summaryrefslogtreecommitdiff
path: root/src/reflect/type.go
blob: 441459b3f504d5347531cd67226c4815b56f5c72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package reflect implements run-time reflection, allowing a program to
// manipulate objects with arbitrary types.  The typical use is to take a value
// with static type interface{} and extract its dynamic type information by
// calling TypeOf, which returns a Type.
//
// A call to ValueOf returns a Value representing the run-time data.
// Zero takes a Type and returns a Value representing a zero value
// for that type.
//
// See "The Laws of Reflection" for an introduction to reflection in Go:
// http://golang.org/doc/articles/laws_of_reflection.html
package reflect

import (
	"runtime"
	"strconv"
	"sync"
	"unsafe"
)

// Type is the representation of a Go type.
//
// Not all methods apply to all kinds of types.  Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of type before
// calling kind-specific methods.  Calling a method
// inappropriate to the kind of type causes a run-time panic.
type Type interface {
	// Methods applicable to all types.

	// Align returns the alignment in bytes of a value of
	// this type when allocated in memory.
	Align() int

	// FieldAlign returns the alignment in bytes of a value of
	// this type when used as a field in a struct.
	FieldAlign() int

	// Method returns the i'th method in the type's method set.
	// It panics if i is not in the range [0, NumMethod()).
	//
	// For a non-interface type T or *T, the returned Method's Type and Func
	// fields describe a function whose first argument is the receiver.
	//
	// For an interface type, the returned Method's Type field gives the
	// method signature, without a receiver, and the Func field is nil.
	Method(int) Method

	// MethodByName returns the method with that name in the type's
	// method set and a boolean indicating if the method was found.
	//
	// For a non-interface type T or *T, the returned Method's Type and Func
	// fields describe a function whose first argument is the receiver.
	//
	// For an interface type, the returned Method's Type field gives the
	// method signature, without a receiver, and the Func field is nil.
	MethodByName(string) (Method, bool)

	// NumMethod returns the number of methods in the type's method set.
	NumMethod() int

	// Name returns the type's name within its package.
	// It returns an empty string for unnamed types.
	Name() string

	// PkgPath returns a named type's package path, that is, the import path
	// that uniquely identifies the package, such as "encoding/base64".
	// If the type was predeclared (string, error) or unnamed (*T, struct{}, []int),
	// the package path will be the empty string.
	PkgPath() string

	// Size returns the number of bytes needed to store
	// a value of the given type; it is analogous to unsafe.Sizeof.
	Size() uintptr

	// String returns a string representation of the type.
	// The string representation may use shortened package names
	// (e.g., base64 instead of "encoding/base64") and is not
	// guaranteed to be unique among types.  To test for equality,
	// compare the Types directly.
	String() string

	// Kind returns the specific kind of this type.
	Kind() Kind

	// Implements returns true if the type implements the interface type u.
	Implements(u Type) bool

	// AssignableTo returns true if a value of the type is assignable to type u.
	AssignableTo(u Type) bool

	// ConvertibleTo returns true if a value of the type is convertible to type u.
	ConvertibleTo(u Type) bool

	// Comparable returns true if values of this type are comparable.
	Comparable() bool

	// Methods applicable only to some types, depending on Kind.
	// The methods allowed for each kind are:
	//
	//	Int*, Uint*, Float*, Complex*: Bits
	//	Array: Elem, Len
	//	Chan: ChanDir, Elem
	//	Func: In, NumIn, Out, NumOut, IsVariadic.
	//	Map: Key, Elem
	//	Ptr: Elem
	//	Slice: Elem
	//	Struct: Field, FieldByIndex, FieldByName, FieldByNameFunc, NumField

	// Bits returns the size of the type in bits.
	// It panics if the type's Kind is not one of the
	// sized or unsized Int, Uint, Float, or Complex kinds.
	Bits() int

	// ChanDir returns a channel type's direction.
	// It panics if the type's Kind is not Chan.
	ChanDir() ChanDir

	// IsVariadic returns true if a function type's final input parameter
	// is a "..." parameter.  If so, t.In(t.NumIn() - 1) returns the parameter's
	// implicit actual type []T.
	//
	// For concreteness, if t represents func(x int, y ... float64), then
	//
	//	t.NumIn() == 2
	//	t.In(0) is the reflect.Type for "int"
	//	t.In(1) is the reflect.Type for "[]float64"
	//	t.IsVariadic() == true
	//
	// IsVariadic panics if the type's Kind is not Func.
	IsVariadic() bool

	// Elem returns a type's element type.
	// It panics if the type's Kind is not Array, Chan, Map, Ptr, or Slice.
	Elem() Type

	// Field returns a struct type's i'th field.
	// It panics if the type's Kind is not Struct.
	// It panics if i is not in the range [0, NumField()).
	Field(i int) StructField

	// FieldByIndex returns the nested field corresponding
	// to the index sequence.  It is equivalent to calling Field
	// successively for each index i.
	// It panics if the type's Kind is not Struct.
	FieldByIndex(index []int) StructField

	// FieldByName returns the struct field with the given name
	// and a boolean indicating if the field was found.
	FieldByName(name string) (StructField, bool)

	// FieldByNameFunc returns the first struct field with a name
	// that satisfies the match function and a boolean indicating if
	// the field was found.
	FieldByNameFunc(match func(string) bool) (StructField, bool)

	// In returns the type of a function type's i'th input parameter.
	// It panics if the type's Kind is not Func.
	// It panics if i is not in the range [0, NumIn()).
	In(i int) Type

	// Key returns a map type's key type.
	// It panics if the type's Kind is not Map.
	Key() Type

	// Len returns an array type's length.
	// It panics if the type's Kind is not Array.
	Len() int

	// NumField returns a struct type's field count.
	// It panics if the type's Kind is not Struct.
	NumField() int

	// NumIn returns a function type's input parameter count.
	// It panics if the type's Kind is not Func.
	NumIn() int

	// NumOut returns a function type's output parameter count.
	// It panics if the type's Kind is not Func.
	NumOut() int

	// Out returns the type of a function type's i'th output parameter.
	// It panics if the type's Kind is not Func.
	// It panics if i is not in the range [0, NumOut()).
	Out(i int) Type

	common() *rtype
	uncommon() *uncommonType
}

// BUG(rsc): FieldByName and related functions consider struct field names to be equal
// if the names are equal, even if they are unexported names originating
// in different packages. The practical effect of this is that the result of
// t.FieldByName("x") is not well defined if the struct type t contains
// multiple fields named x (embedded from different packages).
// FieldByName may return one of the fields named x or may report that there are none.
// See golang.org/issue/4876 for more details.

/*
 * These data structures are known to the compiler (../../cmd/gc/reflect.c).
 * A few are known to ../runtime/type.go to convey to debuggers.
 * They are also known to ../runtime/type.h.
 */

// A Kind represents the specific kind of type that a Type represents.
// The zero Kind is not a valid kind.
type Kind uint

const (
	Invalid Kind = iota
	Bool
	Int
	Int8
	Int16
	Int32
	Int64
	Uint
	Uint8
	Uint16
	Uint32
	Uint64
	Uintptr
	Float32
	Float64
	Complex64
	Complex128
	Array
	Chan
	Func
	Interface
	Map
	Ptr
	Slice
	String
	Struct
	UnsafePointer
)

// rtype is the common implementation of most values.
// It is embedded in other, public struct types, but always
// with a unique tag like `reflect:"array"` or `reflect:"ptr"`
// so that code cannot convert from, say, *arrayType to *ptrType.
type rtype struct {
	size          uintptr
	hash          uint32            // hash of type; avoids computation in hash tables
	_             uint8             // unused/padding
	align         uint8             // alignment of variable with this type
	fieldAlign    uint8             // alignment of struct field with this type
	kind          uint8             // enumeration for C
	alg           *typeAlg          // algorithm table (../runtime/runtime.h:/Alg)
	gc            [2]unsafe.Pointer // garbage collection data
	string        *string           // string form; unnecessary but undeniably useful
	*uncommonType                   // (relatively) uncommon fields
	ptrToThis     *rtype            // type for pointer to this type, if used in binary or has methods
	zero          unsafe.Pointer    // pointer to zero value
}

type typeAlg struct {
	// function for hashing objects of this type
	// (ptr to object, size, seed) -> hash
	hash func(unsafe.Pointer, uintptr, uintptr) uintptr
	// function for comparing objects of this type
	// (ptr to object A, ptr to object B, size) -> ==?
	equal func(unsafe.Pointer, unsafe.Pointer, uintptr) bool
}

// Method on non-interface type
type method struct {
	name    *string        // name of method
	pkgPath *string        // nil for exported Names; otherwise import path
	mtyp    *rtype         // method type (without receiver)
	typ     *rtype         // .(*FuncType) underneath (with receiver)
	ifn     unsafe.Pointer // fn used in interface call (one-word receiver)
	tfn     unsafe.Pointer // fn used for normal method call
}

// uncommonType is present only for types with names or methods
// (if T is a named type, the uncommonTypes for T and *T have methods).
// Using a pointer to this struct reduces the overall size required
// to describe an unnamed type with no methods.
type uncommonType struct {
	name    *string  // name of type
	pkgPath *string  // import path; nil for built-in types like int, string
	methods []method // methods associated with type
}

// ChanDir represents a channel type's direction.
type ChanDir int

const (
	RecvDir ChanDir             = 1 << iota // <-chan
	SendDir                                 // chan<-
	BothDir = RecvDir | SendDir             // chan
)

// arrayType represents a fixed array type.
type arrayType struct {
	rtype `reflect:"array"`
	elem  *rtype // array element type
	slice *rtype // slice type
	len   uintptr
}

// chanType represents a channel type.
type chanType struct {
	rtype `reflect:"chan"`
	elem  *rtype  // channel element type
	dir   uintptr // channel direction (ChanDir)
}

// funcType represents a function type.
type funcType struct {
	rtype     `reflect:"func"`
	dotdotdot bool     // last input parameter is ...
	in        []*rtype // input parameter types
	out       []*rtype // output parameter types
}

// imethod represents a method on an interface type
type imethod struct {
	name    *string // name of method
	pkgPath *string // nil for exported Names; otherwise import path
	typ     *rtype  // .(*FuncType) underneath
}

// interfaceType represents an interface type.
type interfaceType struct {
	rtype   `reflect:"interface"`
	methods []imethod // sorted by hash
}

// mapType represents a map type.
type mapType struct {
	rtype         `reflect:"map"`
	key           *rtype // map key type
	elem          *rtype // map element (value) type
	bucket        *rtype // internal bucket structure
	hmap          *rtype // internal map header
	keysize       uint8  // size of key slot
	indirectkey   uint8  // store ptr to key instead of key itself
	valuesize     uint8  // size of value slot
	indirectvalue uint8  // store ptr to value instead of value itself
	bucketsize    uint16 // size of bucket
}

// ptrType represents a pointer type.
type ptrType struct {
	rtype `reflect:"ptr"`
	elem  *rtype // pointer element (pointed at) type
}

// sliceType represents a slice type.
type sliceType struct {
	rtype `reflect:"slice"`
	elem  *rtype // slice element type
}

// Struct field
type structField struct {
	name    *string // nil for embedded fields
	pkgPath *string // nil for exported Names; otherwise import path
	typ     *rtype  // type of field
	tag     *string // nil if no tag
	offset  uintptr // byte offset of field within struct
}

// structType represents a struct type.
type structType struct {
	rtype  `reflect:"struct"`
	fields []structField // sorted by offset
}

/*
 * The compiler knows the exact layout of all the data structures above.
 * The compiler does not know about the data structures and methods below.
 */

// Method represents a single method.
type Method struct {
	// Name is the method name.
	// PkgPath is the package path that qualifies a lower case (unexported)
	// method name.  It is empty for upper case (exported) method names.
	// The combination of PkgPath and Name uniquely identifies a method
	// in a method set.
	// See http://golang.org/ref/spec#Uniqueness_of_identifiers
	Name    string
	PkgPath string

	Type  Type  // method type
	Func  Value // func with receiver as first argument
	Index int   // index for Type.Method
}

const (
	kindDirectIface = 1 << 5
	kindGCProg      = 1 << 6 // Type.gc points to GC program
	kindNoPointers  = 1 << 7
	kindMask        = (1 << 5) - 1
)

func (k Kind) String() string {
	if int(k) < len(kindNames) {
		return kindNames[k]
	}
	return "kind" + strconv.Itoa(int(k))
}

var kindNames = []string{
	Invalid:       "invalid",
	Bool:          "bool",
	Int:           "int",
	Int8:          "int8",
	Int16:         "int16",
	Int32:         "int32",
	Int64:         "int64",
	Uint:          "uint",
	Uint8:         "uint8",
	Uint16:        "uint16",
	Uint32:        "uint32",
	Uint64:        "uint64",
	Uintptr:       "uintptr",
	Float32:       "float32",
	Float64:       "float64",
	Complex64:     "complex64",
	Complex128:    "complex128",
	Array:         "array",
	Chan:          "chan",
	Func:          "func",
	Interface:     "interface",
	Map:           "map",
	Ptr:           "ptr",
	Slice:         "slice",
	String:        "string",
	Struct:        "struct",
	UnsafePointer: "unsafe.Pointer",
}

func (t *uncommonType) uncommon() *uncommonType {
	return t
}

func (t *uncommonType) PkgPath() string {
	if t == nil || t.pkgPath == nil {
		return ""
	}
	return *t.pkgPath
}

func (t *uncommonType) Name() string {
	if t == nil || t.name == nil {
		return ""
	}
	return *t.name
}

func (t *rtype) String() string { return *t.string }

func (t *rtype) Size() uintptr { return t.size }

func (t *rtype) Bits() int {
	if t == nil {
		panic("reflect: Bits of nil Type")
	}
	k := t.Kind()
	if k < Int || k > Complex128 {
		panic("reflect: Bits of non-arithmetic Type " + t.String())
	}
	return int(t.size) * 8
}

func (t *rtype) Align() int { return int(t.align) }

func (t *rtype) FieldAlign() int { return int(t.fieldAlign) }

func (t *rtype) Kind() Kind { return Kind(t.kind & kindMask) }

func (t *rtype) pointers() bool { return t.kind&kindNoPointers == 0 }

func (t *rtype) common() *rtype { return t }

func (t *uncommonType) Method(i int) (m Method) {
	if t == nil || i < 0 || i >= len(t.methods) {
		panic("reflect: Method index out of range")
	}
	p := &t.methods[i]
	if p.name != nil {
		m.Name = *p.name
	}
	fl := flag(Func)
	if p.pkgPath != nil {
		m.PkgPath = *p.pkgPath
		fl |= flagRO
	}
	mt := p.typ
	m.Type = mt
	fn := unsafe.Pointer(&p.tfn)
	m.Func = Value{mt, fn, fl}
	m.Index = i
	return
}

func (t *uncommonType) NumMethod() int {
	if t == nil {
		return 0
	}
	return len(t.methods)
}

func (t *uncommonType) MethodByName(name string) (m Method, ok bool) {
	if t == nil {
		return
	}
	var p *method
	for i := range t.methods {
		p = &t.methods[i]
		if p.name != nil && *p.name == name {
			return t.Method(i), true
		}
	}
	return
}

// TODO(rsc): 6g supplies these, but they are not
// as efficient as they could be: they have commonType
// as the receiver instead of *rtype.
func (t *rtype) NumMethod() int {
	if t.Kind() == Interface {
		tt := (*interfaceType)(unsafe.Pointer(t))
		return tt.NumMethod()
	}
	return t.uncommonType.NumMethod()
}

func (t *rtype) Method(i int) (m Method) {
	if t.Kind() == Interface {
		tt := (*interfaceType)(unsafe.Pointer(t))
		return tt.Method(i)
	}
	return t.uncommonType.Method(i)
}

func (t *rtype) MethodByName(name string) (m Method, ok bool) {
	if t.Kind() == Interface {
		tt := (*interfaceType)(unsafe.Pointer(t))
		return tt.MethodByName(name)
	}
	return t.uncommonType.MethodByName(name)
}

func (t *rtype) PkgPath() string {
	return t.uncommonType.PkgPath()
}

func (t *rtype) Name() string {
	return t.uncommonType.Name()
}

func (t *rtype) ChanDir() ChanDir {
	if t.Kind() != Chan {
		panic("reflect: ChanDir of non-chan type")
	}
	tt := (*chanType)(unsafe.Pointer(t))
	return ChanDir(tt.dir)
}

func (t *rtype) IsVariadic() bool {
	if t.Kind() != Func {
		panic("reflect: IsVariadic of non-func type")
	}
	tt := (*funcType)(unsafe.Pointer(t))
	return tt.dotdotdot
}

func (t *rtype) Elem() Type {
	switch t.Kind() {
	case Array:
		tt := (*arrayType)(unsafe.Pointer(t))
		return toType(tt.elem)
	case Chan:
		tt := (*chanType)(unsafe.Pointer(t))
		return toType(tt.elem)
	case Map:
		tt := (*mapType)(unsafe.Pointer(t))
		return toType(tt.elem)
	case Ptr:
		tt := (*ptrType)(unsafe.Pointer(t))
		return toType(tt.elem)
	case Slice:
		tt := (*sliceType)(unsafe.Pointer(t))
		return toType(tt.elem)
	}
	panic("reflect: Elem of invalid type")
}

func (t *rtype) Field(i int) StructField {
	if t.Kind() != Struct {
		panic("reflect: Field of non-struct type")
	}
	tt := (*structType)(unsafe.Pointer(t))
	return tt.Field(i)
}

func (t *rtype) FieldByIndex(index []int) StructField {
	if t.Kind() != Struct {
		panic("reflect: FieldByIndex of non-struct type")
	}
	tt := (*structType)(unsafe.Pointer(t))
	return tt.FieldByIndex(index)
}

func (t *rtype) FieldByName(name string) (StructField, bool) {
	if t.Kind() != Struct {
		panic("reflect: FieldByName of non-struct type")
	}
	tt := (*structType)(unsafe.Pointer(t))
	return tt.FieldByName(name)
}

func (t *rtype) FieldByNameFunc(match func(string) bool) (StructField, bool) {
	if t.Kind() != Struct {
		panic("reflect: FieldByNameFunc of non-struct type")
	}
	tt := (*structType)(unsafe.Pointer(t))
	return tt.FieldByNameFunc(match)
}

func (t *rtype) In(i int) Type {
	if t.Kind() != Func {
		panic("reflect: In of non-func type")
	}
	tt := (*funcType)(unsafe.Pointer(t))
	return toType(tt.in[i])
}

func (t *rtype) Key() Type {
	if t.Kind() != Map {
		panic("reflect: Key of non-map type")
	}
	tt := (*mapType)(unsafe.Pointer(t))
	return toType(tt.key)
}

func (t *rtype) Len() int {
	if t.Kind() != Array {
		panic("reflect: Len of non-array type")
	}
	tt := (*arrayType)(unsafe.Pointer(t))
	return int(tt.len)
}

func (t *rtype) NumField() int {
	if t.Kind() != Struct {
		panic("reflect: NumField of non-struct type")
	}
	tt := (*structType)(unsafe.Pointer(t))
	return len(tt.fields)
}

func (t *rtype) NumIn() int {
	if t.Kind() != Func {
		panic("reflect: NumIn of non-func type")
	}
	tt := (*funcType)(unsafe.Pointer(t))
	return len(tt.in)
}

func (t *rtype) NumOut() int {
	if t.Kind() != Func {
		panic("reflect: NumOut of non-func type")
	}
	tt := (*funcType)(unsafe.Pointer(t))
	return len(tt.out)
}

func (t *rtype) Out(i int) Type {
	if t.Kind() != Func {
		panic("reflect: Out of non-func type")
	}
	tt := (*funcType)(unsafe.Pointer(t))
	return toType(tt.out[i])
}

func (d ChanDir) String() string {
	switch d {
	case SendDir:
		return "chan<-"
	case RecvDir:
		return "<-chan"
	case BothDir:
		return "chan"
	}
	return "ChanDir" + strconv.Itoa(int(d))
}

// Method returns the i'th method in the type's method set.
func (t *interfaceType) Method(i int) (m Method) {
	if i < 0 || i >= len(t.methods) {
		return
	}
	p := &t.methods[i]
	m.Name = *p.name
	if p.pkgPath != nil {
		m.PkgPath = *p.pkgPath
	}
	m.Type = toType(p.typ)
	m.Index = i
	return
}

// NumMethod returns the number of interface methods in the type's method set.
func (t *interfaceType) NumMethod() int { return len(t.methods) }

// MethodByName method with the given name in the type's method set.
func (t *interfaceType) MethodByName(name string) (m Method, ok bool) {
	if t == nil {
		return
	}
	var p *imethod
	for i := range t.methods {
		p = &t.methods[i]
		if *p.name == name {
			return t.Method(i), true
		}
	}
	return
}

// A StructField describes a single field in a struct.
type StructField struct {
	// Name is the field name.
	// PkgPath is the package path that qualifies a lower case (unexported)
	// field name.  It is empty for upper case (exported) field names.
	// See http://golang.org/ref/spec#Uniqueness_of_identifiers
	Name    string
	PkgPath string

	Type      Type      // field type
	Tag       StructTag // field tag string
	Offset    uintptr   // offset within struct, in bytes
	Index     []int     // index sequence for Type.FieldByIndex
	Anonymous bool      // is an embedded field
}

// A StructTag is the tag string in a struct field.
//
// By convention, tag strings are a concatenation of
// optionally space-separated key:"value" pairs.
// Each key is a non-empty string consisting of non-control
// characters other than space (U+0020 ' '), quote (U+0022 '"'),
// and colon (U+003A ':').  Each value is quoted using U+0022 '"'
// characters and Go string literal syntax.
type StructTag string

// Get returns the value associated with key in the tag string.
// If there is no such key in the tag, Get returns the empty string.
// If the tag does not have the conventional format, the value
// returned by Get is unspecified.
func (tag StructTag) Get(key string) string {
	for tag != "" {
		// skip leading space
		i := 0
		for i < len(tag) && tag[i] == ' ' {
			i++
		}
		tag = tag[i:]
		if tag == "" {
			break
		}

		// scan to colon.
		// a space or a quote is a syntax error
		i = 0
		for i < len(tag) && tag[i] != ' ' && tag[i] != ':' && tag[i] != '"' {
			i++
		}
		if i+1 >= len(tag) || tag[i] != ':' || tag[i+1] != '"' {
			break
		}
		name := string(tag[:i])
		tag = tag[i+1:]

		// scan quoted string to find value
		i = 1
		for i < len(tag) && tag[i] != '"' {
			if tag[i] == '\\' {
				i++
			}
			i++
		}
		if i >= len(tag) {
			break
		}
		qvalue := string(tag[:i+1])
		tag = tag[i+1:]

		if key == name {
			value, _ := strconv.Unquote(qvalue)
			return value
		}
	}
	return ""
}

// Field returns the i'th struct field.
func (t *structType) Field(i int) (f StructField) {
	if i < 0 || i >= len(t.fields) {
		return
	}
	p := &t.fields[i]
	f.Type = toType(p.typ)
	if p.name != nil {
		f.Name = *p.name
	} else {
		t := f.Type
		if t.Kind() == Ptr {
			t = t.Elem()
		}
		f.Name = t.Name()
		f.Anonymous = true
	}
	if p.pkgPath != nil {
		f.PkgPath = *p.pkgPath
	}
	if p.tag != nil {
		f.Tag = StructTag(*p.tag)
	}
	f.Offset = p.offset

	// NOTE(rsc): This is the only allocation in the interface
	// presented by a reflect.Type.  It would be nice to avoid,
	// at least in the common cases, but we need to make sure
	// that misbehaving clients of reflect cannot affect other
	// uses of reflect.  One possibility is CL 5371098, but we
	// postponed that ugliness until there is a demonstrated
	// need for the performance.  This is issue 2320.
	f.Index = []int{i}
	return
}

// TODO(gri): Should there be an error/bool indicator if the index
//            is wrong for FieldByIndex?

// FieldByIndex returns the nested field corresponding to index.
func (t *structType) FieldByIndex(index []int) (f StructField) {
	f.Type = toType(&t.rtype)
	for i, x := range index {
		if i > 0 {
			ft := f.Type
			if ft.Kind() == Ptr && ft.Elem().Kind() == Struct {
				ft = ft.Elem()
			}
			f.Type = ft
		}
		f = f.Type.Field(x)
	}
	return
}

// A fieldScan represents an item on the fieldByNameFunc scan work list.
type fieldScan struct {
	typ   *structType
	index []int
}

// FieldByNameFunc returns the struct field with a name that satisfies the
// match function and a boolean to indicate if the field was found.
func (t *structType) FieldByNameFunc(match func(string) bool) (result StructField, ok bool) {
	// This uses the same condition that the Go language does: there must be a unique instance
	// of the match at a given depth level. If there are multiple instances of a match at the
	// same depth, they annihilate each other and inhibit any possible match at a lower level.
	// The algorithm is breadth first search, one depth level at a time.

	// The current and next slices are work queues:
	// current lists the fields to visit on this depth level,
	// and next lists the fields on the next lower level.
	current := []fieldScan{}
	next := []fieldScan{{typ: t}}

	// nextCount records the number of times an embedded type has been
	// encountered and considered for queueing in the 'next' slice.
	// We only queue the first one, but we increment the count on each.
	// If a struct type T can be reached more than once at a given depth level,
	// then it annihilates itself and need not be considered at all when we
	// process that next depth level.
	var nextCount map[*structType]int

	// visited records the structs that have been considered already.
	// Embedded pointer fields can create cycles in the graph of
	// reachable embedded types; visited avoids following those cycles.
	// It also avoids duplicated effort: if we didn't find the field in an
	// embedded type T at level 2, we won't find it in one at level 4 either.
	visited := map[*structType]bool{}

	for len(next) > 0 {
		current, next = next, current[:0]
		count := nextCount
		nextCount = nil

		// Process all the fields at this depth, now listed in 'current'.
		// The loop queues embedded fields found in 'next', for processing during the next
		// iteration. The multiplicity of the 'current' field counts is recorded
		// in 'count'; the multiplicity of the 'next' field counts is recorded in 'nextCount'.
		for _, scan := range current {
			t := scan.typ
			if visited[t] {
				// We've looked through this type before, at a higher level.
				// That higher level would shadow the lower level we're now at,
				// so this one can't be useful to us. Ignore it.
				continue
			}
			visited[t] = true
			for i := range t.fields {
				f := &t.fields[i]
				// Find name and type for field f.
				var fname string
				var ntyp *rtype
				if f.name != nil {
					fname = *f.name
				} else {
					// Anonymous field of type T or *T.
					// Name taken from type.
					ntyp = f.typ
					if ntyp.Kind() == Ptr {
						ntyp = ntyp.Elem().common()
					}
					fname = ntyp.Name()
				}

				// Does it match?
				if match(fname) {
					// Potential match
					if count[t] > 1 || ok {
						// Name appeared multiple times at this level: annihilate.
						return StructField{}, false
					}
					result = t.Field(i)
					result.Index = nil
					result.Index = append(result.Index, scan.index...)
					result.Index = append(result.Index, i)
					ok = true
					continue
				}

				// Queue embedded struct fields for processing with next level,
				// but only if we haven't seen a match yet at this level and only
				// if the embedded types haven't already been queued.
				if ok || ntyp == nil || ntyp.Kind() != Struct {
					continue
				}
				styp := (*structType)(unsafe.Pointer(ntyp))
				if nextCount[styp] > 0 {
					nextCount[styp] = 2 // exact multiple doesn't matter
					continue
				}
				if nextCount == nil {
					nextCount = map[*structType]int{}
				}
				nextCount[styp] = 1
				if count[t] > 1 {
					nextCount[styp] = 2 // exact multiple doesn't matter
				}
				var index []int
				index = append(index, scan.index...)
				index = append(index, i)
				next = append(next, fieldScan{styp, index})
			}
		}
		if ok {
			break
		}
	}
	return
}

// FieldByName returns the struct field with the given name
// and a boolean to indicate if the field was found.
func (t *structType) FieldByName(name string) (f StructField, present bool) {
	// Quick check for top-level name, or struct without anonymous fields.
	hasAnon := false
	if name != "" {
		for i := range t.fields {
			tf := &t.fields[i]
			if tf.name == nil {
				hasAnon = true
				continue
			}
			if *tf.name == name {
				return t.Field(i), true
			}
		}
	}
	if !hasAnon {
		return
	}
	return t.FieldByNameFunc(func(s string) bool { return s == name })
}

// TypeOf returns the reflection Type of the value in the interface{}.
// TypeOf(nil) returns nil.
func TypeOf(i interface{}) Type {
	eface := *(*emptyInterface)(unsafe.Pointer(&i))
	return toType(eface.typ)
}

// ptrMap is the cache for PtrTo.
var ptrMap struct {
	sync.RWMutex
	m map[*rtype]*ptrType
}

// PtrTo returns the pointer type with element t.
// For example, if t represents type Foo, PtrTo(t) represents *Foo.
func PtrTo(t Type) Type {
	return t.(*rtype).ptrTo()
}

func (t *rtype) ptrTo() *rtype {
	if p := t.ptrToThis; p != nil {
		return p
	}

	// Otherwise, synthesize one.
	// This only happens for pointers with no methods.
	// We keep the mapping in a map on the side, because
	// this operation is rare and a separate map lets us keep
	// the type structures in read-only memory.
	ptrMap.RLock()
	if m := ptrMap.m; m != nil {
		if p := m[t]; p != nil {
			ptrMap.RUnlock()
			return &p.rtype
		}
	}
	ptrMap.RUnlock()
	ptrMap.Lock()
	if ptrMap.m == nil {
		ptrMap.m = make(map[*rtype]*ptrType)
	}
	p := ptrMap.m[t]
	if p != nil {
		// some other goroutine won the race and created it
		ptrMap.Unlock()
		return &p.rtype
	}

	// Create a new ptrType starting with the description
	// of an *unsafe.Pointer.
	p = new(ptrType)
	var iptr interface{} = (*unsafe.Pointer)(nil)
	prototype := *(**ptrType)(unsafe.Pointer(&iptr))
	*p = *prototype

	s := "*" + *t.string
	p.string = &s

	// For the type structures linked into the binary, the
	// compiler provides a good hash of the string.
	// Create a good hash for the new string by using
	// the FNV-1 hash's mixing function to combine the
	// old hash and the new "*".
	p.hash = fnv1(t.hash, '*')

	p.uncommonType = nil
	p.ptrToThis = nil
	p.zero = unsafe.Pointer(&make([]byte, p.size)[0])
	p.elem = t

	ptrMap.m[t] = p
	ptrMap.Unlock()
	return &p.rtype
}

// fnv1 incorporates the list of bytes into the hash x using the FNV-1 hash function.
func fnv1(x uint32, list ...byte) uint32 {
	for _, b := range list {
		x = x*16777619 ^ uint32(b)
	}
	return x
}

func (t *rtype) Implements(u Type) bool {
	if u == nil {
		panic("reflect: nil type passed to Type.Implements")
	}
	if u.Kind() != Interface {
		panic("reflect: non-interface type passed to Type.Implements")
	}
	return implements(u.(*rtype), t)
}

func (t *rtype) AssignableTo(u Type) bool {
	if u == nil {
		panic("reflect: nil type passed to Type.AssignableTo")
	}
	uu := u.(*rtype)
	return directlyAssignable(uu, t) || implements(uu, t)
}

func (t *rtype) ConvertibleTo(u Type) bool {
	if u == nil {
		panic("reflect: nil type passed to Type.ConvertibleTo")
	}
	uu := u.(*rtype)
	return convertOp(uu, t) != nil
}

func (t *rtype) Comparable() bool {
	return t.alg != nil && t.alg.equal != nil
}

// implements returns true if the type V implements the interface type T.
func implements(T, V *rtype) bool {
	if T.Kind() != Interface {
		return false
	}
	t := (*interfaceType)(unsafe.Pointer(T))
	if len(t.methods) == 0 {
		return true
	}

	// The same algorithm applies in both cases, but the
	// method tables for an interface type and a concrete type
	// are different, so the code is duplicated.
	// In both cases the algorithm is a linear scan over the two
	// lists - T's methods and V's methods - simultaneously.
	// Since method tables are stored in a unique sorted order
	// (alphabetical, with no duplicate method names), the scan
	// through V's methods must hit a match for each of T's
	// methods along the way, or else V does not implement T.
	// This lets us run the scan in overall linear time instead of
	// the quadratic time  a naive search would require.
	// See also ../runtime/iface.c.
	if V.Kind() == Interface {
		v := (*interfaceType)(unsafe.Pointer(V))
		i := 0
		for j := 0; j < len(v.methods); j++ {
			tm := &t.methods[i]
			vm := &v.methods[j]
			if vm.name == tm.name && vm.pkgPath == tm.pkgPath && vm.typ == tm.typ {
				if i++; i >= len(t.methods) {
					return true
				}
			}
		}
		return false
	}

	v := V.uncommon()
	if v == nil {
		return false
	}
	i := 0
	for j := 0; j < len(v.methods); j++ {
		tm := &t.methods[i]
		vm := &v.methods[j]
		if vm.name == tm.name && vm.pkgPath == tm.pkgPath && vm.mtyp == tm.typ {
			if i++; i >= len(t.methods) {
				return true
			}
		}
	}
	return false
}

// directlyAssignable returns true if a value x of type V can be directly
// assigned (using memmove) to a value of type T.
// http://golang.org/doc/go_spec.html#Assignability
// Ignoring the interface rules (implemented elsewhere)
// and the ideal constant rules (no ideal constants at run time).
func directlyAssignable(T, V *rtype) bool {
	// x's type V is identical to T?
	if T == V {
		return true
	}

	// Otherwise at least one of T and V must be unnamed
	// and they must have the same kind.
	if T.Name() != "" && V.Name() != "" || T.Kind() != V.Kind() {
		return false
	}

	// x's type T and V must  have identical underlying types.
	return haveIdenticalUnderlyingType(T, V)
}

func haveIdenticalUnderlyingType(T, V *rtype) bool {
	if T == V {
		return true
	}

	kind := T.Kind()
	if kind != V.Kind() {
		return false
	}

	// Non-composite types of equal kind have same underlying type
	// (the predefined instance of the type).
	if Bool <= kind && kind <= Complex128 || kind == String || kind == UnsafePointer {
		return true
	}

	// Composite types.
	switch kind {
	case Array:
		return T.Elem() == V.Elem() && T.Len() == V.Len()

	case Chan:
		// Special case:
		// x is a bidirectional channel value, T is a channel type,
		// and x's type V and T have identical element types.
		if V.ChanDir() == BothDir && T.Elem() == V.Elem() {
			return true
		}

		// Otherwise continue test for identical underlying type.
		return V.ChanDir() == T.ChanDir() && T.Elem() == V.Elem()

	case Func:
		t := (*funcType)(unsafe.Pointer(T))
		v := (*funcType)(unsafe.Pointer(V))
		if t.dotdotdot != v.dotdotdot || len(t.in) != len(v.in) || len(t.out) != len(v.out) {
			return false
		}
		for i, typ := range t.in {
			if typ != v.in[i] {
				return false
			}
		}
		for i, typ := range t.out {
			if typ != v.out[i] {
				return false
			}
		}
		return true

	case Interface:
		t := (*interfaceType)(unsafe.Pointer(T))
		v := (*interfaceType)(unsafe.Pointer(V))
		if len(t.methods) == 0 && len(v.methods) == 0 {
			return true
		}
		// Might have the same methods but still
		// need a run time conversion.
		return false

	case Map:
		return T.Key() == V.Key() && T.Elem() == V.Elem()

	case Ptr, Slice:
		return T.Elem() == V.Elem()

	case Struct:
		t := (*structType)(unsafe.Pointer(T))
		v := (*structType)(unsafe.Pointer(V))
		if len(t.fields) != len(v.fields) {
			return false
		}
		for i := range t.fields {
			tf := &t.fields[i]
			vf := &v.fields[i]
			if tf.name != vf.name && (tf.name == nil || vf.name == nil || *tf.name != *vf.name) {
				return false
			}
			if tf.pkgPath != vf.pkgPath && (tf.pkgPath == nil || vf.pkgPath == nil || *tf.pkgPath != *vf.pkgPath) {
				return false
			}
			if tf.typ != vf.typ {
				return false
			}
			if tf.tag != vf.tag && (tf.tag == nil || vf.tag == nil || *tf.tag != *vf.tag) {
				return false
			}
			if tf.offset != vf.offset {
				return false
			}
		}
		return true
	}

	return false
}

// typelinks is implemented in package runtime.
// It returns a slice of all the 'typelink' information in the binary,
// which is to say a slice of known types, sorted by string.
// Note that strings are not unique identifiers for types:
// there can be more than one with a given string.
// Only types we might want to look up are included:
// channels, maps, slices, and arrays.
func typelinks() []*rtype

// typesByString returns the subslice of typelinks() whose elements have
// the given string representation.
// It may be empty (no known types with that string) or may have
// multiple elements (multiple types with that string).
func typesByString(s string) []*rtype {
	typ := typelinks()

	// We are looking for the first index i where the string becomes >= s.
	// This is a copy of sort.Search, with f(h) replaced by (*typ[h].string >= s).
	i, j := 0, len(typ)
	for i < j {
		h := i + (j-i)/2 // avoid overflow when computing h
		// i ≤ h < j
		if !(*typ[h].string >= s) {
			i = h + 1 // preserves f(i-1) == false
		} else {
			j = h // preserves f(j) == true
		}
	}
	// i == j, f(i-1) == false, and f(j) (= f(i)) == true  =>  answer is i.

	// Having found the first, linear scan forward to find the last.
	// We could do a second binary search, but the caller is going
	// to do a linear scan anyway.
	j = i
	for j < len(typ) && *typ[j].string == s {
		j++
	}

	// This slice will be empty if the string is not found.
	return typ[i:j]
}

// The lookupCache caches ChanOf, MapOf, and SliceOf lookups.
var lookupCache struct {
	sync.RWMutex
	m map[cacheKey]*rtype
}

// A cacheKey is the key for use in the lookupCache.
// Four values describe any of the types we are looking for:
// type kind, one or two subtypes, and an extra integer.
type cacheKey struct {
	kind  Kind
	t1    *rtype
	t2    *rtype
	extra uintptr
}

// cacheGet looks for a type under the key k in the lookupCache.
// If it finds one, it returns that type.
// If not, it returns nil with the cache locked.
// The caller is expected to use cachePut to unlock the cache.
func cacheGet(k cacheKey) Type {
	lookupCache.RLock()
	t := lookupCache.m[k]
	lookupCache.RUnlock()
	if t != nil {
		return t
	}

	lookupCache.Lock()
	t = lookupCache.m[k]
	if t != nil {
		lookupCache.Unlock()
		return t
	}

	if lookupCache.m == nil {
		lookupCache.m = make(map[cacheKey]*rtype)
	}

	return nil
}

// cachePut stores the given type in the cache, unlocks the cache,
// and returns the type. It is expected that the cache is locked
// because cacheGet returned nil.
func cachePut(k cacheKey, t *rtype) Type {
	lookupCache.m[k] = t
	lookupCache.Unlock()
	return t
}

// ChanOf returns the channel type with the given direction and element type.
// For example, if t represents int, ChanOf(RecvDir, t) represents <-chan int.
//
// The gc runtime imposes a limit of 64 kB on channel element types.
// If t's size is equal to or exceeds this limit, ChanOf panics.
func ChanOf(dir ChanDir, t Type) Type {
	typ := t.(*rtype)

	// Look in cache.
	ckey := cacheKey{Chan, typ, nil, uintptr(dir)}
	if ch := cacheGet(ckey); ch != nil {
		return ch
	}

	// This restriction is imposed by the gc compiler and the runtime.
	if typ.size >= 1<<16 {
		lookupCache.Unlock()
		panic("reflect.ChanOf: element size too large")
	}

	// Look in known types.
	// TODO: Precedence when constructing string.
	var s string
	switch dir {
	default:
		lookupCache.Unlock()
		panic("reflect.ChanOf: invalid dir")
	case SendDir:
		s = "chan<- " + *typ.string
	case RecvDir:
		s = "<-chan " + *typ.string
	case BothDir:
		s = "chan " + *typ.string
	}
	for _, tt := range typesByString(s) {
		ch := (*chanType)(unsafe.Pointer(tt))
		if ch.elem == typ && ch.dir == uintptr(dir) {
			return cachePut(ckey, tt)
		}
	}

	// Make a channel type.
	var ichan interface{} = (chan unsafe.Pointer)(nil)
	prototype := *(**chanType)(unsafe.Pointer(&ichan))
	ch := new(chanType)
	*ch = *prototype
	ch.string = &s
	ch.hash = fnv1(typ.hash, 'c', byte(dir))
	ch.elem = typ
	ch.uncommonType = nil
	ch.ptrToThis = nil
	ch.zero = unsafe.Pointer(&make([]byte, ch.size)[0])

	return cachePut(ckey, &ch.rtype)
}

func ismapkey(*rtype) bool // implemented in runtime

// MapOf returns the map type with the given key and element types.
// For example, if k represents int and e represents string,
// MapOf(k, e) represents map[int]string.
//
// If the key type is not a valid map key type (that is, if it does
// not implement Go's == operator), MapOf panics.
func MapOf(key, elem Type) Type {
	ktyp := key.(*rtype)
	etyp := elem.(*rtype)

	if !ismapkey(ktyp) {
		panic("reflect.MapOf: invalid key type " + ktyp.String())
	}

	// Look in cache.
	ckey := cacheKey{Map, ktyp, etyp, 0}
	if mt := cacheGet(ckey); mt != nil {
		return mt
	}

	// Look in known types.
	s := "map[" + *ktyp.string + "]" + *etyp.string
	for _, tt := range typesByString(s) {
		mt := (*mapType)(unsafe.Pointer(tt))
		if mt.key == ktyp && mt.elem == etyp {
			return cachePut(ckey, tt)
		}
	}

	// Make a map type.
	var imap interface{} = (map[unsafe.Pointer]unsafe.Pointer)(nil)
	prototype := *(**mapType)(unsafe.Pointer(&imap))
	mt := new(mapType)
	*mt = *prototype
	mt.string = &s
	mt.hash = fnv1(etyp.hash, 'm', byte(ktyp.hash>>24), byte(ktyp.hash>>16), byte(ktyp.hash>>8), byte(ktyp.hash))
	mt.key = ktyp
	mt.elem = etyp
	mt.bucket = bucketOf(ktyp, etyp)
	if ktyp.size > maxKeySize {
		mt.keysize = uint8(ptrSize)
		mt.indirectkey = 1
	} else {
		mt.keysize = uint8(ktyp.size)
		mt.indirectkey = 0
	}
	if etyp.size > maxValSize {
		mt.valuesize = uint8(ptrSize)
		mt.indirectvalue = 1
	} else {
		mt.valuesize = uint8(etyp.size)
		mt.indirectvalue = 0
	}
	mt.bucketsize = uint16(mt.bucket.size)
	mt.uncommonType = nil
	mt.ptrToThis = nil
	mt.zero = unsafe.Pointer(&make([]byte, mt.size)[0])

	return cachePut(ckey, &mt.rtype)
}

// gcProg is a helper type for generatation of GC pointer info.
type gcProg struct {
	gc   []byte
	size uintptr // size of type in bytes
}

func (gc *gcProg) append(v byte) {
	gc.align(unsafe.Sizeof(uintptr(0)))
	gc.appendWord(v)
}

// Appends t's type info to the current program.
func (gc *gcProg) appendProg(t *rtype) {
	gc.align(uintptr(t.align))
	if !t.pointers() {
		gc.size += t.size
		return
	}
	switch t.Kind() {
	default:
		panic("reflect: non-pointer type marked as having pointers")
	case Ptr, UnsafePointer, Chan, Func, Map:
		gc.appendWord(bitsPointer)
	case Slice:
		gc.appendWord(bitsPointer)
		gc.appendWord(bitsScalar)
		gc.appendWord(bitsScalar)
	case String:
		gc.appendWord(bitsPointer)
		gc.appendWord(bitsScalar)
	case Array:
		c := t.Len()
		e := t.Elem().common()
		for i := 0; i < c; i++ {
			gc.appendProg(e)
		}
	case Interface:
		gc.appendWord(bitsPointer)
		gc.appendWord(bitsPointer)
	case Struct:
		c := t.NumField()
		for i := 0; i < c; i++ {
			gc.appendProg(t.Field(i).Type.common())
		}
		gc.align(uintptr(t.align))
	}
}

func (gc *gcProg) appendWord(v byte) {
	ptrsize := unsafe.Sizeof(uintptr(0))
	if gc.size%ptrsize != 0 {
		panic("reflect: unaligned GC program")
	}
	nptr := gc.size / ptrsize
	for uintptr(len(gc.gc)) < nptr/2+1 {
		gc.gc = append(gc.gc, 0x44) // BitsScalar
	}
	gc.gc[nptr/2] &= ^(3 << ((nptr%2)*4 + 2))
	gc.gc[nptr/2] |= v << ((nptr%2)*4 + 2)
	gc.size += ptrsize
}

func (gc *gcProg) finalize() unsafe.Pointer {
	if gc.size == 0 {
		return nil
	}
	ptrsize := unsafe.Sizeof(uintptr(0))
	gc.align(ptrsize)
	nptr := gc.size / ptrsize
	for uintptr(len(gc.gc)) < nptr/2+1 {
		gc.gc = append(gc.gc, 0x44) // BitsScalar
	}
	// If number of words is odd, repeat the mask twice.
	// Compiler does the same.
	if nptr%2 != 0 {
		for i := uintptr(0); i < nptr; i++ {
			gc.appendWord(extractGCWord(gc.gc, i))
		}
	}
	return unsafe.Pointer(&gc.gc[0])
}

func extractGCWord(gc []byte, i uintptr) byte {
	return (gc[i/2] >> ((i%2)*4 + 2)) & 3
}

func (gc *gcProg) align(a uintptr) {
	gc.size = align(gc.size, a)
}

// These constants must stay in sync with ../runtime/mgc0.h.
const (
	bitsScalar  = 1
	bitsPointer = 2

	bitsIface = 2
	bitsEface = 3
)

// Make sure these routines stay in sync with ../../runtime/hashmap.go!
// These types exist only for GC, so we only fill out GC relevant info.
// Currently, that's just size and the GC program.  We also fill in string
// for possible debugging use.
const (
	bucketSize = 8
	maxKeySize = 128
	maxValSize = 128
)

func bucketOf(ktyp, etyp *rtype) *rtype {
	if ktyp.size > maxKeySize {
		ktyp = PtrTo(ktyp).(*rtype)
	}
	if etyp.size > maxValSize {
		etyp = PtrTo(etyp).(*rtype)
	}
	ptrsize := unsafe.Sizeof(uintptr(0))

	var gc gcProg
	// topbits
	for i := 0; i < int(bucketSize*unsafe.Sizeof(uint8(0))/ptrsize); i++ {
		gc.append(bitsScalar)
	}
	gc.append(bitsPointer) // overflow
	if runtime.GOARCH == "amd64p32" {
		gc.append(bitsScalar)
	}
	// keys
	for i := 0; i < bucketSize; i++ {
		gc.appendProg(ktyp)
	}
	// values
	for i := 0; i < bucketSize; i++ {
		gc.appendProg(etyp)
	}

	b := new(rtype)
	b.size = gc.size
	b.gc[0] = gc.finalize()
	s := "bucket(" + *ktyp.string + "," + *etyp.string + ")"
	b.string = &s
	return b
}

// SliceOf returns the slice type with element type t.
// For example, if t represents int, SliceOf(t) represents []int.
func SliceOf(t Type) Type {
	typ := t.(*rtype)

	// Look in cache.
	ckey := cacheKey{Slice, typ, nil, 0}
	if slice := cacheGet(ckey); slice != nil {
		return slice
	}

	// Look in known types.
	s := "[]" + *typ.string
	for _, tt := range typesByString(s) {
		slice := (*sliceType)(unsafe.Pointer(tt))
		if slice.elem == typ {
			return cachePut(ckey, tt)
		}
	}

	// Make a slice type.
	var islice interface{} = ([]unsafe.Pointer)(nil)
	prototype := *(**sliceType)(unsafe.Pointer(&islice))
	slice := new(sliceType)
	*slice = *prototype
	slice.string = &s
	slice.hash = fnv1(typ.hash, '[')
	slice.elem = typ
	slice.uncommonType = nil
	slice.ptrToThis = nil
	slice.zero = unsafe.Pointer(&make([]byte, slice.size)[0])

	return cachePut(ckey, &slice.rtype)
}

// ArrayOf returns the array type with the given count and element type.
// For example, if t represents int, ArrayOf(5, t) represents [5]int.
//
// If the resulting type would be larger than the available address space,
// ArrayOf panics.
//
// TODO(rsc): Unexported for now. Export once the alg field is set correctly
// for the type. This may require significant work.
//
// TODO(rsc): TestArrayOf is also disabled. Re-enable.
func arrayOf(count int, elem Type) Type {
	typ := elem.(*rtype)
	slice := SliceOf(elem)

	// Look in cache.
	ckey := cacheKey{Array, typ, nil, uintptr(count)}
	if slice := cacheGet(ckey); slice != nil {
		return slice
	}

	// Look in known types.
	s := "[" + strconv.Itoa(count) + "]" + *typ.string
	for _, tt := range typesByString(s) {
		slice := (*sliceType)(unsafe.Pointer(tt))
		if slice.elem == typ {
			return cachePut(ckey, tt)
		}
	}

	// Make an array type.
	var iarray interface{} = [1]unsafe.Pointer{}
	prototype := *(**arrayType)(unsafe.Pointer(&iarray))
	array := new(arrayType)
	*array = *prototype
	// TODO: Set extra kind bits correctly.
	array.string = &s
	array.hash = fnv1(typ.hash, '[')
	for n := uint32(count); n > 0; n >>= 8 {
		array.hash = fnv1(array.hash, byte(n))
	}
	array.hash = fnv1(array.hash, ']')
	array.elem = typ
	max := ^uintptr(0) / typ.size
	if uintptr(count) > max {
		panic("reflect.ArrayOf: array size would exceed virtual address space")
	}
	array.size = typ.size * uintptr(count)
	array.align = typ.align
	array.fieldAlign = typ.fieldAlign
	// TODO: array.alg
	// TODO: array.gc
	// TODO:
	array.uncommonType = nil
	array.ptrToThis = nil
	array.zero = unsafe.Pointer(&make([]byte, array.size)[0])
	array.len = uintptr(count)
	array.slice = slice.(*rtype)

	return cachePut(ckey, &array.rtype)
}

// toType converts from a *rtype to a Type that can be returned
// to the client of package reflect. In gc, the only concern is that
// a nil *rtype must be replaced by a nil Type, but in gccgo this
// function takes care of ensuring that multiple *rtype for the same
// type are coalesced into a single Type.
func toType(t *rtype) Type {
	if t == nil {
		return nil
	}
	return t
}

type layoutKey struct {
	t    *rtype // function signature
	rcvr *rtype // receiver type, or nil if none
}

type layoutType struct {
	t         *rtype
	argSize   uintptr // size of arguments
	retOffset uintptr // offset of return values.
	stack     *bitVector
}

var layoutCache struct {
	sync.RWMutex
	m map[layoutKey]layoutType
}

// funcLayout computes a struct type representing the layout of the
// function arguments and return values for the function type t.
// If rcvr != nil, rcvr specifies the type of the receiver.
// The returned type exists only for GC, so we only fill out GC relevant info.
// Currently, that's just size and the GC program.  We also fill in
// the name for possible debugging use.
func funcLayout(t *rtype, rcvr *rtype) (frametype *rtype, argSize, retOffset uintptr, stack *bitVector) {
	if t.Kind() != Func {
		panic("reflect: funcLayout of non-func type")
	}
	if rcvr != nil && rcvr.Kind() == Interface {
		panic("reflect: funcLayout with interface receiver " + rcvr.String())
	}
	k := layoutKey{t, rcvr}
	layoutCache.RLock()
	if x := layoutCache.m[k]; x.t != nil {
		layoutCache.RUnlock()
		return x.t, x.argSize, x.retOffset, x.stack
	}
	layoutCache.RUnlock()
	layoutCache.Lock()
	if x := layoutCache.m[k]; x.t != nil {
		layoutCache.Unlock()
		return x.t, x.argSize, x.retOffset, x.stack
	}

	tt := (*funcType)(unsafe.Pointer(t))

	// compute gc program & stack bitmap for arguments
	stack = new(bitVector)
	var gc gcProg
	var offset uintptr
	if rcvr != nil {
		// Reflect uses the "interface" calling convention for
		// methods, where receivers take one word of argument
		// space no matter how big they actually are.
		if ifaceIndir(rcvr) {
			// we pass a pointer to the receiver.
			gc.append(bitsPointer)
			stack.append2(bitsPointer)
		} else if rcvr.pointers() {
			// rcvr is a one-word pointer object.  Its gc program
			// is just what we need here.
			gc.append(bitsPointer)
			stack.append2(bitsPointer)
		} else {
			gc.append(bitsScalar)
			stack.append2(bitsScalar)
		}
		offset += ptrSize
	}
	for _, arg := range tt.in {
		gc.appendProg(arg)
		addTypeBits(stack, &offset, arg)
	}
	argSize = gc.size
	if runtime.GOARCH == "amd64p32" {
		gc.align(8)
	}
	gc.align(ptrSize)
	retOffset = gc.size
	for _, res := range tt.out {
		gc.appendProg(res)
		// stack map does not need result bits
	}
	gc.align(ptrSize)

	// build dummy rtype holding gc program
	x := new(rtype)
	x.size = gc.size
	x.gc[0] = gc.finalize()
	var s string
	if rcvr != nil {
		s = "methodargs(" + *rcvr.string + ")(" + *t.string + ")"
	} else {
		s = "funcargs(" + *t.string + ")"
	}
	x.string = &s

	// cache result for future callers
	if layoutCache.m == nil {
		layoutCache.m = make(map[layoutKey]layoutType)
	}
	layoutCache.m[k] = layoutType{
		t:         x,
		argSize:   argSize,
		retOffset: retOffset,
		stack:     stack,
	}
	layoutCache.Unlock()
	return x, argSize, retOffset, stack
}

// ifaceIndir reports whether t is stored indirectly in an interface value.
func ifaceIndir(t *rtype) bool {
	return t.kind&kindDirectIface == 0
}

// Layout matches runtime.BitVector (well enough).
type bitVector struct {
	n    uint32 // number of bits
	data []byte
}

// append a bit pair to the bitmap.
func (bv *bitVector) append2(bits uint8) {
	// assume bv.n is a multiple of 2, since append2 is the only operation.
	if bv.n%8 == 0 {
		bv.data = append(bv.data, 0)
	}
	bv.data[bv.n/8] |= bits << (bv.n % 8)
	bv.n += 2
}

func addTypeBits(bv *bitVector, offset *uintptr, t *rtype) {
	*offset = align(*offset, uintptr(t.align))
	if t.kind&kindNoPointers != 0 {
		*offset += t.size
		return
	}

	switch Kind(t.kind & kindMask) {
	case Chan, Func, Map, Ptr, Slice, String, UnsafePointer:
		// 1 pointer at start of representation
		for bv.n < 2*uint32(*offset/uintptr(ptrSize)) {
			bv.append2(bitsScalar)
		}
		bv.append2(bitsPointer)

	case Interface:
		// 2 pointers
		for bv.n < 2*uint32(*offset/uintptr(ptrSize)) {
			bv.append2(bitsScalar)
		}
		bv.append2(bitsPointer)
		bv.append2(bitsPointer)

	case Array:
		// repeat inner type
		tt := (*arrayType)(unsafe.Pointer(t))
		for i := 0; i < int(tt.len); i++ {
			addTypeBits(bv, offset, tt.elem)
		}

	case Struct:
		// apply fields
		tt := (*structType)(unsafe.Pointer(t))
		start := *offset
		for i := range tt.fields {
			f := &tt.fields[i]
			off := start + f.offset
			addTypeBits(bv, &off, f.typ)
		}
	}

	*offset += t.size
}