summaryrefslogtreecommitdiff
path: root/src/runtime/print.go
blob: 64055a34ccde28488693c58b5c1503926fd16dc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

// The compiler knows that a print of a value of this type
// should use printhex instead of printuint (decimal).
type hex uint64

func bytes(s string) (ret []byte) {
	rp := (*slice)(unsafe.Pointer(&ret))
	sp := stringStructOf(&s)
	rp.array = sp.str
	rp.len = sp.len
	rp.cap = sp.len
	return
}

var (
	// printBacklog is a circular buffer of messages written with the builtin
	// print* functions, for use in postmortem analysis of core dumps.
	printBacklog      [512]byte
	printBacklogIndex int
)

// recordForPanic maintains a circular buffer of messages written by the
// runtime leading up to a process crash, allowing the messages to be
// extracted from a core dump.
//
// The text written during a process crash (following "panic" or "fatal
// error") is not saved, since the goroutine stacks will generally be readable
// from the runtime datastructures in the core file.
func recordForPanic(b []byte) {
	printlock()

	if atomic.Load(&panicking) == 0 {
		// Not actively crashing: maintain circular buffer of print output.
		for i := 0; i < len(b); {
			n := copy(printBacklog[printBacklogIndex:], b[i:])
			i += n
			printBacklogIndex += n
			printBacklogIndex %= len(printBacklog)
		}
	}

	printunlock()
}

var debuglock mutex

// The compiler emits calls to printlock and printunlock around
// the multiple calls that implement a single Go print or println
// statement. Some of the print helpers (printslice, for example)
// call print recursively. There is also the problem of a crash
// happening during the print routines and needing to acquire
// the print lock to print information about the crash.
// For both these reasons, let a thread acquire the printlock 'recursively'.

func printlock() {
	mp := getg().m
	mp.locks++ // do not reschedule between printlock++ and lock(&debuglock).
	mp.printlock++
	if mp.printlock == 1 {
		lock(&debuglock)
	}
	mp.locks-- // now we know debuglock is held and holding up mp.locks for us.
}

func printunlock() {
	mp := getg().m
	mp.printlock--
	if mp.printlock == 0 {
		unlock(&debuglock)
	}
}

// write to goroutine-local buffer if diverting output,
// or else standard error.
func gwrite(b []byte) {
	if len(b) == 0 {
		return
	}
	recordForPanic(b)
	gp := getg()
	// Don't use the writebuf if gp.m is dying. We want anything
	// written through gwrite to appear in the terminal rather
	// than be written to in some buffer, if we're in a panicking state.
	// Note that we can't just clear writebuf in the gp.m.dying case
	// because a panic isn't allowed to have any write barriers.
	if gp == nil || gp.writebuf == nil || gp.m.dying > 0 {
		writeErr(b)
		return
	}

	n := copy(gp.writebuf[len(gp.writebuf):cap(gp.writebuf)], b)
	gp.writebuf = gp.writebuf[:len(gp.writebuf)+n]
}

func printsp() {
	printstring(" ")
}

func printnl() {
	printstring("\n")
}

func printbool(v bool) {
	if v {
		printstring("true")
	} else {
		printstring("false")
	}
}

func printfloat(v float64) {
	switch {
	case v != v:
		printstring("NaN")
		return
	case v+v == v && v > 0:
		printstring("+Inf")
		return
	case v+v == v && v < 0:
		printstring("-Inf")
		return
	}

	const n = 7 // digits printed
	var buf [n + 7]byte
	buf[0] = '+'
	e := 0 // exp
	if v == 0 {
		if 1/v < 0 {
			buf[0] = '-'
		}
	} else {
		if v < 0 {
			v = -v
			buf[0] = '-'
		}

		// normalize
		for v >= 10 {
			e++
			v /= 10
		}
		for v < 1 {
			e--
			v *= 10
		}

		// round
		h := 5.0
		for i := 0; i < n; i++ {
			h /= 10
		}
		v += h
		if v >= 10 {
			e++
			v /= 10
		}
	}

	// format +d.dddd+edd
	for i := 0; i < n; i++ {
		s := int(v)
		buf[i+2] = byte(s + '0')
		v -= float64(s)
		v *= 10
	}
	buf[1] = buf[2]
	buf[2] = '.'

	buf[n+2] = 'e'
	buf[n+3] = '+'
	if e < 0 {
		e = -e
		buf[n+3] = '-'
	}

	buf[n+4] = byte(e/100) + '0'
	buf[n+5] = byte(e/10)%10 + '0'
	buf[n+6] = byte(e%10) + '0'
	gwrite(buf[:])
}

func printcomplex(c complex128) {
	print("(", real(c), imag(c), "i)")
}

func printuint(v uint64) {
	var buf [100]byte
	i := len(buf)
	for i--; i > 0; i-- {
		buf[i] = byte(v%10 + '0')
		if v < 10 {
			break
		}
		v /= 10
	}
	gwrite(buf[i:])
}

func printint(v int64) {
	if v < 0 {
		printstring("-")
		v = -v
	}
	printuint(uint64(v))
}

func printhex(v uint64) {
	const dig = "0123456789abcdef"
	var buf [100]byte
	i := len(buf)
	for i--; i > 0; i-- {
		buf[i] = dig[v%16]
		if v < 16 {
			break
		}
		v /= 16
	}
	i--
	buf[i] = 'x'
	i--
	buf[i] = '0'
	gwrite(buf[i:])
}

func printpointer(p unsafe.Pointer) {
	printhex(uint64(uintptr(p)))
}
func printuintptr(p uintptr) {
	printhex(uint64(p))
}

func printstring(s string) {
	gwrite(bytes(s))
}

func printslice(s []byte) {
	sp := (*slice)(unsafe.Pointer(&s))
	print("[", len(s), "/", cap(s), "]")
	printpointer(sp.array)
}

func printeface(e eface) {
	print("(", e._type, ",", e.data, ")")
}

func printiface(i iface) {
	print("(", i.tab, ",", i.data, ")")
}

// hexdumpWords prints a word-oriented hex dump of [p, end).
//
// If mark != nil, it will be called with each printed word's address
// and should return a character mark to appear just before that
// word's value. It can return 0 to indicate no mark.
func hexdumpWords(p, end uintptr, mark func(uintptr) byte) {
	p1 := func(x uintptr) {
		var buf [2 * sys.PtrSize]byte
		for i := len(buf) - 1; i >= 0; i-- {
			if x&0xF < 10 {
				buf[i] = byte(x&0xF) + '0'
			} else {
				buf[i] = byte(x&0xF) - 10 + 'a'
			}
			x >>= 4
		}
		gwrite(buf[:])
	}

	printlock()
	var markbuf [1]byte
	markbuf[0] = ' '
	for i := uintptr(0); p+i < end; i += sys.PtrSize {
		if i%16 == 0 {
			if i != 0 {
				println()
			}
			p1(p + i)
			print(": ")
		}

		if mark != nil {
			markbuf[0] = mark(p + i)
			if markbuf[0] == 0 {
				markbuf[0] = ' '
			}
		}
		gwrite(markbuf[:])
		val := *(*uintptr)(unsafe.Pointer(p + i))
		p1(val)
		print(" ")

		// Can we symbolize val?
		fn := findfunc(val)
		if fn.valid() {
			print("<", funcname(fn), "+", val-fn.entry, "> ")
		}
	}
	println()
	printunlock()
}