summaryrefslogtreecommitdiff
path: root/src/runtime/stack.c
blob: e402691f450d1c338b79e720ba0edc914e447fdd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "stack.h"
#include "funcdata.h"
#include "typekind.h"
#include "type.h"
#include "race.h"
#include "mgc0.h"
#include "textflag.h"

enum
{
	// StackDebug == 0: no logging
	//            == 1: logging of per-stack operations
	//            == 2: logging of per-frame operations
	//            == 3: logging of per-word updates
	//            == 4: logging of per-word reads
	StackDebug = 0,
	StackFromSystem = 0,	// allocate stacks from system memory instead of the heap
	StackFaultOnFree = 0,	// old stacks are mapped noaccess to detect use after free
	StackPoisonCopy = 0,	// fill stack that should not be accessed with garbage, to detect bad dereferences during copy

	StackCache = 1,
};

// Global pool of spans that have free stacks.
// Stacks are assigned an order according to size.
//     order = log_2(size/FixedStack)
// There is a free list for each order.
MSpan runtime·stackpool[NumStackOrders];
Mutex runtime·stackpoolmu;
// TODO: one lock per order?

static Stack stackfreequeue;

void
runtime·stackinit(void)
{
	int32 i;

	if((StackCacheSize & PageMask) != 0)
		runtime·throw("cache size must be a multiple of page size");

	for(i = 0; i < NumStackOrders; i++)
		runtime·MSpanList_Init(&runtime·stackpool[i]);
}

// Allocates a stack from the free pool.  Must be called with
// stackpoolmu held.
static MLink*
poolalloc(uint8 order)
{
	MSpan *list;
	MSpan *s;
	MLink *x;
	uintptr i;

	list = &runtime·stackpool[order];
	s = list->next;
	if(s == list) {
		// no free stacks.  Allocate another span worth.
		s = runtime·MHeap_AllocStack(&runtime·mheap, StackCacheSize >> PageShift);
		if(s == nil)
			runtime·throw("out of memory");
		if(s->ref != 0)
			runtime·throw("bad ref");
		if(s->freelist != nil)
			runtime·throw("bad freelist");
		for(i = 0; i < StackCacheSize; i += FixedStack << order) {
			x = (MLink*)((s->start << PageShift) + i);
			x->next = s->freelist;
			s->freelist = x;
		}
		runtime·MSpanList_Insert(list, s);
	}
	x = s->freelist;
	if(x == nil)
		runtime·throw("span has no free stacks");
	s->freelist = x->next;
	s->ref++;
	if(s->freelist == nil) {
		// all stacks in s are allocated.
		runtime·MSpanList_Remove(s);
	}
	return x;
}

// Adds stack x to the free pool.  Must be called with stackpoolmu held.
static void
poolfree(MLink *x, uint8 order)
{
	MSpan *s;

	s = runtime·MHeap_Lookup(&runtime·mheap, x);
	if(s->state != MSpanStack)
		runtime·throw("freeing stack not in a stack span");
	if(s->freelist == nil) {
		// s will now have a free stack
		runtime·MSpanList_Insert(&runtime·stackpool[order], s);
	}
	x->next = s->freelist;
	s->freelist = x;
	s->ref--;
	if(s->ref == 0) {
		// span is completely free - return to heap
		runtime·MSpanList_Remove(s);
		s->freelist = nil;
		runtime·MHeap_FreeStack(&runtime·mheap, s);
	}
}

// stackcacherefill/stackcacherelease implement a global pool of stack segments.
// The pool is required to prevent unlimited growth of per-thread caches.
static void
stackcacherefill(MCache *c, uint8 order)
{
	MLink *x, *list;
	uintptr size;

	if(StackDebug >= 1)
		runtime·printf("stackcacherefill order=%d\n", order);

	// Grab some stacks from the global cache.
	// Grab half of the allowed capacity (to prevent thrashing).
	list = nil;
	size = 0;
	runtime·lock(&runtime·stackpoolmu);
	while(size < StackCacheSize/2) {
		x = poolalloc(order);
		x->next = list;
		list = x;
		size += FixedStack << order;
	}
	runtime·unlock(&runtime·stackpoolmu);

	c->stackcache[order].list = list;
	c->stackcache[order].size = size;
}

static void
stackcacherelease(MCache *c, uint8 order)
{
	MLink *x, *y;
	uintptr size;

	if(StackDebug >= 1)
		runtime·printf("stackcacherelease order=%d\n", order);
	x = c->stackcache[order].list;
	size = c->stackcache[order].size;
	runtime·lock(&runtime·stackpoolmu);
	while(size > StackCacheSize/2) {
		y = x->next;
		poolfree(x, order);
		x = y;
		size -= FixedStack << order;
	}
	runtime·unlock(&runtime·stackpoolmu);
	c->stackcache[order].list = x;
	c->stackcache[order].size = size;
}

void
runtime·stackcache_clear(MCache *c)
{
	uint8 order;
	MLink *x, *y;

	if(StackDebug >= 1)
		runtime·printf("stackcache clear\n");
	runtime·lock(&runtime·stackpoolmu);
	for(order = 0; order < NumStackOrders; order++) {
		x = c->stackcache[order].list;
		while(x != nil) {
			y = x->next;
			poolfree(x, order);
			x = y;
		}
		c->stackcache[order].list = nil;
		c->stackcache[order].size = 0;
	}
	runtime·unlock(&runtime·stackpoolmu);
}

Stack
runtime·stackalloc(uint32 n)
{
	uint8 order;
	uint32 n2;
	void *v;
	MLink *x;
	MSpan *s;
	MCache *c;

	// Stackalloc must be called on scheduler stack, so that we
	// never try to grow the stack during the code that stackalloc runs.
	// Doing so would cause a deadlock (issue 1547).
	if(g != g->m->g0)
		runtime·throw("stackalloc not on scheduler stack");
	if((n & (n-1)) != 0)
		runtime·throw("stack size not a power of 2");
	if(StackDebug >= 1)
		runtime·printf("stackalloc %d\n", n);

	if(runtime·debug.efence || StackFromSystem) {
		v = runtime·sysAlloc(ROUND(n, PageSize), &mstats.stacks_sys);
		if(v == nil)
			runtime·throw("out of memory (stackalloc)");
		return (Stack){(uintptr)v, (uintptr)v+n};
	}

	// Small stacks are allocated with a fixed-size free-list allocator.
	// If we need a stack of a bigger size, we fall back on allocating
	// a dedicated span.
	if(StackCache && n < FixedStack << NumStackOrders && n < StackCacheSize) {
		order = 0;
		n2 = n;
		while(n2 > FixedStack) {
			order++;
			n2 >>= 1;
		}
		c = g->m->mcache;
		if(c == nil || g->m->gcing || g->m->helpgc) {
			// c == nil can happen in the guts of exitsyscall or
			// procresize. Just get a stack from the global pool.
			// Also don't touch stackcache during gc
			// as it's flushed concurrently.
			runtime·lock(&runtime·stackpoolmu);
			x = poolalloc(order);
			runtime·unlock(&runtime·stackpoolmu);
		} else {
			x = c->stackcache[order].list;
			if(x == nil) {
				stackcacherefill(c, order);
				x = c->stackcache[order].list;
			}
			c->stackcache[order].list = x->next;
			c->stackcache[order].size -= n;
		}
		v = (byte*)x;
	} else {
		s = runtime·MHeap_AllocStack(&runtime·mheap, ROUND(n, PageSize) >> PageShift);
		if(s == nil)
			runtime·throw("out of memory");
		v = (byte*)(s->start<<PageShift);
	}
	
	if(raceenabled)
		runtime·racemalloc(v, n);
	if(StackDebug >= 1)
		runtime·printf("  allocated %p\n", v);
	return (Stack){(uintptr)v, (uintptr)v+n};
}

void
runtime·stackfree(Stack stk)
{
	uint8 order;
	uintptr n, n2;
	MSpan *s;
	MLink *x;
	MCache *c;
	void *v;
	
	n = stk.hi - stk.lo;
	v = (void*)stk.lo;
	if(n & (n-1))
		runtime·throw("stack not a power of 2");
	if(StackDebug >= 1) {
		runtime·printf("stackfree %p %d\n", v, (int32)n);
		runtime·memclr(v, n); // for testing, clobber stack data
	}
	if(runtime·debug.efence || StackFromSystem) {
		if(runtime·debug.efence || StackFaultOnFree)
			runtime·SysFault(v, n);
		else
			runtime·SysFree(v, n, &mstats.stacks_sys);
		return;
	}
	if(StackCache && n < FixedStack << NumStackOrders && n < StackCacheSize) {
		order = 0;
		n2 = n;
		while(n2 > FixedStack) {
			order++;
			n2 >>= 1;
		}
		x = (MLink*)v;
		c = g->m->mcache;
		if(c == nil || g->m->gcing || g->m->helpgc) {
			runtime·lock(&runtime·stackpoolmu);
			poolfree(x, order);
			runtime·unlock(&runtime·stackpoolmu);
		} else {
			if(c->stackcache[order].size >= StackCacheSize)
				stackcacherelease(c, order);
			x->next = c->stackcache[order].list;
			c->stackcache[order].list = x;
			c->stackcache[order].size += n;
		}
	} else {
		s = runtime·MHeap_Lookup(&runtime·mheap, v);
		if(s->state != MSpanStack) {
			runtime·printf("%p %p\n", s->start<<PageShift, v);
			runtime·throw("bad span state");
		}
		runtime·MHeap_FreeStack(&runtime·mheap, s);
	}
}

uintptr runtime·maxstacksize = 1<<20; // enough until runtime.main sets it for real

static uint8*
mapnames[] = {
	(uint8*)"---",
	(uint8*)"scalar",
	(uint8*)"ptr",
	(uint8*)"multi",
};

// Stack frame layout
//
// (x86)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// |  return address  |
// +------------------+ <- frame->varp
// |     locals       |
// +------------------+
// |  args to callee  |
// +------------------+ <- frame->sp
//
// (arm)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | caller's retaddr |
// +------------------+ <- frame->varp
// |     locals       |
// +------------------+
// |  args to callee  |
// +------------------+
// |  return address  |
// +------------------+ <- frame->sp

void runtime·main(void);
void runtime·switchtoM(void(*)(void));

typedef struct AdjustInfo AdjustInfo;
struct AdjustInfo {
	Stack old;
	uintptr delta;  // ptr distance from old to new stack (newbase - oldbase)
};

// Adjustpointer checks whether *vpp is in the old stack described by adjinfo.
// If so, it rewrites *vpp to point into the new stack.
static void
adjustpointer(AdjustInfo *adjinfo, void *vpp)
{
	byte **pp, *p;
	
	pp = vpp;
	p = *pp;
	if(StackDebug >= 4)
		runtime·printf("        %p:%p\n", pp, p);
	if(adjinfo->old.lo <= (uintptr)p && (uintptr)p < adjinfo->old.hi) {
		*pp = p + adjinfo->delta;
		if(StackDebug >= 3)
			runtime·printf("        adjust ptr %p: %p -> %p\n", pp, p, *pp);
	}
}

// bv describes the memory starting at address scanp.
// Adjust any pointers contained therein.
static void
adjustpointers(byte **scanp, BitVector *bv, AdjustInfo *adjinfo, Func *f)
{
	uintptr delta;
	int32 num, i;
	byte *p, *minp, *maxp;
	Type *t;
	Itab *tab;
	
	minp = (byte*)adjinfo->old.lo;
	maxp = (byte*)adjinfo->old.hi;
	delta = adjinfo->delta;
	num = bv->n / BitsPerPointer;
	for(i = 0; i < num; i++) {
		if(StackDebug >= 4)
			runtime·printf("        %p:%s:%p\n", &scanp[i], mapnames[bv->bytedata[i / (8 / BitsPerPointer)] >> (i * BitsPerPointer & 7) & 3], scanp[i]);
		switch(bv->bytedata[i / (8 / BitsPerPointer)] >> (i * BitsPerPointer & 7) & 3) {
		case BitsDead:
			if(runtime·debug.gcdead)
				scanp[i] = (byte*)PoisonStack;
			break;
		case BitsScalar:
			break;
		case BitsPointer:
			p = scanp[i];
			if(f != nil && (byte*)0 < p && (p < (byte*)PageSize || (uintptr)p == PoisonGC || (uintptr)p == PoisonStack)) {
				// Looks like a junk value in a pointer slot.
				// Live analysis wrong?
				g->m->traceback = 2;
				runtime·printf("runtime: bad pointer in frame %s at %p: %p\n", runtime·funcname(f), &scanp[i], p);
				runtime·throw("bad pointer!");
			}
			if(minp <= p && p < maxp) {
				if(StackDebug >= 3)
					runtime·printf("adjust ptr %p %s\n", p, runtime·funcname(f));
				scanp[i] = p + delta;
			}
			break;
		case BitsMultiWord:
			switch(bv->bytedata[(i+1) / (8 / BitsPerPointer)] >> ((i+1) * BitsPerPointer & 7) & 3) {
			default:
				runtime·throw("unexpected garbage collection bits");
			case BitsEface:
				t = (Type*)scanp[i];
				if(t != nil && ((t->kind & KindDirectIface) == 0 || (t->kind & KindNoPointers) == 0)) {
					p = scanp[i+1];
					if(minp <= p && p < maxp) {
						if(StackDebug >= 3)
							runtime·printf("adjust eface %p\n", p);
						if(t->size > PtrSize) // currently we always allocate such objects on the heap
							runtime·throw("large interface value found on stack");
						scanp[i+1] = p + delta;
					}
				}
				i++;
				break;
			case BitsIface:
				tab = (Itab*)scanp[i];
				if(tab != nil) {
					t = tab->type;
					//runtime·printf("          type=%p\n", t);
					if((t->kind & KindDirectIface) == 0 || (t->kind & KindNoPointers) == 0) {
						p = scanp[i+1];
						if(minp <= p && p < maxp) {
							if(StackDebug >= 3)
								runtime·printf("adjust iface %p\n", p);
							if(t->size > PtrSize) // currently we always allocate such objects on the heap
								runtime·throw("large interface value found on stack");
							scanp[i+1] = p + delta;
						}
					}
				}
				i++;
				break;
			}
			break;
		}
	}
}

// Note: the argument/return area is adjusted by the callee.
static bool
adjustframe(Stkframe *frame, void *arg)
{
	AdjustInfo *adjinfo;
	Func *f;
	StackMap *stackmap;
	int32 pcdata;
	BitVector bv;
	uintptr targetpc, size, minsize;

	adjinfo = arg;
	targetpc = frame->continpc;
	if(targetpc == 0) {
		// Frame is dead.
		return true;
	}
	f = frame->fn;
	if(StackDebug >= 2)
		runtime·printf("    adjusting %s frame=[%p,%p] pc=%p continpc=%p\n", runtime·funcname(f), frame->sp, frame->fp, frame->pc, frame->continpc);
	if(f->entry == (uintptr)runtime·switchtoM) {
		// A special routine at the bottom of stack of a goroutine that does an onM call.
		// We will allow it to be copied even though we don't
		// have full GC info for it (because it is written in asm).
		return true;
	}
	if(targetpc != f->entry)
		targetpc--;
	pcdata = runtime·pcdatavalue(f, PCDATA_StackMapIndex, targetpc);
	if(pcdata == -1)
		pcdata = 0; // in prologue

	// Adjust local variables if stack frame has been allocated.
	size = frame->varp - frame->sp;
	if(thechar != '6' && thechar != '8')
		minsize = sizeof(uintptr);
	else
		minsize = 0;
	if(size > minsize) {
		stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps);
		if(stackmap == nil || stackmap->n <= 0) {
			runtime·printf("runtime: frame %s untyped locals %p+%p\n", runtime·funcname(f), (byte*)(frame->varp-size), size);
			runtime·throw("missing stackmap");
		}
		// Locals bitmap information, scan just the pointers in locals.
		if(pcdata < 0 || pcdata >= stackmap->n) {
			// don't know where we are
			runtime·printf("runtime: pcdata is %d and %d locals stack map entries for %s (targetpc=%p)\n",
				pcdata, stackmap->n, runtime·funcname(f), targetpc);
			runtime·throw("bad symbol table");
		}
		bv = runtime·stackmapdata(stackmap, pcdata);
		size = (bv.n * PtrSize) / BitsPerPointer;
		if(StackDebug >= 3)
			runtime·printf("      locals\n");
		adjustpointers((byte**)(frame->varp - size), &bv, adjinfo, f);
	}
	
	// Adjust arguments.
	if(frame->arglen > 0) {
		if(frame->argmap != nil) {
			bv = *frame->argmap;
		} else {
			stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps);
			if(stackmap == nil || stackmap->n <= 0) {
				runtime·printf("runtime: frame %s untyped args %p+%p\n", runtime·funcname(f), frame->argp, (uintptr)frame->arglen);
				runtime·throw("missing stackmap");
			}
			if(pcdata < 0 || pcdata >= stackmap->n) {
				// don't know where we are
				runtime·printf("runtime: pcdata is %d and %d args stack map entries for %s (targetpc=%p)\n",
					pcdata, stackmap->n, runtime·funcname(f), targetpc);
				runtime·throw("bad symbol table");
			}
			bv = runtime·stackmapdata(stackmap, pcdata);
		}
		if(StackDebug >= 3)
			runtime·printf("      args\n");
		adjustpointers((byte**)frame->argp, &bv, adjinfo, nil);
	}
	
	return true;
}

static void
adjustctxt(G *gp, AdjustInfo *adjinfo)
{
	adjustpointer(adjinfo, &gp->sched.ctxt);
}

static void
adjustdefers(G *gp, AdjustInfo *adjinfo)
{
	Defer *d;
	bool (*cb)(Stkframe*, void*);

	// Adjust defer argument blocks the same way we adjust active stack frames.
	cb = adjustframe;
	runtime·tracebackdefers(gp, &cb, adjinfo);

	// Adjust pointers in the Defer structs.
	// Defer structs themselves are never on the stack.
	for(d = gp->defer; d != nil; d = d->link) {
		adjustpointer(adjinfo, &d->fn);
		adjustpointer(adjinfo, &d->argp);
		adjustpointer(adjinfo, &d->panic);
	}
}

static void
adjustpanics(G *gp, AdjustInfo *adjinfo)
{
	// Panics are on stack and already adjusted.
	// Update pointer to head of list in G.
	adjustpointer(adjinfo, &gp->panic);
}

static void
adjustsudogs(G *gp, AdjustInfo *adjinfo)
{
	SudoG *s;

	// the data elements pointed to by a SudoG structure
	// might be in the stack.
	for(s = gp->waiting; s != nil; s = s->waitlink) {
		adjustpointer(adjinfo, &s->elem);
		adjustpointer(adjinfo, &s->selectdone);
	}
}

// Copies gp's stack to a new stack of a different size.
static void
copystack(G *gp, uintptr newsize)
{
	Stack old, new;
	uintptr used;
	AdjustInfo adjinfo;
	uint32 oldstatus;
	bool (*cb)(Stkframe*, void*);
	byte *p, *ep;

	if(gp->syscallsp != 0)
		runtime·throw("stack growth not allowed in system call");
	old = gp->stack;
	if(old.lo == 0)
		runtime·throw("nil stackbase");
	used = old.hi - gp->sched.sp;

	// allocate new stack
	new = runtime·stackalloc(newsize);
	if(StackPoisonCopy) {
		p = (byte*)new.lo;
		ep = (byte*)new.hi;
		while(p < ep)
			*p++ = 0xfd;
	}

	if(StackDebug >= 1)
		runtime·printf("copystack gp=%p [%p %p %p]/%d -> [%p %p %p]/%d\n", gp, old.lo, old.hi-used, old.hi, (int32)(old.hi-old.lo), new.lo, new.hi-used, new.hi, (int32)newsize);
	
	// adjust pointers in the to-be-copied frames
	adjinfo.old = old;
	adjinfo.delta = new.hi - old.hi;
	cb = adjustframe;
	runtime·gentraceback(~(uintptr)0, ~(uintptr)0, 0, gp, 0, nil, 0x7fffffff, &cb, &adjinfo, false);
	
	// adjust other miscellaneous things that have pointers into stacks.
	adjustctxt(gp, &adjinfo);
	adjustdefers(gp, &adjinfo);
	adjustpanics(gp, &adjinfo);
	adjustsudogs(gp, &adjinfo);
	
	// copy the stack to the new location
	if(StackPoisonCopy) {
		p = (byte*)new.lo;
		ep = (byte*)new.hi;
		while(p < ep)
			*p++ = 0xfb;
	}
	runtime·memmove((byte*)new.hi - used, (byte*)old.hi - used, used);

	oldstatus = runtime·readgstatus(gp);
	oldstatus &= ~Gscan;
	if(oldstatus == Gwaiting || oldstatus == Grunnable)
		runtime·casgstatus(gp, oldstatus, Gcopystack); // oldstatus is Gwaiting or Grunnable
	else
		runtime·throw("copystack: bad status, not Gwaiting or Grunnable");

	// Swap out old stack for new one
	gp->stack = new;
	gp->stackguard0 = new.lo + StackGuard; // NOTE: might clobber a preempt request
	gp->sched.sp = new.hi - used;

	runtime·casgstatus(gp, Gcopystack, oldstatus); // oldstatus is Gwaiting or Grunnable

	// free old stack
	if(StackPoisonCopy) {
		p = (byte*)old.lo;
		ep = (byte*)old.hi;
		while(p < ep)
			*p++ = 0xfc;
	}
	if(newsize > old.hi-old.lo) {
		// growing, free stack immediately
		runtime·stackfree(old);
	} else {
		// shrinking, queue up free operation.  We can't actually free the stack
		// just yet because we might run into the following situation:
		// 1) GC starts, scans a SudoG but does not yet mark the SudoG.elem pointer
		// 2) The stack that pointer points to is shrunk
		// 3) The old stack is freed
		// 4) The containing span is marked free
		// 5) GC attempts to mark the SudoG.elem pointer.  The marking fails because
		//    the pointer looks like a pointer into a free span.
		// By not freeing, we prevent step #4 until GC is done.
		runtime·lock(&runtime·stackpoolmu);
		*(Stack*)old.lo = stackfreequeue;
		stackfreequeue = old;
		runtime·unlock(&runtime·stackpoolmu);
	}
}

// round x up to a power of 2.
int32
runtime·round2(int32 x)
{
	int32 s;

	s = 0;
	while((1 << s) < x)
		s++;
	return 1 << s;
}

// Called from runtime·morestack when more stack is needed.
// Allocate larger stack and relocate to new stack.
// Stack growth is multiplicative, for constant amortized cost.
//
// g->atomicstatus will be Grunning or Gscanrunning upon entry. 
// If the GC is trying to stop this g then it will set preemptscan to true.
void
runtime·newstack(void)
{
	int32 oldsize, newsize;
	uintptr sp;
	G *gp;
	Gobuf morebuf;

	if(g->m->morebuf.g->stackguard0 == (uintptr)StackFork)
		runtime·throw("stack growth after fork");
	if(g->m->morebuf.g != g->m->curg) {
		runtime·printf("runtime: newstack called from g=%p\n"
			"\tm=%p m->curg=%p m->g0=%p m->gsignal=%p\n",
			g->m->morebuf.g, g->m, g->m->curg, g->m->g0, g->m->gsignal);
		morebuf = g->m->morebuf;
		runtime·traceback(morebuf.pc, morebuf.sp, morebuf.lr, morebuf.g);
		runtime·throw("runtime: wrong goroutine in newstack");
	}
	if(g->m->curg->throwsplit)
		runtime·throw("runtime: stack split at bad time");

	// The goroutine must be executing in order to call newstack,
	// so it must be Grunning or Gscanrunning.

	gp = g->m->curg;
	morebuf = g->m->morebuf;
	g->m->morebuf.pc = (uintptr)nil;
	g->m->morebuf.lr = (uintptr)nil;
	g->m->morebuf.sp = (uintptr)nil;
	g->m->morebuf.g = (G*)nil;

	runtime·casgstatus(gp, Grunning, Gwaiting);
	gp->waitreason = runtime·gostringnocopy((byte*)"stack growth");

	runtime·rewindmorestack(&gp->sched);

	if(gp->stack.lo == 0)
		runtime·throw("missing stack in newstack");
	sp = gp->sched.sp;
	if(thechar == '6' || thechar == '8') {
		// The call to morestack cost a word.
		sp -= sizeof(uintreg);
	}
	if(StackDebug >= 1 || sp < gp->stack.lo) {
		runtime·printf("runtime: newstack sp=%p stack=[%p, %p]\n"
			"\tmorebuf={pc:%p sp:%p lr:%p}\n"
			"\tsched={pc:%p sp:%p lr:%p ctxt:%p}\n",
			sp, gp->stack.lo, gp->stack.hi,
			g->m->morebuf.pc, g->m->morebuf.sp, g->m->morebuf.lr,
			gp->sched.pc, gp->sched.sp, gp->sched.lr, gp->sched.ctxt);
	}
	if(sp < gp->stack.lo) {
		runtime·printf("runtime: gp=%p, gp->status=%d\n ", (void*)gp, runtime·readgstatus(gp));
		runtime·printf("runtime: split stack overflow: %p < %p\n", sp, gp->stack.lo);
		runtime·throw("runtime: split stack overflow");
	}

	if(gp->stackguard0 == (uintptr)StackPreempt) {
		if(gp == g->m->g0)
			runtime·throw("runtime: preempt g0");
		if(g->m->p == nil && g->m->locks == 0)
			runtime·throw("runtime: g is running but p is not");
		if(gp->preemptscan) {
			runtime·gcphasework(gp);
			runtime·casgstatus(gp, Gwaiting, Grunning);
			gp->stackguard0 = gp->stack.lo + StackGuard;
			gp->preempt = false; 
			gp->preemptscan = false;        // Tells the GC premption was successful.
			runtime·gogo(&gp->sched);	// never return 
		}

		// Be conservative about where we preempt.
		// We are interested in preempting user Go code, not runtime code.
		if(g->m->locks || g->m->mallocing || g->m->gcing || g->m->p->status != Prunning) {
			// Let the goroutine keep running for now.
			// gp->preempt is set, so it will be preempted next time.
			gp->stackguard0 = gp->stack.lo + StackGuard;
			runtime·casgstatus(gp, Gwaiting, Grunning);
			runtime·gogo(&gp->sched);	// never return
		}
		// Act like goroutine called runtime.Gosched.
		runtime·casgstatus(gp, Gwaiting, Grunning);
		runtime·gosched_m(gp);	// never return
	}

	// Allocate a bigger segment and move the stack.
	oldsize = gp->stack.hi - gp->stack.lo;
	newsize = oldsize * 2;
	if(newsize > runtime·maxstacksize) {
		runtime·printf("runtime: goroutine stack exceeds %D-byte limit\n", (uint64)runtime·maxstacksize);
		runtime·throw("stack overflow");
	}

	// Note that the concurrent GC might be scanning the stack as we try to replace it.
	// copystack takes care of the appropriate coordination with the stack scanner.
	copystack(gp, newsize);
	if(StackDebug >= 1)
		runtime·printf("stack grow done\n");
	runtime·casgstatus(gp, Gwaiting, Grunning);
	runtime·gogo(&gp->sched);
}

#pragma textflag NOSPLIT
void
runtime·nilfunc(void)
{
	*(byte*)0 = 0;
}

// adjust Gobuf as if it executed a call to fn
// and then did an immediate gosave.
void
runtime·gostartcallfn(Gobuf *gobuf, FuncVal *fv)
{
	void *fn;

	if(fv != nil)
		fn = fv->fn;
	else
		fn = runtime·nilfunc;
	runtime·gostartcall(gobuf, fn, fv);
}

// Maybe shrink the stack being used by gp.
// Called at garbage collection time.
void
runtime·shrinkstack(G *gp)
{
	uintptr used, oldsize, newsize;

	if(runtime·readgstatus(gp) == Gdead) {
		if(gp->stack.lo != 0) {
			// Free whole stack - it will get reallocated
			// if G is used again.
			runtime·stackfree(gp->stack);
			gp->stack.lo = 0;
			gp->stack.hi = 0;
		}
		return;
	}
	if(gp->stack.lo == 0)
		runtime·throw("missing stack in shrinkstack");

	oldsize = gp->stack.hi - gp->stack.lo;
	newsize = oldsize / 2;
	if(newsize < FixedStack)
		return; // don't shrink below the minimum-sized stack
	used = gp->stack.hi - gp->sched.sp;
	if(used >= oldsize / 4)
		return; // still using at least 1/4 of the segment.

	// We can't copy the stack if we're in a syscall.
	// The syscall might have pointers into the stack.
	if(gp->syscallsp != 0)
		return;

#ifdef GOOS_windows
	if(gp->m != nil && gp->m->libcallsp != 0)
		return;
#endif
	if(StackDebug > 0)
		runtime·printf("shrinking stack %D->%D\n", (uint64)oldsize, (uint64)newsize);
	copystack(gp, newsize);
}

// Do any delayed stack freeing that was queued up during GC.
void
runtime·shrinkfinish(void)
{
	Stack s, t;

	runtime·lock(&runtime·stackpoolmu);
	s = stackfreequeue;
	stackfreequeue = (Stack){0,0};
	runtime·unlock(&runtime·stackpoolmu);
	while(s.lo != 0) {
		t = *(Stack*)s.lo;
		runtime·stackfree(s);
		s = t;
	}
}

static void badc(void);

#pragma textflag NOSPLIT
void
runtime·morestackc(void)
{
	void (*fn)(void);
	
	fn = badc;
	runtime·onM(&fn);
}

static void
badc(void)
{
	runtime·throw("attempt to execute C code on Go stack");
}