeSpanStats(LargeSpanStats* result) {
  result->spans = 0;
  result->normal_pages = 0;
  result->returned_pages = 0;
  for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
    result->normal_pages += s->length;;
    result->spans++;
  }
  for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
    result->returned_pages += s->length;
    result->spans++;
  }
}

bool PageHeap::GetNextRange(PageID start, base::MallocRange* r) {
  Span* span = reinterpret_cast<Span*>(pagemap_.Next(start));
  if (span == NULL) {
    return false;
  }
  r->address = span->start << kPageShift;
  r->length = span->length << kPageShift;
  r->fraction = 0;
  switch (span->location) {
    case Span::IN_USE:
      r->type = base::MallocRange::INUSE;
      r->fraction = 1;
      if (span->sizeclass > 0) {
        // Only some of the objects in this span may be in use.
        const size_t osize = Static::sizemap()->class_to_size(span->sizeclass);
        r->fraction = (1.0 * osize * span->refcount) / r->length;
      }
      break;
    case Span::ON_NORMAL_FREELIST:
      r->type = base::MallocRange::FREE;
      break;
    case Span::ON_RETURNED_FREELIST:
      r->type = base::MallocRange::UNMAPPED;
      break;
    default:
      r->type = base::MallocRange::UNKNOWN;
      break;
  }
  return true;
}

static void RecordGrowth(size_t growth) {
  StackTrace* t = Static::stacktrace_allocator()->New();
  t->depth = GetStackTrace(t->stack, kMaxStackDepth-1, 3);
  t->size = growth;
  t->stack[kMaxStackDepth-1] = reinterpret_cast<void*>(Static::growth_stacks());
  Static::set_growth_stacks(t);
}

bool PageHeap::GrowHeap(Length n) {
  ASSERT(kMaxPages >= kMinSystemAlloc);
  if (n > kMaxValidPages) return false;
  Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
  size_t actual_size;
  void* ptr = NULL;
  if (EnsureLimit(ask)) {
      ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
  }
  if (ptr == NULL) {
    if (n < ask) {
      // Try growing just "n" pages
      ask = n;
      if (EnsureLimit(ask)) {
        ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
      }
    }
    if (ptr == NULL) return false;
  }
  ask = actual_size >> kPageShift;
  RecordGrowth(ask << kPageShift);

  uint64_t old_system_bytes = stats_.system_bytes;
  stats_.system_bytes += (ask << kPageShift);
  stats_.committed_bytes += (ask << kPageShift);
  const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
  ASSERT(p > 0);

  // If we have already a lot of pages allocated, just pre allocate a bunch of
  // memory for the page map. This prevents fragmentation by pagemap metadata
  // when a program keeps allocating and freeing large blocks.

  if (old_system_bytes < kPageMapBigAllocationThreshold
      && stats_.system_bytes >= kPageMapBigAllocationThreshold) {
    pagemap_.PreallocateMoreMemory();
  }

  // Make sure pagemap_ has entries for all of the new pages.
  // Plus ensure one before and one after so coalescing code
  // does not need bounds-checking.
  if (pagemap_.Ensure(p-1, ask+2)) {
    // Pretend the new area is allocated and then Delete() it to cause
    // any necessary coalescing to occur.
    Span* span = NewSpan(p, ask);
    RecordSpan(span);
    Delete(span);
    ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
    ASSERT(Check());
    return true;
  } else {
    // We could not allocate memory within "pagemap_"
    // TODO: Once we can return memory to the system, return the new span
    return false;
  }
}

bool PageHeap::Check() {
  ASSERT(free_[0].normal.next == &free_[0].normal);
  ASSERT(free_[0].returned.next == &free_[0].returned);
  return true;
}

bool PageHeap::CheckExpensive() {
  bool result = Check();
  CheckList(&large_.normal, kMaxPages, 1000000000, Span::ON_NORMAL_FREELIST);
  CheckList(&large_.returned, kMaxPages, 1000000000, Span::ON_RETURNED_FREELIST);
  for (Length s = 1; s < kMaxPages; s++) {
    CheckList(&free_[s].normal, s, s, Span::ON_NORMAL_FREELIST);
    CheckList(&free_[s].returned, s, s, Span::ON_RETURNED_FREELIST);
  }
  return result;
}

bool PageHeap::CheckList(Span* list, Length min_pages, Length max_pages,
                         int freelist) {
  for (Span* s = list->next; s != list; s = s->next) {
    CHECK_CONDITION(s->location == freelist);  // NORMAL or RETURNED
    CHECK_CONDITION(s->length >= min_pages);
    CHECK_CONDITION(s->length <= max_pages);
    CHECK_CONDITION(GetDescriptor(s->start) == s);
    CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
  }
  return true;
}

}  // namespace tcmalloc