summaryrefslogtreecommitdiff
path: root/src/runtime/type.go
blob: 36492619e108888d5245a852d4dd810a7eebd418 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Runtime type representation.

package runtime

import "unsafe"

// tflag is documented in reflect/type.go.
//
// tflag values must be kept in sync with copies in:
//	cmd/compile/internal/gc/reflect.go
//	cmd/link/internal/ld/decodesym.go
//	reflect/type.go
//      internal/reflectlite/type.go
type tflag uint8

const (
	tflagUncommon      tflag = 1 << 0
	tflagExtraStar     tflag = 1 << 1
	tflagNamed         tflag = 1 << 2
	tflagRegularMemory tflag = 1 << 3 // equal and hash can treat values of this type as a single region of t.size bytes
)

// Needs to be in sync with ../cmd/link/internal/ld/decodesym.go:/^func.commonsize,
// ../cmd/compile/internal/gc/reflect.go:/^func.dcommontype and
// ../reflect/type.go:/^type.rtype.
// ../internal/reflectlite/type.go:/^type.rtype.
type _type struct {
	size       uintptr
	ptrdata    uintptr // size of memory prefix holding all pointers
	hash       uint32
	tflag      tflag
	align      uint8
	fieldAlign uint8
	kind       uint8
	// function for comparing objects of this type
	// (ptr to object A, ptr to object B) -> ==?
	equal func(unsafe.Pointer, unsafe.Pointer) bool
	// gcdata stores the GC type data for the garbage collector.
	// If the KindGCProg bit is set in kind, gcdata is a GC program.
	// Otherwise it is a ptrmask bitmap. See mbitmap.go for details.
	gcdata    *byte
	str       nameOff
	ptrToThis typeOff
}

func (t *_type) string() string {
	s := t.nameOff(t.str).name()
	if t.tflag&tflagExtraStar != 0 {
		return s[1:]
	}
	return s
}

func (t *_type) uncommon() *uncommontype {
	if t.tflag&tflagUncommon == 0 {
		return nil
	}
	switch t.kind & kindMask {
	case kindStruct:
		type u struct {
			structtype
			u uncommontype
		}
		return &(*u)(unsafe.Pointer(t)).u
	case kindPtr:
		type u struct {
			ptrtype
			u uncommontype
		}
		return &(*u)(unsafe.Pointer(t)).u
	case kindFunc:
		type u struct {
			functype
			u uncommontype
		}
		return &(*u)(unsafe.Pointer(t)).u
	case kindSlice:
		type u struct {
			slicetype
			u uncommontype
		}
		return &(*u)(unsafe.Pointer(t)).u
	case kindArray:
		type u struct {
			arraytype
			u uncommontype
		}
		return &(*u)(unsafe.Pointer(t)).u
	case kindChan:
		type u struct {
			chantype
			u uncommontype
		}
		return &(*u)(unsafe.Pointer(t)).u
	case kindMap:
		type u struct {
			maptype
			u uncommontype
		}
		return &(*u)(unsafe.Pointer(t)).u
	case kindInterface:
		type u struct {
			interfacetype
			u uncommontype
		}
		return &(*u)(unsafe.Pointer(t)).u
	default:
		type u struct {
			_type
			u uncommontype
		}
		return &(*u)(unsafe.Pointer(t)).u
	}
}

func (t *_type) name() string {
	if t.tflag&tflagNamed == 0 {
		return ""
	}
	s := t.string()
	i := len(s) - 1
	for i >= 0 && s[i] != '.' {
		i--
	}
	return s[i+1:]
}

// pkgpath returns the path of the package where t was defined, if
// available. This is not the same as the reflect package's PkgPath
// method, in that it returns the package path for struct and interface
// types, not just named types.
func (t *_type) pkgpath() string {
	if u := t.uncommon(); u != nil {
		return t.nameOff(u.pkgpath).name()
	}
	switch t.kind & kindMask {
	case kindStruct:
		st := (*structtype)(unsafe.Pointer(t))
		return st.pkgPath.name()
	case kindInterface:
		it := (*interfacetype)(unsafe.Pointer(t))
		return it.pkgpath.name()
	}
	return ""
}

// reflectOffs holds type offsets defined at run time by the reflect package.
//
// When a type is defined at run time, its *rtype data lives on the heap.
// There are a wide range of possible addresses the heap may use, that
// may not be representable as a 32-bit offset. Moreover the GC may
// one day start moving heap memory, in which case there is no stable
// offset that can be defined.
//
// To provide stable offsets, we add pin *rtype objects in a global map
// and treat the offset as an identifier. We use negative offsets that
// do not overlap with any compile-time module offsets.
//
// Entries are created by reflect.addReflectOff.
var reflectOffs struct {
	lock mutex
	next int32
	m    map[int32]unsafe.Pointer
	minv map[unsafe.Pointer]int32
}

func reflectOffsLock() {
	lock(&reflectOffs.lock)
	if raceenabled {
		raceacquire(unsafe.Pointer(&reflectOffs.lock))
	}
}

func reflectOffsUnlock() {
	if raceenabled {
		racerelease(unsafe.Pointer(&reflectOffs.lock))
	}
	unlock(&reflectOffs.lock)
}

func resolveNameOff(ptrInModule unsafe.Pointer, off nameOff) name {
	if off == 0 {
		return name{}
	}
	base := uintptr(ptrInModule)
	for md := &firstmoduledata; md != nil; md = md.next {
		if base >= md.types && base < md.etypes {
			res := md.types + uintptr(off)
			if res > md.etypes {
				println("runtime: nameOff", hex(off), "out of range", hex(md.types), "-", hex(md.etypes))
				throw("runtime: name offset out of range")
			}
			return name{(*byte)(unsafe.Pointer(res))}
		}
	}

	// No module found. see if it is a run time name.
	reflectOffsLock()
	res, found := reflectOffs.m[int32(off)]
	reflectOffsUnlock()
	if !found {
		println("runtime: nameOff", hex(off), "base", hex(base), "not in ranges:")
		for next := &firstmoduledata; next != nil; next = next.next {
			println("\ttypes", hex(next.types), "etypes", hex(next.etypes))
		}
		throw("runtime: name offset base pointer out of range")
	}
	return name{(*byte)(res)}
}

func (t *_type) nameOff(off nameOff) name {
	return resolveNameOff(unsafe.Pointer(t), off)
}

func resolveTypeOff(ptrInModule unsafe.Pointer, off typeOff) *_type {
	if off == 0 || off == -1 {
		// -1 is the sentinel value for unreachable code.
		// See cmd/link/internal/ld/data.go:relocsym.
		return nil
	}
	base := uintptr(ptrInModule)
	var md *moduledata
	for next := &firstmoduledata; next != nil; next = next.next {
		if base >= next.types && base < next.etypes {
			md = next
			break
		}
	}
	if md == nil {
		reflectOffsLock()
		res := reflectOffs.m[int32(off)]
		reflectOffsUnlock()
		if res == nil {
			println("runtime: typeOff", hex(off), "base", hex(base), "not in ranges:")
			for next := &firstmoduledata; next != nil; next = next.next {
				println("\ttypes", hex(next.types), "etypes", hex(next.etypes))
			}
			throw("runtime: type offset base pointer out of range")
		}
		return (*_type)(res)
	}
	if t := md.typemap[off]; t != nil {
		return t
	}
	res := md.types + uintptr(off)
	if res > md.etypes {
		println("runtime: typeOff", hex(off), "out of range", hex(md.types), "-", hex(md.etypes))
		throw("runtime: type offset out of range")
	}
	return (*_type)(unsafe.Pointer(res))
}

func (t *_type) typeOff(off typeOff) *_type {
	return resolveTypeOff(unsafe.Pointer(t), off)
}

func (t *_type) textOff(off textOff) unsafe.Pointer {
	if off == -1 {
		// -1 is the sentinel value for unreachable code.
		// See cmd/link/internal/ld/data.go:relocsym.
		return unsafe.Pointer(^uintptr(0))
	}
	base := uintptr(unsafe.Pointer(t))
	var md *moduledata
	for next := &firstmoduledata; next != nil; next = next.next {
		if base >= next.types && base < next.etypes {
			md = next
			break
		}
	}
	if md == nil {
		reflectOffsLock()
		res := reflectOffs.m[int32(off)]
		reflectOffsUnlock()
		if res == nil {
			println("runtime: textOff", hex(off), "base", hex(base), "not in ranges:")
			for next := &firstmoduledata; next != nil; next = next.next {
				println("\ttypes", hex(next.types), "etypes", hex(next.etypes))
			}
			throw("runtime: text offset base pointer out of range")
		}
		return res
	}
	res := uintptr(0)

	// The text, or instruction stream is generated as one large buffer.  The off (offset) for a method is
	// its offset within this buffer.  If the total text size gets too large, there can be issues on platforms like ppc64 if
	// the target of calls are too far for the call instruction.  To resolve the large text issue, the text is split
	// into multiple text sections to allow the linker to generate long calls when necessary.  When this happens, the vaddr
	// for each text section is set to its offset within the text.  Each method's offset is compared against the section
	// vaddrs and sizes to determine the containing section.  Then the section relative offset is added to the section's
	// relocated baseaddr to compute the method addess.

	if len(md.textsectmap) > 1 {
		for i := range md.textsectmap {
			sectaddr := md.textsectmap[i].vaddr
			sectlen := md.textsectmap[i].length
			if uintptr(off) >= sectaddr && uintptr(off) < sectaddr+sectlen {
				res = md.textsectmap[i].baseaddr + uintptr(off) - uintptr(md.textsectmap[i].vaddr)
				break
			}
		}
	} else {
		// single text section
		res = md.text + uintptr(off)
	}

	if res > md.etext && GOARCH != "wasm" { // on wasm, functions do not live in the same address space as the linear memory
		println("runtime: textOff", hex(off), "out of range", hex(md.text), "-", hex(md.etext))
		throw("runtime: text offset out of range")
	}
	return unsafe.Pointer(res)
}

func (t *functype) in() []*_type {
	// See funcType in reflect/type.go for details on data layout.
	uadd := uintptr(unsafe.Sizeof(functype{}))
	if t.typ.tflag&tflagUncommon != 0 {
		uadd += unsafe.Sizeof(uncommontype{})
	}
	return (*[1 << 20]*_type)(add(unsafe.Pointer(t), uadd))[:t.inCount]
}

func (t *functype) out() []*_type {
	// See funcType in reflect/type.go for details on data layout.
	uadd := uintptr(unsafe.Sizeof(functype{}))
	if t.typ.tflag&tflagUncommon != 0 {
		uadd += unsafe.Sizeof(uncommontype{})
	}
	outCount := t.outCount & (1<<15 - 1)
	return (*[1 << 20]*_type)(add(unsafe.Pointer(t), uadd))[t.inCount : t.inCount+outCount]
}

func (t *functype) dotdotdot() bool {
	return t.outCount&(1<<15) != 0
}

type nameOff int32
type typeOff int32
type textOff int32

type method struct {
	name nameOff
	mtyp typeOff
	ifn  textOff
	tfn  textOff
}

type uncommontype struct {
	pkgpath nameOff
	mcount  uint16 // number of methods
	xcount  uint16 // number of exported methods
	moff    uint32 // offset from this uncommontype to [mcount]method
	_       uint32 // unused
}

type imethod struct {
	name nameOff
	ityp typeOff
}

type interfacetype struct {
	typ     _type
	pkgpath name
	// expMethods contains all interface methods.
	//
	// - len(expMethods) returns number of exported methods.
	// - cap(expMethods) returns all interface methods, including both exported/non-exported methods.
	expMethods []imethod
}

func (it *interfacetype) methods() []imethod {
	return it.expMethods[:cap(it.expMethods)]
}

func (it *interfacetype) isEmpty() bool {
	return cap(it.expMethods) == 0
}

type maptype struct {
	typ    _type
	key    *_type
	elem   *_type
	bucket *_type // internal type representing a hash bucket
	// function for hashing keys (ptr to key, seed) -> hash
	hasher     func(unsafe.Pointer, uintptr) uintptr
	keysize    uint8  // size of key slot
	elemsize   uint8  // size of elem slot
	bucketsize uint16 // size of bucket
	flags      uint32
}

// Note: flag values must match those used in the TMAP case
// in ../cmd/compile/internal/gc/reflect.go:dtypesym.
func (mt *maptype) indirectkey() bool { // store ptr to key instead of key itself
	return mt.flags&1 != 0
}
func (mt *maptype) indirectelem() bool { // store ptr to elem instead of elem itself
	return mt.flags&2 != 0
}
func (mt *maptype) reflexivekey() bool { // true if k==k for all keys
	return mt.flags&4 != 0
}
func (mt *maptype) needkeyupdate() bool { // true if we need to update key on an overwrite
	return mt.flags&8 != 0
}
func (mt *maptype) hashMightPanic() bool { // true if hash function might panic
	return mt.flags&16 != 0
}

type arraytype struct {
	typ   _type
	elem  *_type
	slice *_type
	len   uintptr
}

type chantype struct {
	typ  _type
	elem *_type
	dir  uintptr
}

type slicetype struct {
	typ  _type
	elem *_type
}

type functype struct {
	typ      _type
	inCount  uint16
	outCount uint16
}

type ptrtype struct {
	typ  _type
	elem *_type
}

type structfield struct {
	name       name
	typ        *_type
	offsetAnon uintptr
}

func (f *structfield) offset() uintptr {
	return f.offsetAnon >> 1
}

type structtype struct {
	typ     _type
	pkgPath name
	fields  []structfield
}

// name is an encoded type name with optional extra data.
// See reflect/type.go for details.
type name struct {
	bytes *byte
}

func (n name) data(off int) *byte {
	return (*byte)(add(unsafe.Pointer(n.bytes), uintptr(off)))
}

func (n name) isExported() bool {
	return (*n.bytes)&(1<<0) != 0
}

func (n name) nameLen() int {
	return int(uint16(*n.data(1))<<8 | uint16(*n.data(2)))
}

func (n name) tagLen() int {
	if *n.data(0)&(1<<1) == 0 {
		return 0
	}
	off := 3 + n.nameLen()
	return int(uint16(*n.data(off))<<8 | uint16(*n.data(off + 1)))
}

func (n name) name() (s string) {
	if n.bytes == nil {
		return ""
	}
	nl := n.nameLen()
	if nl == 0 {
		return ""
	}
	hdr := (*stringStruct)(unsafe.Pointer(&s))
	hdr.str = unsafe.Pointer(n.data(3))
	hdr.len = nl
	return s
}

func (n name) tag() (s string) {
	tl := n.tagLen()
	if tl == 0 {
		return ""
	}
	nl := n.nameLen()
	hdr := (*stringStruct)(unsafe.Pointer(&s))
	hdr.str = unsafe.Pointer(n.data(3 + nl + 2))
	hdr.len = tl
	return s
}

func (n name) pkgPath() string {
	if n.bytes == nil || *n.data(0)&(1<<2) == 0 {
		return ""
	}
	off := 3 + n.nameLen()
	if tl := n.tagLen(); tl > 0 {
		off += 2 + tl
	}
	var nameOff nameOff
	copy((*[4]byte)(unsafe.Pointer(&nameOff))[:], (*[4]byte)(unsafe.Pointer(n.data(off)))[:])
	pkgPathName := resolveNameOff(unsafe.Pointer(n.bytes), nameOff)
	return pkgPathName.name()
}

func (n name) isBlank() bool {
	if n.bytes == nil {
		return false
	}
	if n.nameLen() != 1 {
		return false
	}
	return *n.data(3) == '_'
}

// typelinksinit scans the types from extra modules and builds the
// moduledata typemap used to de-duplicate type pointers.
func typelinksinit() {
	if firstmoduledata.next == nil {
		return
	}
	typehash := make(map[uint32][]*_type, len(firstmoduledata.typelinks))

	modules := activeModules()
	prev := modules[0]
	for _, md := range modules[1:] {
		// Collect types from the previous module into typehash.
	collect:
		for _, tl := range prev.typelinks {
			var t *_type
			if prev.typemap == nil {
				t = (*_type)(unsafe.Pointer(prev.types + uintptr(tl)))
			} else {
				t = prev.typemap[typeOff(tl)]
			}
			// Add to typehash if not seen before.
			tlist := typehash[t.hash]
			for _, tcur := range tlist {
				if tcur == t {
					continue collect
				}
			}
			typehash[t.hash] = append(tlist, t)
		}

		if md.typemap == nil {
			// If any of this module's typelinks match a type from a
			// prior module, prefer that prior type by adding the offset
			// to this module's typemap.
			tm := make(map[typeOff]*_type, len(md.typelinks))
			pinnedTypemaps = append(pinnedTypemaps, tm)
			md.typemap = tm
			for _, tl := range md.typelinks {
				t := (*_type)(unsafe.Pointer(md.types + uintptr(tl)))
				for _, candidate := range typehash[t.hash] {
					seen := map[_typePair]struct{}{}
					if typesEqual(t, candidate, seen) {
						t = candidate
						break
					}
				}
				md.typemap[typeOff(tl)] = t
			}
		}

		prev = md
	}
}

type _typePair struct {
	t1 *_type
	t2 *_type
}

// typesEqual reports whether two types are equal.
//
// Everywhere in the runtime and reflect packages, it is assumed that
// there is exactly one *_type per Go type, so that pointer equality
// can be used to test if types are equal. There is one place that
// breaks this assumption: buildmode=shared. In this case a type can
// appear as two different pieces of memory. This is hidden from the
// runtime and reflect package by the per-module typemap built in
// typelinksinit. It uses typesEqual to map types from later modules
// back into earlier ones.
//
// Only typelinksinit needs this function.
func typesEqual(t, v *_type, seen map[_typePair]struct{}) bool {
	tp := _typePair{t, v}
	if _, ok := seen[tp]; ok {
		return true
	}

	// mark these types as seen, and thus equivalent which prevents an infinite loop if
	// the two types are identical, but recursively defined and loaded from
	// different modules
	seen[tp] = struct{}{}

	if t == v {
		return true
	}
	kind := t.kind & kindMask
	if kind != v.kind&kindMask {
		return false
	}
	if t.string() != v.string() {
		return false
	}
	ut := t.uncommon()
	uv := v.uncommon()
	if ut != nil || uv != nil {
		if ut == nil || uv == nil {
			return false
		}
		pkgpatht := t.nameOff(ut.pkgpath).name()
		pkgpathv := v.nameOff(uv.pkgpath).name()
		if pkgpatht != pkgpathv {
			return false
		}
	}
	if kindBool <= kind && kind <= kindComplex128 {
		return true
	}
	switch kind {
	case kindString, kindUnsafePointer:
		return true
	case kindArray:
		at := (*arraytype)(unsafe.Pointer(t))
		av := (*arraytype)(unsafe.Pointer(v))
		return typesEqual(at.elem, av.elem, seen) && at.len == av.len
	case kindChan:
		ct := (*chantype)(unsafe.Pointer(t))
		cv := (*chantype)(unsafe.Pointer(v))
		return ct.dir == cv.dir && typesEqual(ct.elem, cv.elem, seen)
	case kindFunc:
		ft := (*functype)(unsafe.Pointer(t))
		fv := (*functype)(unsafe.Pointer(v))
		if ft.outCount != fv.outCount || ft.inCount != fv.inCount {
			return false
		}
		tin, vin := ft.in(), fv.in()
		for i := 0; i < len(tin); i++ {
			if !typesEqual(tin[i], vin[i], seen) {
				return false
			}
		}
		tout, vout := ft.out(), fv.out()
		for i := 0; i < len(tout); i++ {
			if !typesEqual(tout[i], vout[i], seen) {
				return false
			}
		}
		return true
	case kindInterface:
		it := (*interfacetype)(unsafe.Pointer(t))
		iv := (*interfacetype)(unsafe.Pointer(v))
		if it.pkgpath.name() != iv.pkgpath.name() {
			return false
		}
		itmethods := it.methods()
		ivmethods := iv.methods()
		if len(itmethods) != len(ivmethods) {
			return false
		}
		for i := range itmethods {
			tm := &itmethods[i]
			vm := &ivmethods[i]
			// Note the expMethods array can be relocated from
			// another module. See #17724.
			tname := resolveNameOff(unsafe.Pointer(tm), tm.name)
			vname := resolveNameOff(unsafe.Pointer(vm), vm.name)
			if tname.name() != vname.name() {
				return false
			}
			if tname.pkgPath() != vname.pkgPath() {
				return false
			}
			tityp := resolveTypeOff(unsafe.Pointer(tm), tm.ityp)
			vityp := resolveTypeOff(unsafe.Pointer(vm), vm.ityp)
			if !typesEqual(tityp, vityp, seen) {
				return false
			}
		}
		return true
	case kindMap:
		mt := (*maptype)(unsafe.Pointer(t))
		mv := (*maptype)(unsafe.Pointer(v))
		return typesEqual(mt.key, mv.key, seen) && typesEqual(mt.elem, mv.elem, seen)
	case kindPtr:
		pt := (*ptrtype)(unsafe.Pointer(t))
		pv := (*ptrtype)(unsafe.Pointer(v))
		return typesEqual(pt.elem, pv.elem, seen)
	case kindSlice:
		st := (*slicetype)(unsafe.Pointer(t))
		sv := (*slicetype)(unsafe.Pointer(v))
		return typesEqual(st.elem, sv.elem, seen)
	case kindStruct:
		st := (*structtype)(unsafe.Pointer(t))
		sv := (*structtype)(unsafe.Pointer(v))
		if len(st.fields) != len(sv.fields) {
			return false
		}
		if st.pkgPath.name() != sv.pkgPath.name() {
			return false
		}
		for i := range st.fields {
			tf := &st.fields[i]
			vf := &sv.fields[i]
			if tf.name.name() != vf.name.name() {
				return false
			}
			if !typesEqual(tf.typ, vf.typ, seen) {
				return false
			}
			if tf.name.tag() != vf.name.tag() {
				return false
			}
			if tf.offsetAnon != vf.offsetAnon {
				return false
			}
		}
		return true
	default:
		println("runtime: impossible type kind", kind)
		throw("runtime: impossible type kind")
		return false
	}
}