1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains operations on unsigned multi-precision integers.
// These are the building blocks for the operations on signed integers
// and rationals.
// This package implements multi-precision arithmetic (big numbers).
// The following numeric types are supported:
//
// - Int signed integers
//
// All methods on Int take the result as the receiver; if it is one
// of the operands it may be overwritten (and its memory reused).
// To enable chaining of operations, the result is also returned.
//
// If possible, one should use big over bignum as the latter is headed for
// deprecation.
//
package big
import "rand"
// An unsigned integer x of the form
//
// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
//
// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
// with the digits x[i] as the slice elements.
//
// A number is normalized if the slice contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur but are
// always normalized before returning the final result. The normalized
// representation of 0 is the empty or nil slice (length = 0).
// TODO(gri) - convert these routines into methods for type 'nat'
// - decide if type 'nat' should be exported
func normN(z []Word) []Word {
i := len(z);
for i > 0 && z[i-1] == 0 {
i--
}
z = z[0:i];
return z;
}
func makeN(z []Word, m int, clear bool) []Word {
if len(z) > m {
z = z[0:m]; // reuse z - has at least one extra word for a carry, if any
if clear {
for i := range z {
z[i] = 0
}
}
return z;
}
c := 4; // minimum capacity
if m > c {
c = m
}
return make([]Word, m, c+1); // +1: extra word for a carry, if any
}
func newN(z []Word, x uint64) []Word {
if x == 0 {
return makeN(z, 0, false)
}
// single-digit values
if x == uint64(Word(x)) {
z = makeN(z, 1, false);
z[0] = Word(x);
return z;
}
// compute number of words n required to represent x
n := 0;
for t := x; t > 0; t >>= _W {
n++
}
// split x into n words
z = makeN(z, n, false);
for i := 0; i < n; i++ {
z[i] = Word(x & _M);
x >>= _W;
}
return z;
}
func setN(z, x []Word) []Word {
z = makeN(z, len(x), false);
for i, d := range x {
z[i] = d
}
return z;
}
func addNN(z, x, y []Word) []Word {
m := len(x);
n := len(y);
switch {
case m < n:
return addNN(z, y, x)
case m == 0:
// n == 0 because m >= n; result is 0
return makeN(z, 0, false)
case n == 0:
// result is x
return setN(z, x)
}
// m > 0
z = makeN(z, m, false);
c := addVV(&z[0], &x[0], &y[0], n);
if m > n {
c = addVW(&z[n], &x[n], c, m-n)
}
if c > 0 {
z = z[0 : m+1];
z[m] = c;
}
return z;
}
func subNN(z, x, y []Word) []Word {
m := len(x);
n := len(y);
switch {
case m < n:
panic("underflow")
case m == 0:
// n == 0 because m >= n; result is 0
return makeN(z, 0, false)
case n == 0:
// result is x
return setN(z, x)
}
// m > 0
z = makeN(z, m, false);
c := subVV(&z[0], &x[0], &y[0], n);
if m > n {
c = subVW(&z[n], &x[n], c, m-n)
}
if c != 0 {
panic("underflow")
}
z = normN(z);
return z;
}
func cmpNN(x, y []Word) (r int) {
m := len(x);
n := len(y);
if m != n || m == 0 {
switch {
case m < n:
r = -1
case m > n:
r = 1
}
return;
}
i := m - 1;
for i > 0 && x[i] == y[i] {
i--
}
switch {
case x[i] < y[i]:
r = -1
case x[i] > y[i]:
r = 1
}
return;
}
func mulAddNWW(z, x []Word, y, r Word) []Word {
m := len(x);
if m == 0 || y == 0 {
return newN(z, uint64(r)) // result is r
}
// m > 0
z = makeN(z, m, false);
c := mulAddVWW(&z[0], &x[0], y, r, m);
if c > 0 {
z = z[0 : m+1];
z[m] = c;
}
return z;
}
func mulNN(z, x, y []Word) []Word {
m := len(x);
n := len(y);
switch {
case m < n:
return mulNN(z, y, x)
case m == 0 || n == 0:
return makeN(z, 0, false)
case n == 1:
return mulAddNWW(z, x, y[0], 0)
}
// m >= n && m > 1 && n > 1
z = makeN(z, m+n, true);
if &z[0] == &x[0] || &z[0] == &y[0] {
z = makeN(nil, m+n, true) // z is an alias for x or y - cannot reuse
}
for i := 0; i < n; i++ {
if f := y[i]; f != 0 {
z[m+i] = addMulVVW(&z[i], &x[0], f, m)
}
}
z = normN(z);
return z;
}
// q = (x-r)/y, with 0 <= r < y
func divNW(z, x []Word, y Word) (q []Word, r Word) {
m := len(x);
switch {
case y == 0:
panic("division by zero")
case y == 1:
q = setN(z, x); // result is x
return;
case m == 0:
q = setN(z, nil); // result is 0
return;
}
// m > 0
z = makeN(z, m, false);
r = divWVW(&z[0], 0, &x[0], y, m);
q = normN(z);
return;
}
func divNN(z, z2, u, v []Word) (q, r []Word) {
if len(v) == 0 {
panic("Divide by zero undefined")
}
if cmpNN(u, v) < 0 {
q = makeN(z, 0, false);
r = setN(z2, u);
return;
}
if len(v) == 1 {
var rprime Word;
q, rprime = divNW(z, u, v[0]);
if rprime > 0 {
r = makeN(z2, 1, false);
r[0] = rprime;
} else {
r = makeN(z2, 0, false)
}
return;
}
q, r = divLargeNN(z, z2, u, v);
return;
}
// q = (uIn-r)/v, with 0 <= r < y
// See Knuth, Volume 2, section 4.3.1, Algorithm D.
// Preconditions:
// len(v) >= 2
// len(uIn) >= len(v)
func divLargeNN(z, z2, uIn, v []Word) (q, r []Word) {
n := len(v);
m := len(uIn) - len(v);
u := makeN(z2, len(uIn)+1, false);
qhatv := make([]Word, len(v)+1);
q = makeN(z, m+1, false);
// D1.
shift := leadingZeroBits(v[n-1]);
shiftLeft(v, v, shift);
shiftLeft(u, uIn, shift);
u[len(uIn)] = uIn[len(uIn)-1] >> (_W - uint(shift));
// D2.
for j := m; j >= 0; j-- {
// D3.
var qhat Word;
if u[j+n] == v[n-1] {
qhat = _B - 1
} else {
var rhat Word;
qhat, rhat = divWW_g(u[j+n], u[j+n-1], v[n-1]);
// x1 | x2 = q̂v_{n-2}
x1, x2 := mulWW_g(qhat, v[n-2]);
// test if q̂v_{n-2} > br̂ + u_{j+n-2}
for greaterThan(x1, x2, rhat, u[j+n-2]) {
qhat--;
prevRhat := rhat;
rhat += v[n-1];
// v[n-1] >= 0, so this tests for overflow.
if rhat < prevRhat {
break
}
x1, x2 = mulWW_g(qhat, v[n-2]);
}
}
// D4.
qhatv[len(v)] = mulAddVWW(&qhatv[0], &v[0], qhat, 0, len(v));
c := subVV(&u[j], &u[j], &qhatv[0], len(qhatv));
if c != 0 {
c := addVV(&u[j], &u[j], &v[0], len(v));
u[j+len(v)] += c;
qhat--;
}
q[j] = qhat;
}
q = normN(q);
shiftRight(u, u, shift);
shiftRight(v, v, shift);
r = normN(u);
return q, r;
}
// log2 computes the integer binary logarithm of x.
// The result is the integer n for which 2^n <= x < 2^(n+1).
// If x == 0, the result is -1.
func log2(x Word) int {
n := 0;
for ; x > 0; x >>= 1 {
n++
}
return n - 1;
}
// log2N computes the integer binary logarithm of x.
// The result is the integer n for which 2^n <= x < 2^(n+1).
// If x == 0, the result is -1.
func log2N(x []Word) int {
m := len(x);
if m > 0 {
return (m-1)*_W + log2(x[m-1])
}
return -1;
}
func hexValue(ch byte) int {
var d byte;
switch {
case '0' <= ch && ch <= '9':
d = ch - '0'
case 'a' <= ch && ch <= 'f':
d = ch - 'a' + 10
case 'A' <= ch && ch <= 'F':
d = ch - 'A' + 10
default:
return -1
}
return int(d);
}
// scanN returns the natural number corresponding to the
// longest possible prefix of s representing a natural number in a
// given conversion base, the actual conversion base used, and the
// prefix length. The syntax of natural numbers follows the syntax
// of unsigned integer literals in Go.
//
// If the base argument is 0, the string prefix determines the actual
// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the
// ``0'' prefix selects base 8. Otherwise the selected base is 10.
//
func scanN(z []Word, s string, base int) ([]Word, int, int) {
// determine base if necessary
i, n := 0, len(s);
if base == 0 {
base = 10;
if n > 0 && s[0] == '0' {
if n > 1 && (s[1] == 'x' || s[1] == 'X') {
if n == 2 {
// Reject a string which is just '0x' as nonsense.
return nil, 0, 0
}
base, i = 16, 2;
} else {
base, i = 8, 1
}
}
}
if base < 2 || 16 < base {
panic("illegal base")
}
// convert string
z = makeN(z, len(z), false);
for ; i < n; i++ {
d := hexValue(s[i]);
if 0 <= d && d < base {
z = mulAddNWW(z, z, Word(base), Word(d))
} else {
break
}
}
return z, base, i;
}
// string converts x to a string for a given base, with 2 <= base <= 16.
// TODO(gri) in the style of the other routines, perhaps this should take
// a []byte buffer and return it
func stringN(x []Word, base int) string {
if base < 2 || 16 < base {
panic("illegal base")
}
if len(x) == 0 {
return "0"
}
// allocate buffer for conversion
i := (log2N(x)+1)/log2(Word(base)) + 1; // +1: round up
s := make([]byte, i);
// don't destroy x
q := setN(nil, x);
// convert
for len(q) > 0 {
i--;
var r Word;
q, r = divNW(q, q, Word(base));
s[i] = "0123456789abcdef"[r];
}
return string(s[i:]);
}
// leadingZeroBits returns the number of leading zero bits in x.
func leadingZeroBits(x Word) int {
c := 0;
if x < 1<<(_W/2) {
x <<= _W / 2;
c = _W / 2;
}
for i := 0; x != 0; i++ {
if x&(1<<(_W-1)) != 0 {
return i + c
}
x <<= 1;
}
return _W;
}
const deBruijn32 = 0x077CB531
var deBruijn32Lookup = []byte{
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
}
const deBruijn64 = 0x03f79d71b4ca8b09
var deBruijn64Lookup = []byte{
0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
}
// trailingZeroBits returns the number of consecutive zero bits on the right
// side of the given Word.
// See Knuth, volume 4, section 7.3.1
func trailingZeroBits(x Word) int {
// x & -x leaves only the right-most bit set in the word. Let k be the
// index of that bit. Since only a single bit is set, the value is two
// to the power of k. Multipling by a power of two is equivalent to
// left shifting, in this case by k bits. The de Bruijn constant is
// such that all six bit, consecutive substrings are distinct.
// Therefore, if we have a left shifted version of this constant we can
// find by how many bits it was shifted by looking at which six bit
// substring ended up at the top of the word.
switch _W {
case 32:
return int(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])
case 64:
return int(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])
default:
panic("Unknown word size")
}
return 0;
}
func shiftLeft(dst, src []Word, n int) {
if len(src) == 0 {
return
}
ñ := _W - uint(n);
for i := len(src) - 1; i >= 1; i-- {
dst[i] = src[i] << uint(n);
dst[i] |= src[i-1] >> ñ;
}
dst[0] = src[0] << uint(n);
}
func shiftRight(dst, src []Word, n int) {
if len(src) == 0 {
return
}
ñ := _W - uint(n);
for i := 0; i < len(src)-1; i++ {
dst[i] = src[i] >> uint(n);
dst[i] |= src[i+1] << ñ;
}
dst[len(src)-1] = src[len(src)-1] >> uint(n);
}
// greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2)
func greaterThan(x1, x2, y1, y2 Word) bool { return x1 > y1 || x1 == y1 && x2 > y2 }
// modNW returns x % d.
func modNW(x []Word, d Word) (r Word) {
// TODO(agl): we don't actually need to store the q value.
q := makeN(nil, len(x), false);
return divWVW(&q[0], 0, &x[0], d, len(x));
}
// powersOfTwoDecompose finds q and k such that q * 1<<k = n and q is odd.
func powersOfTwoDecompose(n []Word) (q []Word, k Word) {
if len(n) == 0 {
return n, 0
}
zeroWords := 0;
for n[zeroWords] == 0 {
zeroWords++
}
// One of the words must be non-zero by invariant, therefore
// zeroWords < len(n).
x := trailingZeroBits(n[zeroWords]);
q = makeN(nil, len(n)-zeroWords, false);
shiftRight(q, n[zeroWords:], x);
k = Word(_W*zeroWords + x);
return;
}
// randomN creates a random integer in [0..limit), using the space in z if
// possible. n is the bit length of limit.
func randomN(z []Word, rand *rand.Rand, limit []Word, n int) []Word {
bitLengthOfMSW := uint(n % _W);
mask := Word((1 << bitLengthOfMSW) - 1);
z = makeN(z, len(limit), false);
for {
for i := range z {
switch _W {
case 32:
z[i] = Word(rand.Uint32())
case 64:
z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
}
}
z[len(limit)-1] &= mask;
if cmpNN(z, limit) < 0 {
break
}
}
return z;
}
// If m != nil, expNNN calculates x**y mod m. Otherwise it calculates x**y. It
// reuses the storage of z if possible.
func expNNN(z, x, y, m []Word) []Word {
if len(y) == 0 {
z = makeN(z, 1, false);
z[0] = 1;
return z;
}
if m != nil {
// We likely end up being as long as the modulus.
z = makeN(z, len(m), false)
}
z = setN(z, x);
v := y[len(y)-1];
// It's invalid for the most significant word to be zero, therefore we
// will find a one bit.
shift := leadingZeros(v) + 1;
v <<= shift;
var q []Word;
const mask = 1 << (_W - 1);
// We walk through the bits of the exponent one by one. Each time we
// see a bit, we square, thus doubling the power. If the bit is a one,
// we also multiply by x, thus adding one to the power.
w := _W - int(shift);
for j := 0; j < w; j++ {
z = mulNN(z, z, z);
if v&mask != 0 {
z = mulNN(z, z, x)
}
if m != nil {
q, z = divNN(q, z, z, m)
}
v <<= 1;
}
for i := len(y) - 2; i >= 0; i-- {
v = y[i];
for j := 0; j < _W; j++ {
z = mulNN(z, z, z);
if v&mask != 0 {
z = mulNN(z, z, x)
}
if m != nil {
q, z = divNN(q, z, z, m)
}
v <<= 1;
}
}
return z;
}
// lenN returns the bit length of z.
func lenN(z []Word) int {
if len(z) == 0 {
return 0
}
return (len(z)-1)*_W + (_W - leadingZeroBits(z[len(z)-1]));
}
const (
primesProduct32 = 0xC0CFD797; // Π {p ∈ primes, 2 < p <= 29}
primesProduct64 = 0xE221F97C30E94E1D; // Π {p ∈ primes, 2 < p <= 53}
)
var bigOne = []Word{1}
var bigTwo = []Word{2}
// ProbablyPrime performs n Miller-Rabin tests to check whether n is prime.
// If it returns true, n is prime with probability 1 - 1/4^n.
// If it returns false, n is not prime.
func probablyPrime(n []Word, reps int) bool {
if len(n) == 0 {
return false
}
if len(n) == 1 {
if n[0]%2 == 0 {
return n[0] == 2
}
// We have to exclude these cases because we reject all
// multiples of these numbers below.
if n[0] == 3 || n[0] == 5 || n[0] == 7 || n[0] == 11 ||
n[0] == 13 || n[0] == 17 || n[0] == 19 || n[0] == 23 ||
n[0] == 29 || n[0] == 31 || n[0] == 37 || n[0] == 41 ||
n[0] == 43 || n[0] == 47 || n[0] == 53 {
return true
}
}
var r Word;
switch _W {
case 32:
r = modNW(n, primesProduct32)
case 64:
r = modNW(n, primesProduct64&_M)
default:
panic("Unknown word size")
}
if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 ||
r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 {
return false
}
if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 ||
r%43 == 0 || r%47 == 0 || r%53 == 0) {
return false
}
nm1 := subNN(nil, n, bigOne);
// 1<<k * q = nm1;
q, k := powersOfTwoDecompose(nm1);
nm3 := subNN(nil, nm1, bigTwo);
rand := rand.New(rand.NewSource(int64(n[0])));
var x, y, quotient []Word;
nm3Len := lenN(nm3);
NextRandom:
for i := 0; i < reps; i++ {
x = randomN(x, rand, nm3, nm3Len);
addNN(x, x, bigTwo);
y = expNNN(y, x, q, n);
if cmpNN(y, bigOne) == 0 || cmpNN(y, nm1) == 0 {
continue
}
for j := Word(1); j < k; j++ {
y = mulNN(y, y, y);
quotient, y = divNN(quotient, y, y, n);
if cmpNN(y, nm1) == 0 {
continue NextRandom
}
if cmpNN(y, bigOne) == 0 {
return false
}
}
return false;
}
return true;
}
|