summaryrefslogtreecommitdiff
path: root/src/runtime/proc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/proc.c')
-rw-r--r--src/runtime/proc.c3521
1 files changed, 0 insertions, 3521 deletions
diff --git a/src/runtime/proc.c b/src/runtime/proc.c
deleted file mode 100644
index 8462c4b1d..000000000
--- a/src/runtime/proc.c
+++ /dev/null
@@ -1,3521 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include "runtime.h"
-#include "arch_GOARCH.h"
-#include "zaexperiment.h"
-#include "malloc.h"
-#include "stack.h"
-#include "race.h"
-#include "type.h"
-#include "mgc0.h"
-#include "textflag.h"
-
-// Goroutine scheduler
-// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
-//
-// The main concepts are:
-// G - goroutine.
-// M - worker thread, or machine.
-// P - processor, a resource that is required to execute Go code.
-// M must have an associated P to execute Go code, however it can be
-// blocked or in a syscall w/o an associated P.
-//
-// Design doc at http://golang.org/s/go11sched.
-
-enum
-{
- // Number of goroutine ids to grab from runtime·sched.goidgen to local per-P cache at once.
- // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
- GoidCacheBatch = 16,
-};
-
-SchedT runtime·sched;
-int32 runtime·gomaxprocs;
-uint32 runtime·needextram;
-bool runtime·iscgo;
-M runtime·m0;
-G runtime·g0; // idle goroutine for m0
-G* runtime·lastg;
-M* runtime·allm;
-M* runtime·extram;
-P* runtime·allp[MaxGomaxprocs+1];
-int8* runtime·goos;
-int32 runtime·ncpu;
-int32 runtime·newprocs;
-
-Mutex runtime·allglock; // the following vars are protected by this lock or by stoptheworld
-G** runtime·allg;
-Slice runtime·allgs;
-uintptr runtime·allglen;
-ForceGCState runtime·forcegc;
-
-void runtime·mstart(void);
-static void runqput(P*, G*);
-static G* runqget(P*);
-static bool runqputslow(P*, G*, uint32, uint32);
-static G* runqsteal(P*, P*);
-static void mput(M*);
-static M* mget(void);
-static void mcommoninit(M*);
-static void schedule(void);
-static void procresize(int32);
-static void acquirep(P*);
-static P* releasep(void);
-static void newm(void(*)(void), P*);
-static void stopm(void);
-static void startm(P*, bool);
-static void handoffp(P*);
-static void wakep(void);
-static void stoplockedm(void);
-static void startlockedm(G*);
-static void sysmon(void);
-static uint32 retake(int64);
-static void incidlelocked(int32);
-static void checkdead(void);
-static void exitsyscall0(G*);
-void runtime·park_m(G*);
-static void goexit0(G*);
-static void gfput(P*, G*);
-static G* gfget(P*);
-static void gfpurge(P*);
-static void globrunqput(G*);
-static void globrunqputbatch(G*, G*, int32);
-static G* globrunqget(P*, int32);
-static P* pidleget(void);
-static void pidleput(P*);
-static void injectglist(G*);
-static bool preemptall(void);
-static bool preemptone(P*);
-static bool exitsyscallfast(void);
-static bool haveexperiment(int8*);
-void runtime·allgadd(G*);
-static void dropg(void);
-
-extern String runtime·buildVersion;
-
-// For cgo-using programs with external linking,
-// export "main" (defined in assembly) so that libc can handle basic
-// C runtime startup and call the Go program as if it were
-// the C main function.
-#pragma cgo_export_static main
-
-// Filled in by dynamic linker when Cgo is available.
-void (*_cgo_init)(void);
-void (*_cgo_malloc)(void);
-void (*_cgo_free)(void);
-
-// Copy for Go code.
-void* runtime·cgoMalloc;
-void* runtime·cgoFree;
-
-// The bootstrap sequence is:
-//
-// call osinit
-// call schedinit
-// make & queue new G
-// call runtime·mstart
-//
-// The new G calls runtime·main.
-void
-runtime·schedinit(void)
-{
- int32 n, procs;
- byte *p;
-
- // raceinit must be the first call to race detector.
- // In particular, it must be done before mallocinit below calls racemapshadow.
- if(raceenabled)
- g->racectx = runtime·raceinit();
-
- runtime·sched.maxmcount = 10000;
-
- runtime·tracebackinit();
- runtime·symtabinit();
- runtime·stackinit();
- runtime·mallocinit();
- mcommoninit(g->m);
-
- runtime·goargs();
- runtime·goenvs();
- runtime·parsedebugvars();
- runtime·gcinit();
-
- runtime·sched.lastpoll = runtime·nanotime();
- procs = 1;
- p = runtime·getenv("GOMAXPROCS");
- if(p != nil && (n = runtime·atoi(p)) > 0) {
- if(n > MaxGomaxprocs)
- n = MaxGomaxprocs;
- procs = n;
- }
- procresize(procs);
-
- if(runtime·buildVersion.str == nil) {
- // Condition should never trigger. This code just serves
- // to ensure runtime·buildVersion is kept in the resulting binary.
- runtime·buildVersion.str = (uint8*)"unknown";
- runtime·buildVersion.len = 7;
- }
-
- runtime·cgoMalloc = _cgo_malloc;
- runtime·cgoFree = _cgo_free;
-}
-
-void
-runtime·newsysmon(void)
-{
- newm(sysmon, nil);
-}
-
-static void
-dumpgstatus(G* gp)
-{
- runtime·printf("runtime: gp: gp=%p, goid=%D, gp->atomicstatus=%x\n", gp, gp->goid, runtime·readgstatus(gp));
- runtime·printf("runtime: g: g=%p, goid=%D, g->atomicstatus=%x\n", g, g->goid, runtime·readgstatus(g));
-}
-
-static void
-checkmcount(void)
-{
- // sched lock is held
- if(runtime·sched.mcount > runtime·sched.maxmcount){
- runtime·printf("runtime: program exceeds %d-thread limit\n", runtime·sched.maxmcount);
- runtime·throw("thread exhaustion");
- }
-}
-
-static void
-mcommoninit(M *mp)
-{
- // g0 stack won't make sense for user (and is not necessary unwindable).
- if(g != g->m->g0)
- runtime·callers(1, mp->createstack, nelem(mp->createstack));
-
- mp->fastrand = 0x49f6428aUL + mp->id + runtime·cputicks();
-
- runtime·lock(&runtime·sched.lock);
- mp->id = runtime·sched.mcount++;
- checkmcount();
- runtime·mpreinit(mp);
- if(mp->gsignal)
- mp->gsignal->stackguard1 = mp->gsignal->stack.lo + StackGuard;
-
- // Add to runtime·allm so garbage collector doesn't free g->m
- // when it is just in a register or thread-local storage.
- mp->alllink = runtime·allm;
- // runtime·NumCgoCall() iterates over allm w/o schedlock,
- // so we need to publish it safely.
- runtime·atomicstorep(&runtime·allm, mp);
- runtime·unlock(&runtime·sched.lock);
-}
-
-// Mark gp ready to run.
-void
-runtime·ready(G *gp)
-{
- uint32 status;
-
- status = runtime·readgstatus(gp);
- // Mark runnable.
- g->m->locks++; // disable preemption because it can be holding p in a local var
- if((status&~Gscan) != Gwaiting){
- dumpgstatus(gp);
- runtime·throw("bad g->status in ready");
- }
- // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
- runtime·casgstatus(gp, Gwaiting, Grunnable);
- runqput(g->m->p, gp);
- if(runtime·atomicload(&runtime·sched.npidle) != 0 && runtime·atomicload(&runtime·sched.nmspinning) == 0) // TODO: fast atomic
- wakep();
- g->m->locks--;
- if(g->m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
- g->stackguard0 = StackPreempt;
-}
-
-void
-runtime·ready_m(void)
-{
- G *gp;
-
- gp = g->m->ptrarg[0];
- g->m->ptrarg[0] = nil;
- runtime·ready(gp);
-}
-
-int32
-runtime·gcprocs(void)
-{
- int32 n;
-
- // Figure out how many CPUs to use during GC.
- // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
- runtime·lock(&runtime·sched.lock);
- n = runtime·gomaxprocs;
- if(n > runtime·ncpu)
- n = runtime·ncpu;
- if(n > MaxGcproc)
- n = MaxGcproc;
- if(n > runtime·sched.nmidle+1) // one M is currently running
- n = runtime·sched.nmidle+1;
- runtime·unlock(&runtime·sched.lock);
- return n;
-}
-
-static bool
-needaddgcproc(void)
-{
- int32 n;
-
- runtime·lock(&runtime·sched.lock);
- n = runtime·gomaxprocs;
- if(n > runtime·ncpu)
- n = runtime·ncpu;
- if(n > MaxGcproc)
- n = MaxGcproc;
- n -= runtime·sched.nmidle+1; // one M is currently running
- runtime·unlock(&runtime·sched.lock);
- return n > 0;
-}
-
-void
-runtime·helpgc(int32 nproc)
-{
- M *mp;
- int32 n, pos;
-
- runtime·lock(&runtime·sched.lock);
- pos = 0;
- for(n = 1; n < nproc; n++) { // one M is currently running
- if(runtime·allp[pos]->mcache == g->m->mcache)
- pos++;
- mp = mget();
- if(mp == nil)
- runtime·throw("runtime·gcprocs inconsistency");
- mp->helpgc = n;
- mp->mcache = runtime·allp[pos]->mcache;
- pos++;
- runtime·notewakeup(&mp->park);
- }
- runtime·unlock(&runtime·sched.lock);
-}
-
-// Similar to stoptheworld but best-effort and can be called several times.
-// There is no reverse operation, used during crashing.
-// This function must not lock any mutexes.
-void
-runtime·freezetheworld(void)
-{
- int32 i;
-
- if(runtime·gomaxprocs == 1)
- return;
- // stopwait and preemption requests can be lost
- // due to races with concurrently executing threads,
- // so try several times
- for(i = 0; i < 5; i++) {
- // this should tell the scheduler to not start any new goroutines
- runtime·sched.stopwait = 0x7fffffff;
- runtime·atomicstore((uint32*)&runtime·sched.gcwaiting, 1);
- // this should stop running goroutines
- if(!preemptall())
- break; // no running goroutines
- runtime·usleep(1000);
- }
- // to be sure
- runtime·usleep(1000);
- preemptall();
- runtime·usleep(1000);
-}
-
-static bool
-isscanstatus(uint32 status)
-{
- if(status == Gscan)
- runtime·throw("isscanstatus: Bad status Gscan");
- return (status&Gscan) == Gscan;
-}
-
-// All reads and writes of g's status go through readgstatus, casgstatus
-// castogscanstatus, casfromgscanstatus.
-#pragma textflag NOSPLIT
-uint32
-runtime·readgstatus(G *gp)
-{
- return runtime·atomicload(&gp->atomicstatus);
-}
-
-// The Gscanstatuses are acting like locks and this releases them.
-// If it proves to be a performance hit we should be able to make these
-// simple atomic stores but for now we are going to throw if
-// we see an inconsistent state.
-void
-runtime·casfromgscanstatus(G *gp, uint32 oldval, uint32 newval)
-{
- bool success = false;
-
- // Check that transition is valid.
- switch(oldval) {
- case Gscanrunnable:
- case Gscanwaiting:
- case Gscanrunning:
- case Gscansyscall:
- if(newval == (oldval&~Gscan))
- success = runtime·cas(&gp->atomicstatus, oldval, newval);
- break;
- case Gscanenqueue:
- if(newval == Gwaiting)
- success = runtime·cas(&gp->atomicstatus, oldval, newval);
- break;
- }
- if(!success){
- runtime·printf("runtime: casfromgscanstatus failed gp=%p, oldval=%d, newval=%d\n",
- gp, oldval, newval);
- dumpgstatus(gp);
- runtime·throw("casfromgscanstatus: gp->status is not in scan state");
- }
-}
-
-// This will return false if the gp is not in the expected status and the cas fails.
-// This acts like a lock acquire while the casfromgstatus acts like a lock release.
-bool
-runtime·castogscanstatus(G *gp, uint32 oldval, uint32 newval)
-{
- switch(oldval) {
- case Grunnable:
- case Gwaiting:
- case Gsyscall:
- if(newval == (oldval|Gscan))
- return runtime·cas(&gp->atomicstatus, oldval, newval);
- break;
- case Grunning:
- if(newval == Gscanrunning || newval == Gscanenqueue)
- return runtime·cas(&gp->atomicstatus, oldval, newval);
- break;
- }
-
- runtime·printf("runtime: castogscanstatus oldval=%d newval=%d\n", oldval, newval);
- runtime·throw("castogscanstatus");
- return false; // not reached
-}
-
-static void badcasgstatus(void);
-static void helpcasgstatus(void);
-static void badgstatusrunnable(void);
-
-// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
-// and casfromgscanstatus instead.
-// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
-// put it in the Gscan state is finished.
-#pragma textflag NOSPLIT
-void
-runtime·casgstatus(G *gp, uint32 oldval, uint32 newval)
-{
- void (*fn)(void);
-
- if((oldval&Gscan) || (newval&Gscan) || oldval == newval) {
- g->m->scalararg[0] = oldval;
- g->m->scalararg[1] = newval;
- fn = badcasgstatus;
- runtime·onM(&fn);
- }
-
- // loop if gp->atomicstatus is in a scan state giving
- // GC time to finish and change the state to oldval.
- while(!runtime·cas(&gp->atomicstatus, oldval, newval)) {
- if(oldval == Gwaiting && gp->atomicstatus == Grunnable) {
- fn = badgstatusrunnable;
- runtime·onM(&fn);
- }
- // Help GC if needed.
- if(gp->preemptscan && !gp->gcworkdone && (oldval == Grunning || oldval == Gsyscall)) {
- gp->preemptscan = false;
- g->m->ptrarg[0] = gp;
- fn = helpcasgstatus;
- runtime·onM(&fn);
- }
- }
-}
-
-static void
-badgstatusrunnable(void)
-{
- runtime·throw("casgstatus: waiting for Gwaiting but is Grunnable");
-}
-
-// casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
-// Returns old status. Cannot call casgstatus directly, because we are racing with an
-// async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
-// it might have become Grunnable by the time we get to the cas. If we called casgstatus,
-// it would loop waiting for the status to go back to Gwaiting, which it never will.
-#pragma textflag NOSPLIT
-uint32
-runtime·casgcopystack(G *gp)
-{
- uint32 oldstatus;
-
- for(;;) {
- oldstatus = runtime·readgstatus(gp) & ~Gscan;
- if(oldstatus != Gwaiting && oldstatus != Grunnable)
- runtime·throw("copystack: bad status, not Gwaiting or Grunnable");
- if(runtime·cas(&gp->atomicstatus, oldstatus, Gcopystack))
- break;
- }
- return oldstatus;
-}
-
-static void
-badcasgstatus(void)
-{
- uint32 oldval, newval;
-
- oldval = g->m->scalararg[0];
- newval = g->m->scalararg[1];
- g->m->scalararg[0] = 0;
- g->m->scalararg[1] = 0;
-
- runtime·printf("casgstatus: oldval=%d, newval=%d\n", oldval, newval);
- runtime·throw("casgstatus: bad incoming values");
-}
-
-static void
-helpcasgstatus(void)
-{
- G *gp;
-
- gp = g->m->ptrarg[0];
- g->m->ptrarg[0] = 0;
- runtime·gcphasework(gp);
-}
-
-// stopg ensures that gp is stopped at a GC safe point where its stack can be scanned
-// or in the context of a moving collector the pointers can be flipped from pointing
-// to old object to pointing to new objects.
-// If stopg returns true, the caller knows gp is at a GC safe point and will remain there until
-// the caller calls restartg.
-// If stopg returns false, the caller is not responsible for calling restartg. This can happen
-// if another thread, either the gp itself or another GC thread is taking the responsibility
-// to do the GC work related to this thread.
-bool
-runtime·stopg(G *gp)
-{
- uint32 s;
-
- for(;;) {
- if(gp->gcworkdone)
- return false;
-
- s = runtime·readgstatus(gp);
- switch(s) {
- default:
- dumpgstatus(gp);
- runtime·throw("stopg: gp->atomicstatus is not valid");
-
- case Gdead:
- return false;
-
- case Gcopystack:
- // Loop until a new stack is in place.
- break;
-
- case Grunnable:
- case Gsyscall:
- case Gwaiting:
- // Claim goroutine by setting scan bit.
- if(!runtime·castogscanstatus(gp, s, s|Gscan))
- break;
- // In scan state, do work.
- runtime·gcphasework(gp);
- return true;
-
- case Gscanrunnable:
- case Gscanwaiting:
- case Gscansyscall:
- // Goroutine already claimed by another GC helper.
- return false;
-
- case Grunning:
- // Claim goroutine, so we aren't racing with a status
- // transition away from Grunning.
- if(!runtime·castogscanstatus(gp, Grunning, Gscanrunning))
- break;
-
- // Mark gp for preemption.
- if(!gp->gcworkdone) {
- gp->preemptscan = true;
- gp->preempt = true;
- gp->stackguard0 = StackPreempt;
- }
-
- // Unclaim.
- runtime·casfromgscanstatus(gp, Gscanrunning, Grunning);
- return false;
- }
- }
- // Should not be here....
-}
-
-// The GC requests that this routine be moved from a scanmumble state to a mumble state.
-void
-runtime·restartg (G *gp)
-{
- uint32 s;
-
- s = runtime·readgstatus(gp);
- switch(s) {
- default:
- dumpgstatus(gp);
- runtime·throw("restartg: unexpected status");
-
- case Gdead:
- break;
-
- case Gscanrunnable:
- case Gscanwaiting:
- case Gscansyscall:
- runtime·casfromgscanstatus(gp, s, s&~Gscan);
- break;
-
- case Gscanenqueue:
- // Scan is now completed.
- // Goroutine now needs to be made runnable.
- // We put it on the global run queue; ready blocks on the global scheduler lock.
- runtime·casfromgscanstatus(gp, Gscanenqueue, Gwaiting);
- if(gp != g->m->curg)
- runtime·throw("processing Gscanenqueue on wrong m");
- dropg();
- runtime·ready(gp);
- break;
- }
-}
-
-static void
-stopscanstart(G* gp)
-{
- if(g == gp)
- runtime·throw("GC not moved to G0");
- if(runtime·stopg(gp)) {
- if(!isscanstatus(runtime·readgstatus(gp))) {
- dumpgstatus(gp);
- runtime·throw("GC not in scan state");
- }
- runtime·restartg(gp);
- }
-}
-
-// Runs on g0 and does the actual work after putting the g back on the run queue.
-static void
-mquiesce(G *gpmaster)
-{
- G* gp;
- uint32 i;
- uint32 status;
- uint32 activeglen;
-
- activeglen = runtime·allglen;
- // enqueue the calling goroutine.
- runtime·restartg(gpmaster);
- for(i = 0; i < activeglen; i++) {
- gp = runtime·allg[i];
- if(runtime·readgstatus(gp) == Gdead)
- gp->gcworkdone = true; // noop scan.
- else
- gp->gcworkdone = false;
- stopscanstart(gp);
- }
-
- // Check that the G's gcwork (such as scanning) has been done. If not do it now.
- // You can end up doing work here if the page trap on a Grunning Goroutine has
- // not been sprung or in some race situations. For example a runnable goes dead
- // and is started up again with a gp->gcworkdone set to false.
- for(i = 0; i < activeglen; i++) {
- gp = runtime·allg[i];
- while (!gp->gcworkdone) {
- status = runtime·readgstatus(gp);
- if(status == Gdead) {
- gp->gcworkdone = true; // scan is a noop
- break;
- //do nothing, scan not needed.
- }
- if(status == Grunning && gp->stackguard0 == (uintptr)StackPreempt && runtime·notetsleep(&runtime·sched.stopnote, 100*1000)) // nanosecond arg
- runtime·noteclear(&runtime·sched.stopnote);
- else
- stopscanstart(gp);
- }
- }
-
- for(i = 0; i < activeglen; i++) {
- gp = runtime·allg[i];
- status = runtime·readgstatus(gp);
- if(isscanstatus(status)) {
- runtime·printf("mstopandscang:bottom: post scan bad status gp=%p has status %x\n", gp, status);
- dumpgstatus(gp);
- }
- if(!gp->gcworkdone && status != Gdead) {
- runtime·printf("mstopandscang:bottom: post scan gp=%p->gcworkdone still false\n", gp);
- dumpgstatus(gp);
- }
- }
-
- schedule(); // Never returns.
-}
-
-// quiesce moves all the goroutines to a GC safepoint which for now is a at preemption point.
-// If the global runtime·gcphase is GCmark quiesce will ensure that all of the goroutine's stacks
-// have been scanned before it returns.
-void
-runtime·quiesce(G* mastergp)
-{
- void (*fn)(G*);
-
- runtime·castogscanstatus(mastergp, Grunning, Gscanenqueue);
- // Now move this to the g0 (aka m) stack.
- // g0 will potentially scan this thread and put mastergp on the runqueue
- fn = mquiesce;
- runtime·mcall(&fn);
-}
-
-// This is used by the GC as well as the routines that do stack dumps. In the case
-// of GC all the routines can be reliably stopped. This is not always the case
-// when the system is in panic or being exited.
-void
-runtime·stoptheworld(void)
-{
- int32 i;
- uint32 s;
- P *p;
- bool wait;
-
- // If we hold a lock, then we won't be able to stop another M
- // that is blocked trying to acquire the lock.
- if(g->m->locks > 0)
- runtime·throw("stoptheworld: holding locks");
-
- runtime·lock(&runtime·sched.lock);
- runtime·sched.stopwait = runtime·gomaxprocs;
- runtime·atomicstore((uint32*)&runtime·sched.gcwaiting, 1);
- preemptall();
- // stop current P
- g->m->p->status = Pgcstop; // Pgcstop is only diagnostic.
- runtime·sched.stopwait--;
- // try to retake all P's in Psyscall status
- for(i = 0; i < runtime·gomaxprocs; i++) {
- p = runtime·allp[i];
- s = p->status;
- if(s == Psyscall && runtime·cas(&p->status, s, Pgcstop))
- runtime·sched.stopwait--;
- }
- // stop idle P's
- while(p = pidleget()) {
- p->status = Pgcstop;
- runtime·sched.stopwait--;
- }
- wait = runtime·sched.stopwait > 0;
- runtime·unlock(&runtime·sched.lock);
-
- // wait for remaining P's to stop voluntarily
- if(wait) {
- for(;;) {
- // wait for 100us, then try to re-preempt in case of any races
- if(runtime·notetsleep(&runtime·sched.stopnote, 100*1000)) {
- runtime·noteclear(&runtime·sched.stopnote);
- break;
- }
- preemptall();
- }
- }
- if(runtime·sched.stopwait)
- runtime·throw("stoptheworld: not stopped");
- for(i = 0; i < runtime·gomaxprocs; i++) {
- p = runtime·allp[i];
- if(p->status != Pgcstop)
- runtime·throw("stoptheworld: not stopped");
- }
-}
-
-static void
-mhelpgc(void)
-{
- g->m->helpgc = -1;
-}
-
-void
-runtime·starttheworld(void)
-{
- P *p, *p1;
- M *mp;
- G *gp;
- bool add;
-
- g->m->locks++; // disable preemption because it can be holding p in a local var
- gp = runtime·netpoll(false); // non-blocking
- injectglist(gp);
- add = needaddgcproc();
- runtime·lock(&runtime·sched.lock);
- if(runtime·newprocs) {
- procresize(runtime·newprocs);
- runtime·newprocs = 0;
- } else
- procresize(runtime·gomaxprocs);
- runtime·sched.gcwaiting = 0;
-
- p1 = nil;
- while(p = pidleget()) {
- // procresize() puts p's with work at the beginning of the list.
- // Once we reach a p without a run queue, the rest don't have one either.
- if(p->runqhead == p->runqtail) {
- pidleput(p);
- break;
- }
- p->m = mget();
- p->link = p1;
- p1 = p;
- }
- if(runtime·sched.sysmonwait) {
- runtime·sched.sysmonwait = false;
- runtime·notewakeup(&runtime·sched.sysmonnote);
- }
- runtime·unlock(&runtime·sched.lock);
-
- while(p1) {
- p = p1;
- p1 = p1->link;
- if(p->m) {
- mp = p->m;
- p->m = nil;
- if(mp->nextp)
- runtime·throw("starttheworld: inconsistent mp->nextp");
- mp->nextp = p;
- runtime·notewakeup(&mp->park);
- } else {
- // Start M to run P. Do not start another M below.
- newm(nil, p);
- add = false;
- }
- }
-
- if(add) {
- // If GC could have used another helper proc, start one now,
- // in the hope that it will be available next time.
- // It would have been even better to start it before the collection,
- // but doing so requires allocating memory, so it's tricky to
- // coordinate. This lazy approach works out in practice:
- // we don't mind if the first couple gc rounds don't have quite
- // the maximum number of procs.
- newm(mhelpgc, nil);
- }
- g->m->locks--;
- if(g->m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
- g->stackguard0 = StackPreempt;
-}
-
-static void mstart(void);
-
-// Called to start an M.
-#pragma textflag NOSPLIT
-void
-runtime·mstart(void)
-{
- uintptr x, size;
-
- if(g->stack.lo == 0) {
- // Initialize stack bounds from system stack.
- // Cgo may have left stack size in stack.hi.
- size = g->stack.hi;
- if(size == 0)
- size = 8192;
- g->stack.hi = (uintptr)&x;
- g->stack.lo = g->stack.hi - size + 1024;
- }
-
- // Initialize stack guards so that we can start calling
- // both Go and C functions with stack growth prologues.
- g->stackguard0 = g->stack.lo + StackGuard;
- g->stackguard1 = g->stackguard0;
- mstart();
-}
-
-static void
-mstart(void)
-{
- if(g != g->m->g0)
- runtime·throw("bad runtime·mstart");
-
- // Record top of stack for use by mcall.
- // Once we call schedule we're never coming back,
- // so other calls can reuse this stack space.
- runtime·gosave(&g->m->g0->sched);
- g->m->g0->sched.pc = (uintptr)-1; // make sure it is never used
- runtime·asminit();
- runtime·minit();
-
- // Install signal handlers; after minit so that minit can
- // prepare the thread to be able to handle the signals.
- if(g->m == &runtime·m0)
- runtime·initsig();
-
- if(g->m->mstartfn)
- g->m->mstartfn();
-
- if(g->m->helpgc) {
- g->m->helpgc = 0;
- stopm();
- } else if(g->m != &runtime·m0) {
- acquirep(g->m->nextp);
- g->m->nextp = nil;
- }
- schedule();
-
- // TODO(brainman): This point is never reached, because scheduler
- // does not release os threads at the moment. But once this path
- // is enabled, we must remove our seh here.
-}
-
-// When running with cgo, we call _cgo_thread_start
-// to start threads for us so that we can play nicely with
-// foreign code.
-void (*_cgo_thread_start)(void*);
-
-typedef struct CgoThreadStart CgoThreadStart;
-struct CgoThreadStart
-{
- G *g;
- uintptr *tls;
- void (*fn)(void);
-};
-
-M *runtime·newM(void); // in proc.go
-
-// Allocate a new m unassociated with any thread.
-// Can use p for allocation context if needed.
-M*
-runtime·allocm(P *p)
-{
- M *mp;
-
- g->m->locks++; // disable GC because it can be called from sysmon
- if(g->m->p == nil)
- acquirep(p); // temporarily borrow p for mallocs in this function
- mp = runtime·newM();
- mcommoninit(mp);
-
- // In case of cgo or Solaris, pthread_create will make us a stack.
- // Windows and Plan 9 will layout sched stack on OS stack.
- if(runtime·iscgo || Solaris || Windows || Plan9)
- mp->g0 = runtime·malg(-1);
- else
- mp->g0 = runtime·malg(8192);
- mp->g0->m = mp;
-
- if(p == g->m->p)
- releasep();
- g->m->locks--;
- if(g->m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
- g->stackguard0 = StackPreempt;
-
- return mp;
-}
-
-G *runtime·newG(void); // in proc.go
-
-static G*
-allocg(void)
-{
- return runtime·newG();
-}
-
-static M* lockextra(bool nilokay);
-static void unlockextra(M*);
-
-// needm is called when a cgo callback happens on a
-// thread without an m (a thread not created by Go).
-// In this case, needm is expected to find an m to use
-// and return with m, g initialized correctly.
-// Since m and g are not set now (likely nil, but see below)
-// needm is limited in what routines it can call. In particular
-// it can only call nosplit functions (textflag 7) and cannot
-// do any scheduling that requires an m.
-//
-// In order to avoid needing heavy lifting here, we adopt
-// the following strategy: there is a stack of available m's
-// that can be stolen. Using compare-and-swap
-// to pop from the stack has ABA races, so we simulate
-// a lock by doing an exchange (via casp) to steal the stack
-// head and replace the top pointer with MLOCKED (1).
-// This serves as a simple spin lock that we can use even
-// without an m. The thread that locks the stack in this way
-// unlocks the stack by storing a valid stack head pointer.
-//
-// In order to make sure that there is always an m structure
-// available to be stolen, we maintain the invariant that there
-// is always one more than needed. At the beginning of the
-// program (if cgo is in use) the list is seeded with a single m.
-// If needm finds that it has taken the last m off the list, its job
-// is - once it has installed its own m so that it can do things like
-// allocate memory - to create a spare m and put it on the list.
-//
-// Each of these extra m's also has a g0 and a curg that are
-// pressed into service as the scheduling stack and current
-// goroutine for the duration of the cgo callback.
-//
-// When the callback is done with the m, it calls dropm to
-// put the m back on the list.
-#pragma textflag NOSPLIT
-void
-runtime·needm(byte x)
-{
- M *mp;
-
- if(runtime·needextram) {
- // Can happen if C/C++ code calls Go from a global ctor.
- // Can not throw, because scheduler is not initialized yet.
- runtime·write(2, "fatal error: cgo callback before cgo call\n",
- sizeof("fatal error: cgo callback before cgo call\n")-1);
- runtime·exit(1);
- }
-
- // Lock extra list, take head, unlock popped list.
- // nilokay=false is safe here because of the invariant above,
- // that the extra list always contains or will soon contain
- // at least one m.
- mp = lockextra(false);
-
- // Set needextram when we've just emptied the list,
- // so that the eventual call into cgocallbackg will
- // allocate a new m for the extra list. We delay the
- // allocation until then so that it can be done
- // after exitsyscall makes sure it is okay to be
- // running at all (that is, there's no garbage collection
- // running right now).
- mp->needextram = mp->schedlink == nil;
- unlockextra(mp->schedlink);
-
- // Install g (= m->g0) and set the stack bounds
- // to match the current stack. We don't actually know
- // how big the stack is, like we don't know how big any
- // scheduling stack is, but we assume there's at least 32 kB,
- // which is more than enough for us.
- runtime·setg(mp->g0);
- g->stack.hi = (uintptr)(&x + 1024);
- g->stack.lo = (uintptr)(&x - 32*1024);
- g->stackguard0 = g->stack.lo + StackGuard;
-
- // Initialize this thread to use the m.
- runtime·asminit();
- runtime·minit();
-}
-
-// newextram allocates an m and puts it on the extra list.
-// It is called with a working local m, so that it can do things
-// like call schedlock and allocate.
-void
-runtime·newextram(void)
-{
- M *mp, *mnext;
- G *gp;
-
- // Create extra goroutine locked to extra m.
- // The goroutine is the context in which the cgo callback will run.
- // The sched.pc will never be returned to, but setting it to
- // runtime.goexit makes clear to the traceback routines where
- // the goroutine stack ends.
- mp = runtime·allocm(nil);
- gp = runtime·malg(4096);
- gp->sched.pc = (uintptr)runtime·goexit + PCQuantum;
- gp->sched.sp = gp->stack.hi;
- gp->sched.sp -= 4*sizeof(uintreg); // extra space in case of reads slightly beyond frame
- gp->sched.lr = 0;
- gp->sched.g = gp;
- gp->syscallpc = gp->sched.pc;
- gp->syscallsp = gp->sched.sp;
- // malg returns status as Gidle, change to Gsyscall before adding to allg
- // where GC will see it.
- runtime·casgstatus(gp, Gidle, Gsyscall);
- gp->m = mp;
- mp->curg = gp;
- mp->locked = LockInternal;
- mp->lockedg = gp;
- gp->lockedm = mp;
- gp->goid = runtime·xadd64(&runtime·sched.goidgen, 1);
- if(raceenabled)
- gp->racectx = runtime·racegostart(runtime·newextram);
- // put on allg for garbage collector
- runtime·allgadd(gp);
-
- // Add m to the extra list.
- mnext = lockextra(true);
- mp->schedlink = mnext;
- unlockextra(mp);
-}
-
-// dropm is called when a cgo callback has called needm but is now
-// done with the callback and returning back into the non-Go thread.
-// It puts the current m back onto the extra list.
-//
-// The main expense here is the call to signalstack to release the
-// m's signal stack, and then the call to needm on the next callback
-// from this thread. It is tempting to try to save the m for next time,
-// which would eliminate both these costs, but there might not be
-// a next time: the current thread (which Go does not control) might exit.
-// If we saved the m for that thread, there would be an m leak each time
-// such a thread exited. Instead, we acquire and release an m on each
-// call. These should typically not be scheduling operations, just a few
-// atomics, so the cost should be small.
-//
-// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
-// variable using pthread_key_create. Unlike the pthread keys we already use
-// on OS X, this dummy key would never be read by Go code. It would exist
-// only so that we could register at thread-exit-time destructor.
-// That destructor would put the m back onto the extra list.
-// This is purely a performance optimization. The current version,
-// in which dropm happens on each cgo call, is still correct too.
-// We may have to keep the current version on systems with cgo
-// but without pthreads, like Windows.
-void
-runtime·dropm(void)
-{
- M *mp, *mnext;
-
- // Undo whatever initialization minit did during needm.
- runtime·unminit();
-
- // Clear m and g, and return m to the extra list.
- // After the call to setmg we can only call nosplit functions.
- mp = g->m;
- runtime·setg(nil);
-
- mnext = lockextra(true);
- mp->schedlink = mnext;
- unlockextra(mp);
-}
-
-#define MLOCKED ((M*)1)
-
-// lockextra locks the extra list and returns the list head.
-// The caller must unlock the list by storing a new list head
-// to runtime.extram. If nilokay is true, then lockextra will
-// return a nil list head if that's what it finds. If nilokay is false,
-// lockextra will keep waiting until the list head is no longer nil.
-#pragma textflag NOSPLIT
-static M*
-lockextra(bool nilokay)
-{
- M *mp;
- void (*yield)(void);
-
- for(;;) {
- mp = runtime·atomicloadp(&runtime·extram);
- if(mp == MLOCKED) {
- yield = runtime·osyield;
- yield();
- continue;
- }
- if(mp == nil && !nilokay) {
- runtime·usleep(1);
- continue;
- }
- if(!runtime·casp(&runtime·extram, mp, MLOCKED)) {
- yield = runtime·osyield;
- yield();
- continue;
- }
- break;
- }
- return mp;
-}
-
-#pragma textflag NOSPLIT
-static void
-unlockextra(M *mp)
-{
- runtime·atomicstorep(&runtime·extram, mp);
-}
-
-
-// Create a new m. It will start off with a call to fn, or else the scheduler.
-static void
-newm(void(*fn)(void), P *p)
-{
- M *mp;
-
- mp = runtime·allocm(p);
- mp->nextp = p;
- mp->mstartfn = fn;
-
- if(runtime·iscgo) {
- CgoThreadStart ts;
-
- if(_cgo_thread_start == nil)
- runtime·throw("_cgo_thread_start missing");
- ts.g = mp->g0;
- ts.tls = mp->tls;
- ts.fn = runtime·mstart;
- runtime·asmcgocall(_cgo_thread_start, &ts);
- return;
- }
- runtime·newosproc(mp, (byte*)mp->g0->stack.hi);
-}
-
-// Stops execution of the current m until new work is available.
-// Returns with acquired P.
-static void
-stopm(void)
-{
- if(g->m->locks)
- runtime·throw("stopm holding locks");
- if(g->m->p)
- runtime·throw("stopm holding p");
- if(g->m->spinning) {
- g->m->spinning = false;
- runtime·xadd(&runtime·sched.nmspinning, -1);
- }
-
-retry:
- runtime·lock(&runtime·sched.lock);
- mput(g->m);
- runtime·unlock(&runtime·sched.lock);
- runtime·notesleep(&g->m->park);
- runtime·noteclear(&g->m->park);
- if(g->m->helpgc) {
- runtime·gchelper();
- g->m->helpgc = 0;
- g->m->mcache = nil;
- goto retry;
- }
- acquirep(g->m->nextp);
- g->m->nextp = nil;
-}
-
-static void
-mspinning(void)
-{
- g->m->spinning = true;
-}
-
-// Schedules some M to run the p (creates an M if necessary).
-// If p==nil, tries to get an idle P, if no idle P's does nothing.
-static void
-startm(P *p, bool spinning)
-{
- M *mp;
- void (*fn)(void);
-
- runtime·lock(&runtime·sched.lock);
- if(p == nil) {
- p = pidleget();
- if(p == nil) {
- runtime·unlock(&runtime·sched.lock);
- if(spinning)
- runtime·xadd(&runtime·sched.nmspinning, -1);
- return;
- }
- }
- mp = mget();
- runtime·unlock(&runtime·sched.lock);
- if(mp == nil) {
- fn = nil;
- if(spinning)
- fn = mspinning;
- newm(fn, p);
- return;
- }
- if(mp->spinning)
- runtime·throw("startm: m is spinning");
- if(mp->nextp)
- runtime·throw("startm: m has p");
- mp->spinning = spinning;
- mp->nextp = p;
- runtime·notewakeup(&mp->park);
-}
-
-// Hands off P from syscall or locked M.
-static void
-handoffp(P *p)
-{
- // if it has local work, start it straight away
- if(p->runqhead != p->runqtail || runtime·sched.runqsize) {
- startm(p, false);
- return;
- }
- // no local work, check that there are no spinning/idle M's,
- // otherwise our help is not required
- if(runtime·atomicload(&runtime·sched.nmspinning) + runtime·atomicload(&runtime·sched.npidle) == 0 && // TODO: fast atomic
- runtime·cas(&runtime·sched.nmspinning, 0, 1)){
- startm(p, true);
- return;
- }
- runtime·lock(&runtime·sched.lock);
- if(runtime·sched.gcwaiting) {
- p->status = Pgcstop;
- if(--runtime·sched.stopwait == 0)
- runtime·notewakeup(&runtime·sched.stopnote);
- runtime·unlock(&runtime·sched.lock);
- return;
- }
- if(runtime·sched.runqsize) {
- runtime·unlock(&runtime·sched.lock);
- startm(p, false);
- return;
- }
- // If this is the last running P and nobody is polling network,
- // need to wakeup another M to poll network.
- if(runtime·sched.npidle == runtime·gomaxprocs-1 && runtime·atomicload64(&runtime·sched.lastpoll) != 0) {
- runtime·unlock(&runtime·sched.lock);
- startm(p, false);
- return;
- }
- pidleput(p);
- runtime·unlock(&runtime·sched.lock);
-}
-
-// Tries to add one more P to execute G's.
-// Called when a G is made runnable (newproc, ready).
-static void
-wakep(void)
-{
- // be conservative about spinning threads
- if(!runtime·cas(&runtime·sched.nmspinning, 0, 1))
- return;
- startm(nil, true);
-}
-
-// Stops execution of the current m that is locked to a g until the g is runnable again.
-// Returns with acquired P.
-static void
-stoplockedm(void)
-{
- P *p;
- uint32 status;
-
- if(g->m->lockedg == nil || g->m->lockedg->lockedm != g->m)
- runtime·throw("stoplockedm: inconsistent locking");
- if(g->m->p) {
- // Schedule another M to run this p.
- p = releasep();
- handoffp(p);
- }
- incidlelocked(1);
- // Wait until another thread schedules lockedg again.
- runtime·notesleep(&g->m->park);
- runtime·noteclear(&g->m->park);
- status = runtime·readgstatus(g->m->lockedg);
- if((status&~Gscan) != Grunnable){
- runtime·printf("runtime:stoplockedm: g is not Grunnable or Gscanrunnable");
- dumpgstatus(g);
- runtime·throw("stoplockedm: not runnable");
- }
- acquirep(g->m->nextp);
- g->m->nextp = nil;
-}
-
-// Schedules the locked m to run the locked gp.
-static void
-startlockedm(G *gp)
-{
- M *mp;
- P *p;
-
- mp = gp->lockedm;
- if(mp == g->m)
- runtime·throw("startlockedm: locked to me");
- if(mp->nextp)
- runtime·throw("startlockedm: m has p");
- // directly handoff current P to the locked m
- incidlelocked(-1);
- p = releasep();
- mp->nextp = p;
- runtime·notewakeup(&mp->park);
- stopm();
-}
-
-// Stops the current m for stoptheworld.
-// Returns when the world is restarted.
-static void
-gcstopm(void)
-{
- P *p;
-
- if(!runtime·sched.gcwaiting)
- runtime·throw("gcstopm: not waiting for gc");
- if(g->m->spinning) {
- g->m->spinning = false;
- runtime·xadd(&runtime·sched.nmspinning, -1);
- }
- p = releasep();
- runtime·lock(&runtime·sched.lock);
- p->status = Pgcstop;
- if(--runtime·sched.stopwait == 0)
- runtime·notewakeup(&runtime·sched.stopnote);
- runtime·unlock(&runtime·sched.lock);
- stopm();
-}
-
-// Schedules gp to run on the current M.
-// Never returns.
-static void
-execute(G *gp)
-{
- int32 hz;
-
- runtime·casgstatus(gp, Grunnable, Grunning);
- gp->waitsince = 0;
- gp->preempt = false;
- gp->stackguard0 = gp->stack.lo + StackGuard;
- g->m->p->schedtick++;
- g->m->curg = gp;
- gp->m = g->m;
-
- // Check whether the profiler needs to be turned on or off.
- hz = runtime·sched.profilehz;
- if(g->m->profilehz != hz)
- runtime·resetcpuprofiler(hz);
-
- runtime·gogo(&gp->sched);
-}
-
-// Finds a runnable goroutine to execute.
-// Tries to steal from other P's, get g from global queue, poll network.
-static G*
-findrunnable(void)
-{
- G *gp;
- P *p;
- int32 i;
-
-top:
- if(runtime·sched.gcwaiting) {
- gcstopm();
- goto top;
- }
- if(runtime·fingwait && runtime·fingwake && (gp = runtime·wakefing()) != nil)
- runtime·ready(gp);
- // local runq
- gp = runqget(g->m->p);
- if(gp)
- return gp;
- // global runq
- if(runtime·sched.runqsize) {
- runtime·lock(&runtime·sched.lock);
- gp = globrunqget(g->m->p, 0);
- runtime·unlock(&runtime·sched.lock);
- if(gp)
- return gp;
- }
- // poll network
- gp = runtime·netpoll(false); // non-blocking
- if(gp) {
- injectglist(gp->schedlink);
- runtime·casgstatus(gp, Gwaiting, Grunnable);
- return gp;
- }
- // If number of spinning M's >= number of busy P's, block.
- // This is necessary to prevent excessive CPU consumption
- // when GOMAXPROCS>>1 but the program parallelism is low.
- if(!g->m->spinning && 2 * runtime·atomicload(&runtime·sched.nmspinning) >= runtime·gomaxprocs - runtime·atomicload(&runtime·sched.npidle)) // TODO: fast atomic
- goto stop;
- if(!g->m->spinning) {
- g->m->spinning = true;
- runtime·xadd(&runtime·sched.nmspinning, 1);
- }
- // random steal from other P's
- for(i = 0; i < 2*runtime·gomaxprocs; i++) {
- if(runtime·sched.gcwaiting)
- goto top;
- p = runtime·allp[runtime·fastrand1()%runtime·gomaxprocs];
- if(p == g->m->p)
- gp = runqget(p);
- else
- gp = runqsteal(g->m->p, p);
- if(gp)
- return gp;
- }
-stop:
- // return P and block
- runtime·lock(&runtime·sched.lock);
- if(runtime·sched.gcwaiting) {
- runtime·unlock(&runtime·sched.lock);
- goto top;
- }
- if(runtime·sched.runqsize) {
- gp = globrunqget(g->m->p, 0);
- runtime·unlock(&runtime·sched.lock);
- return gp;
- }
- p = releasep();
- pidleput(p);
- runtime·unlock(&runtime·sched.lock);
- if(g->m->spinning) {
- g->m->spinning = false;
- runtime·xadd(&runtime·sched.nmspinning, -1);
- }
- // check all runqueues once again
- for(i = 0; i < runtime·gomaxprocs; i++) {
- p = runtime·allp[i];
- if(p && p->runqhead != p->runqtail) {
- runtime·lock(&runtime·sched.lock);
- p = pidleget();
- runtime·unlock(&runtime·sched.lock);
- if(p) {
- acquirep(p);
- goto top;
- }
- break;
- }
- }
- // poll network
- if(runtime·xchg64(&runtime·sched.lastpoll, 0) != 0) {
- if(g->m->p)
- runtime·throw("findrunnable: netpoll with p");
- if(g->m->spinning)
- runtime·throw("findrunnable: netpoll with spinning");
- gp = runtime·netpoll(true); // block until new work is available
- runtime·atomicstore64(&runtime·sched.lastpoll, runtime·nanotime());
- if(gp) {
- runtime·lock(&runtime·sched.lock);
- p = pidleget();
- runtime·unlock(&runtime·sched.lock);
- if(p) {
- acquirep(p);
- injectglist(gp->schedlink);
- runtime·casgstatus(gp, Gwaiting, Grunnable);
- return gp;
- }
- injectglist(gp);
- }
- }
- stopm();
- goto top;
-}
-
-static void
-resetspinning(void)
-{
- int32 nmspinning;
-
- if(g->m->spinning) {
- g->m->spinning = false;
- nmspinning = runtime·xadd(&runtime·sched.nmspinning, -1);
- if(nmspinning < 0)
- runtime·throw("findrunnable: negative nmspinning");
- } else
- nmspinning = runtime·atomicload(&runtime·sched.nmspinning);
-
- // M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
- // so see if we need to wakeup another P here.
- if (nmspinning == 0 && runtime·atomicload(&runtime·sched.npidle) > 0)
- wakep();
-}
-
-// Injects the list of runnable G's into the scheduler.
-// Can run concurrently with GC.
-static void
-injectglist(G *glist)
-{
- int32 n;
- G *gp;
-
- if(glist == nil)
- return;
- runtime·lock(&runtime·sched.lock);
- for(n = 0; glist; n++) {
- gp = glist;
- glist = gp->schedlink;
- runtime·casgstatus(gp, Gwaiting, Grunnable);
- globrunqput(gp);
- }
- runtime·unlock(&runtime·sched.lock);
-
- for(; n && runtime·sched.npidle; n--)
- startm(nil, false);
-}
-
-// One round of scheduler: find a runnable goroutine and execute it.
-// Never returns.
-static void
-schedule(void)
-{
- G *gp;
- uint32 tick;
-
- if(g->m->locks)
- runtime·throw("schedule: holding locks");
-
- if(g->m->lockedg) {
- stoplockedm();
- execute(g->m->lockedg); // Never returns.
- }
-
-top:
- if(runtime·sched.gcwaiting) {
- gcstopm();
- goto top;
- }
-
- gp = nil;
- // Check the global runnable queue once in a while to ensure fairness.
- // Otherwise two goroutines can completely occupy the local runqueue
- // by constantly respawning each other.
- tick = g->m->p->schedtick;
- // This is a fancy way to say tick%61==0,
- // it uses 2 MUL instructions instead of a single DIV and so is faster on modern processors.
- if(tick - (((uint64)tick*0x4325c53fu)>>36)*61 == 0 && runtime·sched.runqsize > 0) {
- runtime·lock(&runtime·sched.lock);
- gp = globrunqget(g->m->p, 1);
- runtime·unlock(&runtime·sched.lock);
- if(gp)
- resetspinning();
- }
- if(gp == nil) {
- gp = runqget(g->m->p);
- if(gp && g->m->spinning)
- runtime·throw("schedule: spinning with local work");
- }
- if(gp == nil) {
- gp = findrunnable(); // blocks until work is available
- resetspinning();
- }
-
- if(gp->lockedm) {
- // Hands off own p to the locked m,
- // then blocks waiting for a new p.
- startlockedm(gp);
- goto top;
- }
-
- execute(gp);
-}
-
-// dropg removes the association between m and the current goroutine m->curg (gp for short).
-// Typically a caller sets gp's status away from Grunning and then
-// immediately calls dropg to finish the job. The caller is also responsible
-// for arranging that gp will be restarted using runtime·ready at an
-// appropriate time. After calling dropg and arranging for gp to be
-// readied later, the caller can do other work but eventually should
-// call schedule to restart the scheduling of goroutines on this m.
-static void
-dropg(void)
-{
- if(g->m->lockedg == nil) {
- g->m->curg->m = nil;
- g->m->curg = nil;
- }
-}
-
-// Puts the current goroutine into a waiting state and calls unlockf.
-// If unlockf returns false, the goroutine is resumed.
-void
-runtime·park(bool(*unlockf)(G*, void*), void *lock, String reason)
-{
- void (*fn)(G*);
-
- g->m->waitlock = lock;
- g->m->waitunlockf = unlockf;
- g->waitreason = reason;
- fn = runtime·park_m;
- runtime·mcall(&fn);
-}
-
-bool
-runtime·parkunlock_c(G *gp, void *lock)
-{
- USED(gp);
- runtime·unlock(lock);
- return true;
-}
-
-// Puts the current goroutine into a waiting state and unlocks the lock.
-// The goroutine can be made runnable again by calling runtime·ready(gp).
-void
-runtime·parkunlock(Mutex *lock, String reason)
-{
- runtime·park(runtime·parkunlock_c, lock, reason);
-}
-
-// runtime·park continuation on g0.
-void
-runtime·park_m(G *gp)
-{
- bool ok;
-
- runtime·casgstatus(gp, Grunning, Gwaiting);
- dropg();
-
- if(g->m->waitunlockf) {
- ok = g->m->waitunlockf(gp, g->m->waitlock);
- g->m->waitunlockf = nil;
- g->m->waitlock = nil;
- if(!ok) {
- runtime·casgstatus(gp, Gwaiting, Grunnable);
- execute(gp); // Schedule it back, never returns.
- }
- }
-
- schedule();
-}
-
-// Gosched continuation on g0.
-void
-runtime·gosched_m(G *gp)
-{
- uint32 status;
-
- status = runtime·readgstatus(gp);
- if((status&~Gscan) != Grunning){
- dumpgstatus(gp);
- runtime·throw("bad g status");
- }
- runtime·casgstatus(gp, Grunning, Grunnable);
- dropg();
- runtime·lock(&runtime·sched.lock);
- globrunqput(gp);
- runtime·unlock(&runtime·sched.lock);
-
- schedule();
-}
-
-// Finishes execution of the current goroutine.
-// Must be NOSPLIT because it is called from Go.
-#pragma textflag NOSPLIT
-void
-runtime·goexit1(void)
-{
- void (*fn)(G*);
-
- if(raceenabled)
- runtime·racegoend();
- fn = goexit0;
- runtime·mcall(&fn);
-}
-
-// runtime·goexit continuation on g0.
-static void
-goexit0(G *gp)
-{
- runtime·casgstatus(gp, Grunning, Gdead);
- gp->m = nil;
- gp->lockedm = nil;
- g->m->lockedg = nil;
- gp->paniconfault = 0;
- gp->defer = nil; // should be true already but just in case.
- gp->panic = nil; // non-nil for Goexit during panic. points at stack-allocated data.
- gp->writebuf.array = nil;
- gp->writebuf.len = 0;
- gp->writebuf.cap = 0;
- gp->waitreason.str = nil;
- gp->waitreason.len = 0;
- gp->param = nil;
-
- dropg();
-
- if(g->m->locked & ~LockExternal) {
- runtime·printf("invalid m->locked = %d\n", g->m->locked);
- runtime·throw("internal lockOSThread error");
- }
- g->m->locked = 0;
- gfput(g->m->p, gp);
- schedule();
-}
-
-#pragma textflag NOSPLIT
-static void
-save(uintptr pc, uintptr sp)
-{
- g->sched.pc = pc;
- g->sched.sp = sp;
- g->sched.lr = 0;
- g->sched.ret = 0;
- g->sched.ctxt = 0;
- g->sched.g = g;
-}
-
-static void entersyscall_bad(void);
-static void entersyscall_sysmon(void);
-static void entersyscall_gcwait(void);
-
-// The goroutine g is about to enter a system call.
-// Record that it's not using the cpu anymore.
-// This is called only from the go syscall library and cgocall,
-// not from the low-level system calls used by the runtime.
-//
-// Entersyscall cannot split the stack: the runtime·gosave must
-// make g->sched refer to the caller's stack segment, because
-// entersyscall is going to return immediately after.
-//
-// Nothing entersyscall calls can split the stack either.
-// We cannot safely move the stack during an active call to syscall,
-// because we do not know which of the uintptr arguments are
-// really pointers (back into the stack).
-// In practice, this means that we make the fast path run through
-// entersyscall doing no-split things, and the slow path has to use onM
-// to run bigger things on the m stack.
-//
-// reentersyscall is the entry point used by cgo callbacks, where explicitly
-// saved SP and PC are restored. This is needed when exitsyscall will be called
-// from a function further up in the call stack than the parent, as g->syscallsp
-// must always point to a valid stack frame. entersyscall below is the normal
-// entry point for syscalls, which obtains the SP and PC from the caller.
-#pragma textflag NOSPLIT
-void
-runtime·reentersyscall(uintptr pc, uintptr sp)
-{
- void (*fn)(void);
-
- // Disable preemption because during this function g is in Gsyscall status,
- // but can have inconsistent g->sched, do not let GC observe it.
- g->m->locks++;
-
- // Entersyscall must not call any function that might split/grow the stack.
- // (See details in comment above.)
- // Catch calls that might, by replacing the stack guard with something that
- // will trip any stack check and leaving a flag to tell newstack to die.
- g->stackguard0 = StackPreempt;
- g->throwsplit = 1;
-
- // Leave SP around for GC and traceback.
- save(pc, sp);
- g->syscallsp = sp;
- g->syscallpc = pc;
- runtime·casgstatus(g, Grunning, Gsyscall);
- if(g->syscallsp < g->stack.lo || g->stack.hi < g->syscallsp) {
- fn = entersyscall_bad;
- runtime·onM(&fn);
- }
-
- if(runtime·atomicload(&runtime·sched.sysmonwait)) { // TODO: fast atomic
- fn = entersyscall_sysmon;
- runtime·onM(&fn);
- save(pc, sp);
- }
-
- g->m->mcache = nil;
- g->m->p->m = nil;
- runtime·atomicstore(&g->m->p->status, Psyscall);
- if(runtime·sched.gcwaiting) {
- fn = entersyscall_gcwait;
- runtime·onM(&fn);
- save(pc, sp);
- }
-
- // Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
- // We set stackguard to StackPreempt so that first split stack check calls morestack.
- // Morestack detects this case and throws.
- g->stackguard0 = StackPreempt;
- g->m->locks--;
-}
-
-// Standard syscall entry used by the go syscall library and normal cgo calls.
-#pragma textflag NOSPLIT
-void
-·entersyscall(int32 dummy)
-{
- runtime·reentersyscall((uintptr)runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
-}
-
-static void
-entersyscall_bad(void)
-{
- G *gp;
-
- gp = g->m->curg;
- runtime·printf("entersyscall inconsistent %p [%p,%p]\n",
- gp->syscallsp, gp->stack.lo, gp->stack.hi);
- runtime·throw("entersyscall");
-}
-
-static void
-entersyscall_sysmon(void)
-{
- runtime·lock(&runtime·sched.lock);
- if(runtime·atomicload(&runtime·sched.sysmonwait)) {
- runtime·atomicstore(&runtime·sched.sysmonwait, 0);
- runtime·notewakeup(&runtime·sched.sysmonnote);
- }
- runtime·unlock(&runtime·sched.lock);
-}
-
-static void
-entersyscall_gcwait(void)
-{
- runtime·lock(&runtime·sched.lock);
- if (runtime·sched.stopwait > 0 && runtime·cas(&g->m->p->status, Psyscall, Pgcstop)) {
- if(--runtime·sched.stopwait == 0)
- runtime·notewakeup(&runtime·sched.stopnote);
- }
- runtime·unlock(&runtime·sched.lock);
-}
-
-static void entersyscallblock_handoff(void);
-
-// The same as runtime·entersyscall(), but with a hint that the syscall is blocking.
-#pragma textflag NOSPLIT
-void
-·entersyscallblock(int32 dummy)
-{
- void (*fn)(void);
-
- g->m->locks++; // see comment in entersyscall
- g->throwsplit = 1;
- g->stackguard0 = StackPreempt; // see comment in entersyscall
-
- // Leave SP around for GC and traceback.
- save((uintptr)runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
- g->syscallsp = g->sched.sp;
- g->syscallpc = g->sched.pc;
- runtime·casgstatus(g, Grunning, Gsyscall);
- if(g->syscallsp < g->stack.lo || g->stack.hi < g->syscallsp) {
- fn = entersyscall_bad;
- runtime·onM(&fn);
- }
-
- fn = entersyscallblock_handoff;
- runtime·onM(&fn);
-
- // Resave for traceback during blocked call.
- save((uintptr)runtime·getcallerpc(&dummy), runtime·getcallersp(&dummy));
-
- g->m->locks--;
-}
-
-static void
-entersyscallblock_handoff(void)
-{
- handoffp(releasep());
-}
-
-// The goroutine g exited its system call.
-// Arrange for it to run on a cpu again.
-// This is called only from the go syscall library, not
-// from the low-level system calls used by the runtime.
-#pragma textflag NOSPLIT
-void
-·exitsyscall(int32 dummy)
-{
- void (*fn)(G*);
-
- g->m->locks++; // see comment in entersyscall
-
- if(runtime·getcallersp(&dummy) > g->syscallsp)
- runtime·throw("exitsyscall: syscall frame is no longer valid");
-
- g->waitsince = 0;
- if(exitsyscallfast()) {
- // There's a cpu for us, so we can run.
- g->m->p->syscalltick++;
- // We need to cas the status and scan before resuming...
- runtime·casgstatus(g, Gsyscall, Grunning);
-
- // Garbage collector isn't running (since we are),
- // so okay to clear syscallsp.
- g->syscallsp = (uintptr)nil;
- g->m->locks--;
- if(g->preempt) {
- // restore the preemption request in case we've cleared it in newstack
- g->stackguard0 = StackPreempt;
- } else {
- // otherwise restore the real stackguard, we've spoiled it in entersyscall/entersyscallblock
- g->stackguard0 = g->stack.lo + StackGuard;
- }
- g->throwsplit = 0;
- return;
- }
-
- g->m->locks--;
-
- // Call the scheduler.
- fn = exitsyscall0;
- runtime·mcall(&fn);
-
- // Scheduler returned, so we're allowed to run now.
- // Delete the syscallsp information that we left for
- // the garbage collector during the system call.
- // Must wait until now because until gosched returns
- // we don't know for sure that the garbage collector
- // is not running.
- g->syscallsp = (uintptr)nil;
- g->m->p->syscalltick++;
- g->throwsplit = 0;
-}
-
-static void exitsyscallfast_pidle(void);
-
-#pragma textflag NOSPLIT
-static bool
-exitsyscallfast(void)
-{
- void (*fn)(void);
-
- // Freezetheworld sets stopwait but does not retake P's.
- if(runtime·sched.stopwait) {
- g->m->p = nil;
- return false;
- }
-
- // Try to re-acquire the last P.
- if(g->m->p && g->m->p->status == Psyscall && runtime·cas(&g->m->p->status, Psyscall, Prunning)) {
- // There's a cpu for us, so we can run.
- g->m->mcache = g->m->p->mcache;
- g->m->p->m = g->m;
- return true;
- }
- // Try to get any other idle P.
- g->m->p = nil;
- if(runtime·sched.pidle) {
- fn = exitsyscallfast_pidle;
- runtime·onM(&fn);
- if(g->m->scalararg[0]) {
- g->m->scalararg[0] = 0;
- return true;
- }
- }
- return false;
-}
-
-static void
-exitsyscallfast_pidle(void)
-{
- P *p;
-
- runtime·lock(&runtime·sched.lock);
- p = pidleget();
- if(p && runtime·atomicload(&runtime·sched.sysmonwait)) {
- runtime·atomicstore(&runtime·sched.sysmonwait, 0);
- runtime·notewakeup(&runtime·sched.sysmonnote);
- }
- runtime·unlock(&runtime·sched.lock);
- if(p) {
- acquirep(p);
- g->m->scalararg[0] = 1;
- } else
- g->m->scalararg[0] = 0;
-}
-
-// runtime·exitsyscall slow path on g0.
-// Failed to acquire P, enqueue gp as runnable.
-static void
-exitsyscall0(G *gp)
-{
- P *p;
-
- runtime·casgstatus(gp, Gsyscall, Grunnable);
- dropg();
- runtime·lock(&runtime·sched.lock);
- p = pidleget();
- if(p == nil)
- globrunqput(gp);
- else if(runtime·atomicload(&runtime·sched.sysmonwait)) {
- runtime·atomicstore(&runtime·sched.sysmonwait, 0);
- runtime·notewakeup(&runtime·sched.sysmonnote);
- }
- runtime·unlock(&runtime·sched.lock);
- if(p) {
- acquirep(p);
- execute(gp); // Never returns.
- }
- if(g->m->lockedg) {
- // Wait until another thread schedules gp and so m again.
- stoplockedm();
- execute(gp); // Never returns.
- }
- stopm();
- schedule(); // Never returns.
-}
-
-static void
-beforefork(void)
-{
- G *gp;
-
- gp = g->m->curg;
- // Fork can hang if preempted with signals frequently enough (see issue 5517).
- // Ensure that we stay on the same M where we disable profiling.
- gp->m->locks++;
- if(gp->m->profilehz != 0)
- runtime·resetcpuprofiler(0);
-
- // This function is called before fork in syscall package.
- // Code between fork and exec must not allocate memory nor even try to grow stack.
- // Here we spoil g->stackguard to reliably detect any attempts to grow stack.
- // runtime_AfterFork will undo this in parent process, but not in child.
- gp->stackguard0 = StackFork;
-}
-
-// Called from syscall package before fork.
-#pragma textflag NOSPLIT
-void
-syscall·runtime_BeforeFork(void)
-{
- void (*fn)(void);
-
- fn = beforefork;
- runtime·onM(&fn);
-}
-
-static void
-afterfork(void)
-{
- int32 hz;
- G *gp;
-
- gp = g->m->curg;
- // See the comment in runtime_BeforeFork.
- gp->stackguard0 = gp->stack.lo + StackGuard;
-
- hz = runtime·sched.profilehz;
- if(hz != 0)
- runtime·resetcpuprofiler(hz);
- gp->m->locks--;
-}
-
-// Called from syscall package after fork in parent.
-#pragma textflag NOSPLIT
-void
-syscall·runtime_AfterFork(void)
-{
- void (*fn)(void);
-
- fn = afterfork;
- runtime·onM(&fn);
-}
-
-// Hook used by runtime·malg to call runtime·stackalloc on the
-// scheduler stack. This exists because runtime·stackalloc insists
-// on being called on the scheduler stack, to avoid trying to grow
-// the stack while allocating a new stack segment.
-static void
-mstackalloc(G *gp)
-{
- G *newg;
- uintptr size;
-
- newg = g->m->ptrarg[0];
- size = g->m->scalararg[0];
-
- newg->stack = runtime·stackalloc(size);
-
- runtime·gogo(&gp->sched);
-}
-
-// Allocate a new g, with a stack big enough for stacksize bytes.
-G*
-runtime·malg(int32 stacksize)
-{
- G *newg;
- void (*fn)(G*);
-
- newg = allocg();
- if(stacksize >= 0) {
- stacksize = runtime·round2(StackSystem + stacksize);
- if(g == g->m->g0) {
- // running on scheduler stack already.
- newg->stack = runtime·stackalloc(stacksize);
- } else {
- // have to call stackalloc on scheduler stack.
- g->m->scalararg[0] = stacksize;
- g->m->ptrarg[0] = newg;
- fn = mstackalloc;
- runtime·mcall(&fn);
- g->m->ptrarg[0] = nil;
- }
- newg->stackguard0 = newg->stack.lo + StackGuard;
- newg->stackguard1 = ~(uintptr)0;
- }
- return newg;
-}
-
-static void
-newproc_m(void)
-{
- byte *argp;
- void *callerpc;
- FuncVal *fn;
- int32 siz;
-
- siz = g->m->scalararg[0];
- callerpc = (void*)g->m->scalararg[1];
- argp = g->m->ptrarg[0];
- fn = (FuncVal*)g->m->ptrarg[1];
-
- runtime·newproc1(fn, argp, siz, 0, callerpc);
- g->m->ptrarg[0] = nil;
- g->m->ptrarg[1] = nil;
-}
-
-// Create a new g running fn with siz bytes of arguments.
-// Put it on the queue of g's waiting to run.
-// The compiler turns a go statement into a call to this.
-// Cannot split the stack because it assumes that the arguments
-// are available sequentially after &fn; they would not be
-// copied if a stack split occurred.
-#pragma textflag NOSPLIT
-void
-runtime·newproc(int32 siz, FuncVal* fn, ...)
-{
- byte *argp;
- void (*mfn)(void);
-
- if(thechar == '5')
- argp = (byte*)(&fn+2); // skip caller's saved LR
- else
- argp = (byte*)(&fn+1);
-
- g->m->locks++;
- g->m->scalararg[0] = siz;
- g->m->scalararg[1] = (uintptr)runtime·getcallerpc(&siz);
- g->m->ptrarg[0] = argp;
- g->m->ptrarg[1] = fn;
- mfn = newproc_m;
- runtime·onM(&mfn);
- g->m->locks--;
-}
-
-void runtime·main(void);
-
-// Create a new g running fn with narg bytes of arguments starting
-// at argp and returning nret bytes of results. callerpc is the
-// address of the go statement that created this. The new g is put
-// on the queue of g's waiting to run.
-G*
-runtime·newproc1(FuncVal *fn, byte *argp, int32 narg, int32 nret, void *callerpc)
-{
- byte *sp;
- G *newg;
- P *p;
- int32 siz;
-
- if(fn == nil) {
- g->m->throwing = -1; // do not dump full stacks
- runtime·throw("go of nil func value");
- }
- g->m->locks++; // disable preemption because it can be holding p in a local var
- siz = narg + nret;
- siz = (siz+7) & ~7;
-
- // We could allocate a larger initial stack if necessary.
- // Not worth it: this is almost always an error.
- // 4*sizeof(uintreg): extra space added below
- // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
- if(siz >= StackMin - 4*sizeof(uintreg) - sizeof(uintreg))
- runtime·throw("runtime.newproc: function arguments too large for new goroutine");
-
- p = g->m->p;
- if((newg = gfget(p)) == nil) {
- newg = runtime·malg(StackMin);
- runtime·casgstatus(newg, Gidle, Gdead);
- runtime·allgadd(newg); // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
- }
- if(newg->stack.hi == 0)
- runtime·throw("newproc1: newg missing stack");
-
- if(runtime·readgstatus(newg) != Gdead)
- runtime·throw("newproc1: new g is not Gdead");
-
- sp = (byte*)newg->stack.hi;
- sp -= 4*sizeof(uintreg); // extra space in case of reads slightly beyond frame
- sp -= siz;
- runtime·memmove(sp, argp, narg);
- if(thechar == '5') {
- // caller's LR
- sp -= sizeof(void*);
- *(void**)sp = nil;
- }
-
- runtime·memclr((byte*)&newg->sched, sizeof newg->sched);
- newg->sched.sp = (uintptr)sp;
- newg->sched.pc = (uintptr)runtime·goexit + PCQuantum; // +PCQuantum so that previous instruction is in same function
- newg->sched.g = newg;
- runtime·gostartcallfn(&newg->sched, fn);
- newg->gopc = (uintptr)callerpc;
- runtime·casgstatus(newg, Gdead, Grunnable);
-
- if(p->goidcache == p->goidcacheend) {
- // Sched.goidgen is the last allocated id,
- // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
- // At startup sched.goidgen=0, so main goroutine receives goid=1.
- p->goidcache = runtime·xadd64(&runtime·sched.goidgen, GoidCacheBatch);
- p->goidcache -= GoidCacheBatch - 1;
- p->goidcacheend = p->goidcache + GoidCacheBatch;
- }
- newg->goid = p->goidcache++;
- if(raceenabled)
- newg->racectx = runtime·racegostart((void*)callerpc);
- runqput(p, newg);
-
- if(runtime·atomicload(&runtime·sched.npidle) != 0 && runtime·atomicload(&runtime·sched.nmspinning) == 0 && fn->fn != runtime·main) // TODO: fast atomic
- wakep();
- g->m->locks--;
- if(g->m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack
- g->stackguard0 = StackPreempt;
- return newg;
-}
-
-// Put on gfree list.
-// If local list is too long, transfer a batch to the global list.
-static void
-gfput(P *p, G *gp)
-{
- uintptr stksize;
-
- if(runtime·readgstatus(gp) != Gdead)
- runtime·throw("gfput: bad status (not Gdead)");
-
- stksize = gp->stack.hi - gp->stack.lo;
-
- if(stksize != FixedStack) {
- // non-standard stack size - free it.
- runtime·stackfree(gp->stack);
- gp->stack.lo = 0;
- gp->stack.hi = 0;
- gp->stackguard0 = 0;
- }
- gp->schedlink = p->gfree;
- p->gfree = gp;
- p->gfreecnt++;
- if(p->gfreecnt >= 64) {
- runtime·lock(&runtime·sched.gflock);
- while(p->gfreecnt >= 32) {
- p->gfreecnt--;
- gp = p->gfree;
- p->gfree = gp->schedlink;
- gp->schedlink = runtime·sched.gfree;
- runtime·sched.gfree = gp;
- runtime·sched.ngfree++;
- }
- runtime·unlock(&runtime·sched.gflock);
- }
-}
-
-// Get from gfree list.
-// If local list is empty, grab a batch from global list.
-static G*
-gfget(P *p)
-{
- G *gp;
- void (*fn)(G*);
-
-retry:
- gp = p->gfree;
- if(gp == nil && runtime·sched.gfree) {
- runtime·lock(&runtime·sched.gflock);
- while(p->gfreecnt < 32 && runtime·sched.gfree != nil) {
- p->gfreecnt++;
- gp = runtime·sched.gfree;
- runtime·sched.gfree = gp->schedlink;
- runtime·sched.ngfree--;
- gp->schedlink = p->gfree;
- p->gfree = gp;
- }
- runtime·unlock(&runtime·sched.gflock);
- goto retry;
- }
- if(gp) {
- p->gfree = gp->schedlink;
- p->gfreecnt--;
-
- if(gp->stack.lo == 0) {
- // Stack was deallocated in gfput. Allocate a new one.
- if(g == g->m->g0) {
- gp->stack = runtime·stackalloc(FixedStack);
- } else {
- g->m->scalararg[0] = FixedStack;
- g->m->ptrarg[0] = gp;
- fn = mstackalloc;
- runtime·mcall(&fn);
- g->m->ptrarg[0] = nil;
- }
- gp->stackguard0 = gp->stack.lo + StackGuard;
- } else {
- if(raceenabled)
- runtime·racemalloc((void*)gp->stack.lo, gp->stack.hi - gp->stack.lo);
- }
- }
- return gp;
-}
-
-// Purge all cached G's from gfree list to the global list.
-static void
-gfpurge(P *p)
-{
- G *gp;
-
- runtime·lock(&runtime·sched.gflock);
- while(p->gfreecnt != 0) {
- p->gfreecnt--;
- gp = p->gfree;
- p->gfree = gp->schedlink;
- gp->schedlink = runtime·sched.gfree;
- runtime·sched.gfree = gp;
- runtime·sched.ngfree++;
- }
- runtime·unlock(&runtime·sched.gflock);
-}
-
-#pragma textflag NOSPLIT
-void
-runtime·Breakpoint(void)
-{
- runtime·breakpoint();
-}
-
-// lockOSThread is called by runtime.LockOSThread and runtime.lockOSThread below
-// after they modify m->locked. Do not allow preemption during this call,
-// or else the m might be different in this function than in the caller.
-#pragma textflag NOSPLIT
-static void
-lockOSThread(void)
-{
- g->m->lockedg = g;
- g->lockedm = g->m;
-}
-
-#pragma textflag NOSPLIT
-void
-runtime·LockOSThread(void)
-{
- g->m->locked |= LockExternal;
- lockOSThread();
-}
-
-#pragma textflag NOSPLIT
-void
-runtime·lockOSThread(void)
-{
- g->m->locked += LockInternal;
- lockOSThread();
-}
-
-
-// unlockOSThread is called by runtime.UnlockOSThread and runtime.unlockOSThread below
-// after they update m->locked. Do not allow preemption during this call,
-// or else the m might be in different in this function than in the caller.
-#pragma textflag NOSPLIT
-static void
-unlockOSThread(void)
-{
- if(g->m->locked != 0)
- return;
- g->m->lockedg = nil;
- g->lockedm = nil;
-}
-
-#pragma textflag NOSPLIT
-void
-runtime·UnlockOSThread(void)
-{
- g->m->locked &= ~LockExternal;
- unlockOSThread();
-}
-
-static void badunlockOSThread(void);
-
-#pragma textflag NOSPLIT
-void
-runtime·unlockOSThread(void)
-{
- void (*fn)(void);
-
- if(g->m->locked < LockInternal) {
- fn = badunlockOSThread;
- runtime·onM(&fn);
- }
- g->m->locked -= LockInternal;
- unlockOSThread();
-}
-
-static void
-badunlockOSThread(void)
-{
- runtime·throw("runtime: internal error: misuse of lockOSThread/unlockOSThread");
-}
-
-#pragma textflag NOSPLIT
-int32
-runtime·gcount(void)
-{
- P *p, **pp;
- int32 n;
-
- n = runtime·allglen - runtime·sched.ngfree;
- for(pp=runtime·allp; p=*pp; pp++)
- n -= p->gfreecnt;
- // All these variables can be changed concurrently, so the result can be inconsistent.
- // But at least the current goroutine is running.
- if(n < 1)
- n = 1;
- return n;
-}
-
-int32
-runtime·mcount(void)
-{
- return runtime·sched.mcount;
-}
-
-static struct ProfState {
- uint32 lock;
- int32 hz;
-} prof;
-
-static void System(void) { System(); }
-static void ExternalCode(void) { ExternalCode(); }
-static void GC(void) { GC(); }
-
-extern void runtime·cpuproftick(uintptr*, int32);
-extern byte runtime·etext[];
-
-// Called if we receive a SIGPROF signal.
-void
-runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp, M *mp)
-{
- int32 n;
- bool traceback;
- // Do not use global m in this function, use mp instead.
- // On windows one m is sending reports about all the g's, so m means a wrong thing.
- byte m;
- uintptr stk[100];
-
- m = 0;
- USED(m);
-
- if(prof.hz == 0)
- return;
-
- // Profiling runs concurrently with GC, so it must not allocate.
- mp->mallocing++;
-
- // Define that a "user g" is a user-created goroutine, and a "system g"
- // is one that is m->g0 or m->gsignal. We've only made sure that we
- // can unwind user g's, so exclude the system g's.
- //
- // It is not quite as easy as testing gp == m->curg (the current user g)
- // because we might be interrupted for profiling halfway through a
- // goroutine switch. The switch involves updating three (or four) values:
- // g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
- // because once it gets updated the new g is running.
- //
- // When switching from a user g to a system g, LR is not considered live,
- // so the update only affects g, SP, and PC. Since PC must be last, there
- // the possible partial transitions in ordinary execution are (1) g alone is updated,
- // (2) both g and SP are updated, and (3) SP alone is updated.
- // If g is updated, we'll see a system g and not look closer.
- // If SP alone is updated, we can detect the partial transition by checking
- // whether the SP is within g's stack bounds. (We could also require that SP
- // be changed only after g, but the stack bounds check is needed by other
- // cases, so there is no need to impose an additional requirement.)
- //
- // There is one exceptional transition to a system g, not in ordinary execution.
- // When a signal arrives, the operating system starts the signal handler running
- // with an updated PC and SP. The g is updated last, at the beginning of the
- // handler. There are two reasons this is okay. First, until g is updated the
- // g and SP do not match, so the stack bounds check detects the partial transition.
- // Second, signal handlers currently run with signals disabled, so a profiling
- // signal cannot arrive during the handler.
- //
- // When switching from a system g to a user g, there are three possibilities.
- //
- // First, it may be that the g switch has no PC update, because the SP
- // either corresponds to a user g throughout (as in runtime.asmcgocall)
- // or because it has been arranged to look like a user g frame
- // (as in runtime.cgocallback_gofunc). In this case, since the entire
- // transition is a g+SP update, a partial transition updating just one of
- // those will be detected by the stack bounds check.
- //
- // Second, when returning from a signal handler, the PC and SP updates
- // are performed by the operating system in an atomic update, so the g
- // update must be done before them. The stack bounds check detects
- // the partial transition here, and (again) signal handlers run with signals
- // disabled, so a profiling signal cannot arrive then anyway.
- //
- // Third, the common case: it may be that the switch updates g, SP, and PC
- // separately, as in runtime.gogo.
- //
- // Because runtime.gogo is the only instance, we check whether the PC lies
- // within that function, and if so, not ask for a traceback. This approach
- // requires knowing the size of the runtime.gogo function, which we
- // record in arch_*.h and check in runtime_test.go.
- //
- // There is another apparently viable approach, recorded here in case
- // the "PC within runtime.gogo" check turns out not to be usable.
- // It would be possible to delay the update of either g or SP until immediately
- // before the PC update instruction. Then, because of the stack bounds check,
- // the only problematic interrupt point is just before that PC update instruction,
- // and the sigprof handler can detect that instruction and simulate stepping past
- // it in order to reach a consistent state. On ARM, the update of g must be made
- // in two places (in R10 and also in a TLS slot), so the delayed update would
- // need to be the SP update. The sigprof handler must read the instruction at
- // the current PC and if it was the known instruction (for example, JMP BX or
- // MOV R2, PC), use that other register in place of the PC value.
- // The biggest drawback to this solution is that it requires that we can tell
- // whether it's safe to read from the memory pointed at by PC.
- // In a correct program, we can test PC == nil and otherwise read,
- // but if a profiling signal happens at the instant that a program executes
- // a bad jump (before the program manages to handle the resulting fault)
- // the profiling handler could fault trying to read nonexistent memory.
- //
- // To recap, there are no constraints on the assembly being used for the
- // transition. We simply require that g and SP match and that the PC is not
- // in runtime.gogo.
- traceback = true;
- if(gp == nil || gp != mp->curg ||
- (uintptr)sp < gp->stack.lo || gp->stack.hi < (uintptr)sp ||
- ((uint8*)runtime·gogo <= pc && pc < (uint8*)runtime·gogo + RuntimeGogoBytes))
- traceback = false;
-
- n = 0;
- if(traceback)
- n = runtime·gentraceback((uintptr)pc, (uintptr)sp, (uintptr)lr, gp, 0, stk, nelem(stk), nil, nil, TraceTrap);
- if(!traceback || n <= 0) {
- // Normal traceback is impossible or has failed.
- // See if it falls into several common cases.
- n = 0;
- if(mp->ncgo > 0 && mp->curg != nil &&
- mp->curg->syscallpc != 0 && mp->curg->syscallsp != 0) {
- // Cgo, we can't unwind and symbolize arbitrary C code,
- // so instead collect Go stack that leads to the cgo call.
- // This is especially important on windows, since all syscalls are cgo calls.
- n = runtime·gentraceback(mp->curg->syscallpc, mp->curg->syscallsp, 0, mp->curg, 0, stk, nelem(stk), nil, nil, 0);
- }
-#ifdef GOOS_windows
- if(n == 0 && mp->libcallg != nil && mp->libcallpc != 0 && mp->libcallsp != 0) {
- // Libcall, i.e. runtime syscall on windows.
- // Collect Go stack that leads to the call.
- n = runtime·gentraceback(mp->libcallpc, mp->libcallsp, 0, mp->libcallg, 0, stk, nelem(stk), nil, nil, 0);
- }
-#endif
- if(n == 0) {
- // If all of the above has failed, account it against abstract "System" or "GC".
- n = 2;
- // "ExternalCode" is better than "etext".
- if((uintptr)pc > (uintptr)runtime·etext)
- pc = (byte*)ExternalCode + PCQuantum;
- stk[0] = (uintptr)pc;
- if(mp->gcing || mp->helpgc)
- stk[1] = (uintptr)GC + PCQuantum;
- else
- stk[1] = (uintptr)System + PCQuantum;
- }
- }
-
- if(prof.hz != 0) {
- // Simple cas-lock to coordinate with setcpuprofilerate.
- while(!runtime·cas(&prof.lock, 0, 1))
- runtime·osyield();
- if(prof.hz != 0)
- runtime·cpuproftick(stk, n);
- runtime·atomicstore(&prof.lock, 0);
- }
- mp->mallocing--;
-}
-
-// Arrange to call fn with a traceback hz times a second.
-void
-runtime·setcpuprofilerate_m(void)
-{
- int32 hz;
-
- hz = g->m->scalararg[0];
- g->m->scalararg[0] = 0;
-
- // Force sane arguments.
- if(hz < 0)
- hz = 0;
-
- // Disable preemption, otherwise we can be rescheduled to another thread
- // that has profiling enabled.
- g->m->locks++;
-
- // Stop profiler on this thread so that it is safe to lock prof.
- // if a profiling signal came in while we had prof locked,
- // it would deadlock.
- runtime·resetcpuprofiler(0);
-
- while(!runtime·cas(&prof.lock, 0, 1))
- runtime·osyield();
- prof.hz = hz;
- runtime·atomicstore(&prof.lock, 0);
-
- runtime·lock(&runtime·sched.lock);
- runtime·sched.profilehz = hz;
- runtime·unlock(&runtime·sched.lock);
-
- if(hz != 0)
- runtime·resetcpuprofiler(hz);
-
- g->m->locks--;
-}
-
-P *runtime·newP(void);
-
-// Change number of processors. The world is stopped, sched is locked.
-static void
-procresize(int32 new)
-{
- int32 i, old;
- bool empty;
- G *gp;
- P *p;
-
- old = runtime·gomaxprocs;
- if(old < 0 || old > MaxGomaxprocs || new <= 0 || new >MaxGomaxprocs)
- runtime·throw("procresize: invalid arg");
- // initialize new P's
- for(i = 0; i < new; i++) {
- p = runtime·allp[i];
- if(p == nil) {
- p = runtime·newP();
- p->id = i;
- p->status = Pgcstop;
- runtime·atomicstorep(&runtime·allp[i], p);
- }
- if(p->mcache == nil) {
- if(old==0 && i==0)
- p->mcache = g->m->mcache; // bootstrap
- else
- p->mcache = runtime·allocmcache();
- }
- }
-
- // redistribute runnable G's evenly
- // collect all runnable goroutines in global queue preserving FIFO order
- // FIFO order is required to ensure fairness even during frequent GCs
- // see http://golang.org/issue/7126
- empty = false;
- while(!empty) {
- empty = true;
- for(i = 0; i < old; i++) {
- p = runtime·allp[i];
- if(p->runqhead == p->runqtail)
- continue;
- empty = false;
- // pop from tail of local queue
- p->runqtail--;
- gp = p->runq[p->runqtail%nelem(p->runq)];
- // push onto head of global queue
- gp->schedlink = runtime·sched.runqhead;
- runtime·sched.runqhead = gp;
- if(runtime·sched.runqtail == nil)
- runtime·sched.runqtail = gp;
- runtime·sched.runqsize++;
- }
- }
- // fill local queues with at most nelem(p->runq)/2 goroutines
- // start at 1 because current M already executes some G and will acquire allp[0] below,
- // so if we have a spare G we want to put it into allp[1].
- for(i = 1; i < new * nelem(p->runq)/2 && runtime·sched.runqsize > 0; i++) {
- gp = runtime·sched.runqhead;
- runtime·sched.runqhead = gp->schedlink;
- if(runtime·sched.runqhead == nil)
- runtime·sched.runqtail = nil;
- runtime·sched.runqsize--;
- runqput(runtime·allp[i%new], gp);
- }
-
- // free unused P's
- for(i = new; i < old; i++) {
- p = runtime·allp[i];
- runtime·freemcache(p->mcache);
- p->mcache = nil;
- gfpurge(p);
- p->status = Pdead;
- // can't free P itself because it can be referenced by an M in syscall
- }
-
- if(g->m->p)
- g->m->p->m = nil;
- g->m->p = nil;
- g->m->mcache = nil;
- p = runtime·allp[0];
- p->m = nil;
- p->status = Pidle;
- acquirep(p);
- for(i = new-1; i > 0; i--) {
- p = runtime·allp[i];
- p->status = Pidle;
- pidleput(p);
- }
- runtime·atomicstore((uint32*)&runtime·gomaxprocs, new);
-}
-
-// Associate p and the current m.
-static void
-acquirep(P *p)
-{
- if(g->m->p || g->m->mcache)
- runtime·throw("acquirep: already in go");
- if(p->m || p->status != Pidle) {
- runtime·printf("acquirep: p->m=%p(%d) p->status=%d\n", p->m, p->m ? p->m->id : 0, p->status);
- runtime·throw("acquirep: invalid p state");
- }
- g->m->mcache = p->mcache;
- g->m->p = p;
- p->m = g->m;
- p->status = Prunning;
-}
-
-// Disassociate p and the current m.
-static P*
-releasep(void)
-{
- P *p;
-
- if(g->m->p == nil || g->m->mcache == nil)
- runtime·throw("releasep: invalid arg");
- p = g->m->p;
- if(p->m != g->m || p->mcache != g->m->mcache || p->status != Prunning) {
- runtime·printf("releasep: m=%p m->p=%p p->m=%p m->mcache=%p p->mcache=%p p->status=%d\n",
- g->m, g->m->p, p->m, g->m->mcache, p->mcache, p->status);
- runtime·throw("releasep: invalid p state");
- }
- g->m->p = nil;
- g->m->mcache = nil;
- p->m = nil;
- p->status = Pidle;
- return p;
-}
-
-static void
-incidlelocked(int32 v)
-{
- runtime·lock(&runtime·sched.lock);
- runtime·sched.nmidlelocked += v;
- if(v > 0)
- checkdead();
- runtime·unlock(&runtime·sched.lock);
-}
-
-// Check for deadlock situation.
-// The check is based on number of running M's, if 0 -> deadlock.
-static void
-checkdead(void)
-{
- G *gp;
- P *p;
- M *mp;
- int32 run, grunning, s;
- uintptr i;
-
- // -1 for sysmon
- run = runtime·sched.mcount - runtime·sched.nmidle - runtime·sched.nmidlelocked - 1;
- if(run > 0)
- return;
- // If we are dying because of a signal caught on an already idle thread,
- // freezetheworld will cause all running threads to block.
- // And runtime will essentially enter into deadlock state,
- // except that there is a thread that will call runtime·exit soon.
- if(runtime·panicking > 0)
- return;
- if(run < 0) {
- runtime·printf("runtime: checkdead: nmidle=%d nmidlelocked=%d mcount=%d\n",
- runtime·sched.nmidle, runtime·sched.nmidlelocked, runtime·sched.mcount);
- runtime·throw("checkdead: inconsistent counts");
- }
- grunning = 0;
- runtime·lock(&runtime·allglock);
- for(i = 0; i < runtime·allglen; i++) {
- gp = runtime·allg[i];
- if(gp->issystem)
- continue;
- s = runtime·readgstatus(gp);
- switch(s&~Gscan) {
- case Gwaiting:
- grunning++;
- break;
- case Grunnable:
- case Grunning:
- case Gsyscall:
- runtime·unlock(&runtime·allglock);
- runtime·printf("runtime: checkdead: find g %D in status %d\n", gp->goid, s);
- runtime·throw("checkdead: runnable g");
- break;
- }
- }
- runtime·unlock(&runtime·allglock);
- if(grunning == 0) // possible if main goroutine calls runtime·Goexit()
- runtime·throw("no goroutines (main called runtime.Goexit) - deadlock!");
-
- // Maybe jump time forward for playground.
- if((gp = runtime·timejump()) != nil) {
- runtime·casgstatus(gp, Gwaiting, Grunnable);
- globrunqput(gp);
- p = pidleget();
- if(p == nil)
- runtime·throw("checkdead: no p for timer");
- mp = mget();
- if(mp == nil)
- newm(nil, p);
- else {
- mp->nextp = p;
- runtime·notewakeup(&mp->park);
- }
- return;
- }
-
- g->m->throwing = -1; // do not dump full stacks
- runtime·throw("all goroutines are asleep - deadlock!");
-}
-
-static void
-sysmon(void)
-{
- uint32 idle, delay, nscavenge;
- int64 now, unixnow, lastpoll, lasttrace, lastgc;
- int64 forcegcperiod, scavengelimit, lastscavenge, maxsleep;
- G *gp;
-
- // If we go two minutes without a garbage collection, force one to run.
- forcegcperiod = 2*60*1e9;
- // If a heap span goes unused for 5 minutes after a garbage collection,
- // we hand it back to the operating system.
- scavengelimit = 5*60*1e9;
- if(runtime·debug.scavenge > 0) {
- // Scavenge-a-lot for testing.
- forcegcperiod = 10*1e6;
- scavengelimit = 20*1e6;
- }
- lastscavenge = runtime·nanotime();
- nscavenge = 0;
- // Make wake-up period small enough for the sampling to be correct.
- maxsleep = forcegcperiod/2;
- if(scavengelimit < forcegcperiod)
- maxsleep = scavengelimit/2;
-
- lasttrace = 0;
- idle = 0; // how many cycles in succession we had not wokeup somebody
- delay = 0;
- for(;;) {
- if(idle == 0) // start with 20us sleep...
- delay = 20;
- else if(idle > 50) // start doubling the sleep after 1ms...
- delay *= 2;
- if(delay > 10*1000) // up to 10ms
- delay = 10*1000;
- runtime·usleep(delay);
- if(runtime·debug.schedtrace <= 0 &&
- (runtime·sched.gcwaiting || runtime·atomicload(&runtime·sched.npidle) == runtime·gomaxprocs)) { // TODO: fast atomic
- runtime·lock(&runtime·sched.lock);
- if(runtime·atomicload(&runtime·sched.gcwaiting) || runtime·atomicload(&runtime·sched.npidle) == runtime·gomaxprocs) {
- runtime·atomicstore(&runtime·sched.sysmonwait, 1);
- runtime·unlock(&runtime·sched.lock);
- runtime·notetsleep(&runtime·sched.sysmonnote, maxsleep);
- runtime·lock(&runtime·sched.lock);
- runtime·atomicstore(&runtime·sched.sysmonwait, 0);
- runtime·noteclear(&runtime·sched.sysmonnote);
- idle = 0;
- delay = 20;
- }
- runtime·unlock(&runtime·sched.lock);
- }
- // poll network if not polled for more than 10ms
- lastpoll = runtime·atomicload64(&runtime·sched.lastpoll);
- now = runtime·nanotime();
- unixnow = runtime·unixnanotime();
- if(lastpoll != 0 && lastpoll + 10*1000*1000 < now) {
- runtime·cas64(&runtime·sched.lastpoll, lastpoll, now);
- gp = runtime·netpoll(false); // non-blocking
- if(gp) {
- // Need to decrement number of idle locked M's
- // (pretending that one more is running) before injectglist.
- // Otherwise it can lead to the following situation:
- // injectglist grabs all P's but before it starts M's to run the P's,
- // another M returns from syscall, finishes running its G,
- // observes that there is no work to do and no other running M's
- // and reports deadlock.
- incidlelocked(-1);
- injectglist(gp);
- incidlelocked(1);
- }
- }
- // retake P's blocked in syscalls
- // and preempt long running G's
- if(retake(now))
- idle = 0;
- else
- idle++;
-
- // check if we need to force a GC
- lastgc = runtime·atomicload64(&mstats.last_gc);
- if(lastgc != 0 && unixnow - lastgc > forcegcperiod && runtime·atomicload(&runtime·forcegc.idle)) {
- runtime·lock(&runtime·forcegc.lock);
- runtime·forcegc.idle = 0;
- runtime·forcegc.g->schedlink = nil;
- injectglist(runtime·forcegc.g);
- runtime·unlock(&runtime·forcegc.lock);
- }
-
- // scavenge heap once in a while
- if(lastscavenge + scavengelimit/2 < now) {
- runtime·MHeap_Scavenge(nscavenge, now, scavengelimit);
- lastscavenge = now;
- nscavenge++;
- }
-
- if(runtime·debug.schedtrace > 0 && lasttrace + runtime·debug.schedtrace*1000000ll <= now) {
- lasttrace = now;
- runtime·schedtrace(runtime·debug.scheddetail);
- }
- }
-}
-
-typedef struct Pdesc Pdesc;
-struct Pdesc
-{
- uint32 schedtick;
- int64 schedwhen;
- uint32 syscalltick;
- int64 syscallwhen;
-};
-#pragma dataflag NOPTR
-static Pdesc pdesc[MaxGomaxprocs];
-
-static uint32
-retake(int64 now)
-{
- uint32 i, s, n;
- int64 t;
- P *p;
- Pdesc *pd;
-
- n = 0;
- for(i = 0; i < runtime·gomaxprocs; i++) {
- p = runtime·allp[i];
- if(p==nil)
- continue;
- pd = &pdesc[i];
- s = p->status;
- if(s == Psyscall) {
- // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
- t = p->syscalltick;
- if(pd->syscalltick != t) {
- pd->syscalltick = t;
- pd->syscallwhen = now;
- continue;
- }
- // On the one hand we don't want to retake Ps if there is no other work to do,
- // but on the other hand we want to retake them eventually
- // because they can prevent the sysmon thread from deep sleep.
- if(p->runqhead == p->runqtail &&
- runtime·atomicload(&runtime·sched.nmspinning) + runtime·atomicload(&runtime·sched.npidle) > 0 &&
- pd->syscallwhen + 10*1000*1000 > now)
- continue;
- // Need to decrement number of idle locked M's
- // (pretending that one more is running) before the CAS.
- // Otherwise the M from which we retake can exit the syscall,
- // increment nmidle and report deadlock.
- incidlelocked(-1);
- if(runtime·cas(&p->status, s, Pidle)) {
- n++;
- handoffp(p);
- }
- incidlelocked(1);
- } else if(s == Prunning) {
- // Preempt G if it's running for more than 10ms.
- t = p->schedtick;
- if(pd->schedtick != t) {
- pd->schedtick = t;
- pd->schedwhen = now;
- continue;
- }
- if(pd->schedwhen + 10*1000*1000 > now)
- continue;
- preemptone(p);
- }
- }
- return n;
-}
-
-// Tell all goroutines that they have been preempted and they should stop.
-// This function is purely best-effort. It can fail to inform a goroutine if a
-// processor just started running it.
-// No locks need to be held.
-// Returns true if preemption request was issued to at least one goroutine.
-static bool
-preemptall(void)
-{
- P *p;
- int32 i;
- bool res;
-
- res = false;
- for(i = 0; i < runtime·gomaxprocs; i++) {
- p = runtime·allp[i];
- if(p == nil || p->status != Prunning)
- continue;
- res |= preemptone(p);
- }
- return res;
-}
-
-// Tell the goroutine running on processor P to stop.
-// This function is purely best-effort. It can incorrectly fail to inform the
-// goroutine. It can send inform the wrong goroutine. Even if it informs the
-// correct goroutine, that goroutine might ignore the request if it is
-// simultaneously executing runtime·newstack.
-// No lock needs to be held.
-// Returns true if preemption request was issued.
-// The actual preemption will happen at some point in the future
-// and will be indicated by the gp->status no longer being
-// Grunning
-static bool
-preemptone(P *p)
-{
- M *mp;
- G *gp;
-
- mp = p->m;
- if(mp == nil || mp == g->m)
- return false;
- gp = mp->curg;
- if(gp == nil || gp == mp->g0)
- return false;
- gp->preempt = true;
- // Every call in a go routine checks for stack overflow by
- // comparing the current stack pointer to gp->stackguard0.
- // Setting gp->stackguard0 to StackPreempt folds
- // preemption into the normal stack overflow check.
- gp->stackguard0 = StackPreempt;
- return true;
-}
-
-void
-runtime·schedtrace(bool detailed)
-{
- static int64 starttime;
- int64 now;
- int64 id1, id2, id3;
- int32 i, t, h;
- uintptr gi;
- int8 *fmt;
- M *mp, *lockedm;
- G *gp, *lockedg;
- P *p;
-
- now = runtime·nanotime();
- if(starttime == 0)
- starttime = now;
-
- runtime·lock(&runtime·sched.lock);
- runtime·printf("SCHED %Dms: gomaxprocs=%d idleprocs=%d threads=%d spinningthreads=%d idlethreads=%d runqueue=%d",
- (now-starttime)/1000000, runtime·gomaxprocs, runtime·sched.npidle, runtime·sched.mcount,
- runtime·sched.nmspinning, runtime·sched.nmidle, runtime·sched.runqsize);
- if(detailed) {
- runtime·printf(" gcwaiting=%d nmidlelocked=%d stopwait=%d sysmonwait=%d\n",
- runtime·sched.gcwaiting, runtime·sched.nmidlelocked,
- runtime·sched.stopwait, runtime·sched.sysmonwait);
- }
- // We must be careful while reading data from P's, M's and G's.
- // Even if we hold schedlock, most data can be changed concurrently.
- // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
- for(i = 0; i < runtime·gomaxprocs; i++) {
- p = runtime·allp[i];
- if(p == nil)
- continue;
- mp = p->m;
- h = runtime·atomicload(&p->runqhead);
- t = runtime·atomicload(&p->runqtail);
- if(detailed)
- runtime·printf(" P%d: status=%d schedtick=%d syscalltick=%d m=%d runqsize=%d gfreecnt=%d\n",
- i, p->status, p->schedtick, p->syscalltick, mp ? mp->id : -1, t-h, p->gfreecnt);
- else {
- // In non-detailed mode format lengths of per-P run queues as:
- // [len1 len2 len3 len4]
- fmt = " %d";
- if(runtime·gomaxprocs == 1)
- fmt = " [%d]\n";
- else if(i == 0)
- fmt = " [%d";
- else if(i == runtime·gomaxprocs-1)
- fmt = " %d]\n";
- runtime·printf(fmt, t-h);
- }
- }
- if(!detailed) {
- runtime·unlock(&runtime·sched.lock);
- return;
- }
- for(mp = runtime·allm; mp; mp = mp->alllink) {
- p = mp->p;
- gp = mp->curg;
- lockedg = mp->lockedg;
- id1 = -1;
- if(p)
- id1 = p->id;
- id2 = -1;
- if(gp)
- id2 = gp->goid;
- id3 = -1;
- if(lockedg)
- id3 = lockedg->goid;
- runtime·printf(" M%d: p=%D curg=%D mallocing=%d throwing=%d gcing=%d"
- " locks=%d dying=%d helpgc=%d spinning=%d blocked=%d lockedg=%D\n",
- mp->id, id1, id2,
- mp->mallocing, mp->throwing, mp->gcing, mp->locks, mp->dying, mp->helpgc,
- mp->spinning, g->m->blocked, id3);
- }
- runtime·lock(&runtime·allglock);
- for(gi = 0; gi < runtime·allglen; gi++) {
- gp = runtime·allg[gi];
- mp = gp->m;
- lockedm = gp->lockedm;
- runtime·printf(" G%D: status=%d(%S) m=%d lockedm=%d\n",
- gp->goid, runtime·readgstatus(gp), gp->waitreason, mp ? mp->id : -1,
- lockedm ? lockedm->id : -1);
- }
- runtime·unlock(&runtime·allglock);
- runtime·unlock(&runtime·sched.lock);
-}
-
-// Put mp on midle list.
-// Sched must be locked.
-static void
-mput(M *mp)
-{
- mp->schedlink = runtime·sched.midle;
- runtime·sched.midle = mp;
- runtime·sched.nmidle++;
- checkdead();
-}
-
-// Try to get an m from midle list.
-// Sched must be locked.
-static M*
-mget(void)
-{
- M *mp;
-
- if((mp = runtime·sched.midle) != nil){
- runtime·sched.midle = mp->schedlink;
- runtime·sched.nmidle--;
- }
- return mp;
-}
-
-// Put gp on the global runnable queue.
-// Sched must be locked.
-static void
-globrunqput(G *gp)
-{
- gp->schedlink = nil;
- if(runtime·sched.runqtail)
- runtime·sched.runqtail->schedlink = gp;
- else
- runtime·sched.runqhead = gp;
- runtime·sched.runqtail = gp;
- runtime·sched.runqsize++;
-}
-
-// Put a batch of runnable goroutines on the global runnable queue.
-// Sched must be locked.
-static void
-globrunqputbatch(G *ghead, G *gtail, int32 n)
-{
- gtail->schedlink = nil;
- if(runtime·sched.runqtail)
- runtime·sched.runqtail->schedlink = ghead;
- else
- runtime·sched.runqhead = ghead;
- runtime·sched.runqtail = gtail;
- runtime·sched.runqsize += n;
-}
-
-// Try get a batch of G's from the global runnable queue.
-// Sched must be locked.
-static G*
-globrunqget(P *p, int32 max)
-{
- G *gp, *gp1;
- int32 n;
-
- if(runtime·sched.runqsize == 0)
- return nil;
- n = runtime·sched.runqsize/runtime·gomaxprocs+1;
- if(n > runtime·sched.runqsize)
- n = runtime·sched.runqsize;
- if(max > 0 && n > max)
- n = max;
- if(n > nelem(p->runq)/2)
- n = nelem(p->runq)/2;
- runtime·sched.runqsize -= n;
- if(runtime·sched.runqsize == 0)
- runtime·sched.runqtail = nil;
- gp = runtime·sched.runqhead;
- runtime·sched.runqhead = gp->schedlink;
- n--;
- while(n--) {
- gp1 = runtime·sched.runqhead;
- runtime·sched.runqhead = gp1->schedlink;
- runqput(p, gp1);
- }
- return gp;
-}
-
-// Put p to on pidle list.
-// Sched must be locked.
-static void
-pidleput(P *p)
-{
- p->link = runtime·sched.pidle;
- runtime·sched.pidle = p;
- runtime·xadd(&runtime·sched.npidle, 1); // TODO: fast atomic
-}
-
-// Try get a p from pidle list.
-// Sched must be locked.
-static P*
-pidleget(void)
-{
- P *p;
-
- p = runtime·sched.pidle;
- if(p) {
- runtime·sched.pidle = p->link;
- runtime·xadd(&runtime·sched.npidle, -1); // TODO: fast atomic
- }
- return p;
-}
-
-// Try to put g on local runnable queue.
-// If it's full, put onto global queue.
-// Executed only by the owner P.
-static void
-runqput(P *p, G *gp)
-{
- uint32 h, t;
-
-retry:
- h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with consumers
- t = p->runqtail;
- if(t - h < nelem(p->runq)) {
- p->runq[t%nelem(p->runq)] = gp;
- runtime·atomicstore(&p->runqtail, t+1); // store-release, makes the item available for consumption
- return;
- }
- if(runqputslow(p, gp, h, t))
- return;
- // the queue is not full, now the put above must suceed
- goto retry;
-}
-
-// Put g and a batch of work from local runnable queue on global queue.
-// Executed only by the owner P.
-static bool
-runqputslow(P *p, G *gp, uint32 h, uint32 t)
-{
- G *batch[nelem(p->runq)/2+1];
- uint32 n, i;
-
- // First, grab a batch from local queue.
- n = t-h;
- n = n/2;
- if(n != nelem(p->runq)/2)
- runtime·throw("runqputslow: queue is not full");
- for(i=0; i<n; i++)
- batch[i] = p->runq[(h+i)%nelem(p->runq)];
- if(!runtime·cas(&p->runqhead, h, h+n)) // cas-release, commits consume
- return false;
- batch[n] = gp;
- // Link the goroutines.
- for(i=0; i<n; i++)
- batch[i]->schedlink = batch[i+1];
- // Now put the batch on global queue.
- runtime·lock(&runtime·sched.lock);
- globrunqputbatch(batch[0], batch[n], n+1);
- runtime·unlock(&runtime·sched.lock);
- return true;
-}
-
-// Get g from local runnable queue.
-// Executed only by the owner P.
-static G*
-runqget(P *p)
-{
- G *gp;
- uint32 t, h;
-
- for(;;) {
- h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with other consumers
- t = p->runqtail;
- if(t == h)
- return nil;
- gp = p->runq[h%nelem(p->runq)];
- if(runtime·cas(&p->runqhead, h, h+1)) // cas-release, commits consume
- return gp;
- }
-}
-
-// Grabs a batch of goroutines from local runnable queue.
-// batch array must be of size nelem(p->runq)/2. Returns number of grabbed goroutines.
-// Can be executed by any P.
-static uint32
-runqgrab(P *p, G **batch)
-{
- uint32 t, h, n, i;
-
- for(;;) {
- h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with other consumers
- t = runtime·atomicload(&p->runqtail); // load-acquire, synchronize with the producer
- n = t-h;
- n = n - n/2;
- if(n == 0)
- break;
- if(n > nelem(p->runq)/2) // read inconsistent h and t
- continue;
- for(i=0; i<n; i++)
- batch[i] = p->runq[(h+i)%nelem(p->runq)];
- if(runtime·cas(&p->runqhead, h, h+n)) // cas-release, commits consume
- break;
- }
- return n;
-}
-
-// Steal half of elements from local runnable queue of p2
-// and put onto local runnable queue of p.
-// Returns one of the stolen elements (or nil if failed).
-static G*
-runqsteal(P *p, P *p2)
-{
- G *gp;
- G *batch[nelem(p->runq)/2];
- uint32 t, h, n, i;
-
- n = runqgrab(p2, batch);
- if(n == 0)
- return nil;
- n--;
- gp = batch[n];
- if(n == 0)
- return gp;
- h = runtime·atomicload(&p->runqhead); // load-acquire, synchronize with consumers
- t = p->runqtail;
- if(t - h + n >= nelem(p->runq))
- runtime·throw("runqsteal: runq overflow");
- for(i=0; i<n; i++, t++)
- p->runq[t%nelem(p->runq)] = batch[i];
- runtime·atomicstore(&p->runqtail, t); // store-release, makes the item available for consumption
- return gp;
-}
-
-void
-runtime·testSchedLocalQueue(void)
-{
- P *p;
- G *gs;
- int32 i, j;
-
- p = (P*)runtime·mallocgc(sizeof(*p), nil, FlagNoScan);
- gs = (G*)runtime·mallocgc(nelem(p->runq)*sizeof(*gs), nil, FlagNoScan);
-
- for(i = 0; i < nelem(p->runq); i++) {
- if(runqget(p) != nil)
- runtime·throw("runq is not empty initially");
- for(j = 0; j < i; j++)
- runqput(p, &gs[i]);
- for(j = 0; j < i; j++) {
- if(runqget(p) != &gs[i]) {
- runtime·printf("bad element at iter %d/%d\n", i, j);
- runtime·throw("bad element");
- }
- }
- if(runqget(p) != nil)
- runtime·throw("runq is not empty afterwards");
- }
-}
-
-void
-runtime·testSchedLocalQueueSteal(void)
-{
- P *p1, *p2;
- G *gs, *gp;
- int32 i, j, s;
-
- p1 = (P*)runtime·mallocgc(sizeof(*p1), nil, FlagNoScan);
- p2 = (P*)runtime·mallocgc(sizeof(*p2), nil, FlagNoScan);
- gs = (G*)runtime·mallocgc(nelem(p1->runq)*sizeof(*gs), nil, FlagNoScan);
-
- for(i = 0; i < nelem(p1->runq); i++) {
- for(j = 0; j < i; j++) {
- gs[j].sig = 0;
- runqput(p1, &gs[j]);
- }
- gp = runqsteal(p2, p1);
- s = 0;
- if(gp) {
- s++;
- gp->sig++;
- }
- while(gp = runqget(p2)) {
- s++;
- gp->sig++;
- }
- while(gp = runqget(p1))
- gp->sig++;
- for(j = 0; j < i; j++) {
- if(gs[j].sig != 1) {
- runtime·printf("bad element %d(%d) at iter %d\n", j, gs[j].sig, i);
- runtime·throw("bad element");
- }
- }
- if(s != i/2 && s != i/2+1) {
- runtime·printf("bad steal %d, want %d or %d, iter %d\n",
- s, i/2, i/2+1, i);
- runtime·throw("bad steal");
- }
- }
-}
-
-void
-runtime·setmaxthreads_m(void)
-{
- int32 in;
- int32 out;
-
- in = g->m->scalararg[0];
-
- runtime·lock(&runtime·sched.lock);
- out = runtime·sched.maxmcount;
- runtime·sched.maxmcount = in;
- checkmcount();
- runtime·unlock(&runtime·sched.lock);
-
- g->m->scalararg[0] = out;
-}
-
-static int8 experiment[] = GOEXPERIMENT; // defined in zaexperiment.h
-
-static bool
-haveexperiment(int8 *name)
-{
- int32 i, j;
-
- for(i=0; i<sizeof(experiment); i++) {
- if((i == 0 || experiment[i-1] == ',') && experiment[i] == name[0]) {
- for(j=0; name[j]; j++)
- if(experiment[i+j] != name[j])
- goto nomatch;
- if(experiment[i+j] != '\0' && experiment[i+j] != ',')
- goto nomatch;
- return 1;
- }
- nomatch:;
- }
- return 0;
-}
-
-#pragma textflag NOSPLIT
-void
-sync·runtime_procPin(intptr p)
-{
- M *mp;
-
- mp = g->m;
- // Disable preemption.
- mp->locks++;
- p = mp->p->id;
- FLUSH(&p);
-}
-
-#pragma textflag NOSPLIT
-void
-sync·runtime_procUnpin()
-{
- g->m->locks--;
-}