summaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/obj.go
blob: 226eb4525249d4cdb1e2c05adfd7a7f912cd6c9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gc

import (
	"cmd/compile/internal/types"
	"cmd/internal/bio"
	"cmd/internal/obj"
	"cmd/internal/objabi"
	"cmd/internal/src"
	"crypto/sha256"
	"encoding/json"
	"fmt"
	"io"
	"io/ioutil"
	"os"
	"sort"
	"strconv"
)

// architecture-independent object file output
const ArhdrSize = 60

func formathdr(arhdr []byte, name string, size int64) {
	copy(arhdr[:], fmt.Sprintf("%-16s%-12d%-6d%-6d%-8o%-10d`\n", name, 0, 0, 0, 0644, size))
}

// These modes say which kind of object file to generate.
// The default use of the toolchain is to set both bits,
// generating a combined compiler+linker object, one that
// serves to describe the package to both the compiler and the linker.
// In fact the compiler and linker read nearly disjoint sections of
// that file, though, so in a distributed build setting it can be more
// efficient to split the output into two files, supplying the compiler
// object only to future compilations and the linker object only to
// future links.
//
// By default a combined object is written, but if -linkobj is specified
// on the command line then the default -o output is a compiler object
// and the -linkobj output is a linker object.
const (
	modeCompilerObj = 1 << iota
	modeLinkerObj
)

func dumpobj() {
	if linkobj == "" {
		dumpobj1(outfile, modeCompilerObj|modeLinkerObj)
		return
	}
	dumpobj1(outfile, modeCompilerObj)
	dumpobj1(linkobj, modeLinkerObj)
}

func dumpobj1(outfile string, mode int) {
	bout, err := bio.Create(outfile)
	if err != nil {
		flusherrors()
		fmt.Printf("can't create %s: %v\n", outfile, err)
		errorexit()
	}
	defer bout.Close()
	bout.WriteString("!<arch>\n")

	if mode&modeCompilerObj != 0 {
		start := startArchiveEntry(bout)
		dumpCompilerObj(bout)
		finishArchiveEntry(bout, start, "__.PKGDEF")
	}
	if mode&modeLinkerObj != 0 {
		start := startArchiveEntry(bout)
		dumpLinkerObj(bout)
		finishArchiveEntry(bout, start, "_go_.o")
	}
}

func printObjHeader(bout *bio.Writer) {
	fmt.Fprintf(bout, "go object %s %s %s %s\n", objabi.GOOS, objabi.GOARCH, objabi.Version, objabi.Expstring())
	if buildid != "" {
		fmt.Fprintf(bout, "build id %q\n", buildid)
	}
	if localpkg.Name == "main" {
		fmt.Fprintf(bout, "main\n")
	}
	fmt.Fprintf(bout, "\n") // header ends with blank line
}

func startArchiveEntry(bout *bio.Writer) int64 {
	var arhdr [ArhdrSize]byte
	bout.Write(arhdr[:])
	return bout.Offset()
}

func finishArchiveEntry(bout *bio.Writer, start int64, name string) {
	bout.Flush()
	size := bout.Offset() - start
	if size&1 != 0 {
		bout.WriteByte(0)
	}
	bout.MustSeek(start-ArhdrSize, 0)

	var arhdr [ArhdrSize]byte
	formathdr(arhdr[:], name, size)
	bout.Write(arhdr[:])
	bout.Flush()
	bout.MustSeek(start+size+(size&1), 0)
}

func dumpCompilerObj(bout *bio.Writer) {
	printObjHeader(bout)
	dumpexport(bout)
}

func dumpdata() {
	externs := len(externdcl)
	xtops := len(xtop)

	dumpglobls()
	addptabs()
	exportlistLen := len(exportlist)
	addsignats(externdcl)
	dumpsignats()
	dumptabs()
	ptabsLen := len(ptabs)
	itabsLen := len(itabs)
	dumpimportstrings()
	dumpbasictypes()
	dumpembeds()

	// Calls to dumpsignats can generate functions,
	// like method wrappers and hash and equality routines.
	// Compile any generated functions, process any new resulting types, repeat.
	// This can't loop forever, because there is no way to generate an infinite
	// number of types in a finite amount of code.
	// In the typical case, we loop 0 or 1 times.
	// It was not until issue 24761 that we found any code that required a loop at all.
	for {
		for i := xtops; i < len(xtop); i++ {
			n := xtop[i]
			if n.Op == ODCLFUNC {
				funccompile(n)
			}
		}
		xtops = len(xtop)
		compileFunctions()
		dumpsignats()
		if xtops == len(xtop) {
			break
		}
	}

	// Dump extra globals.
	tmp := externdcl

	if externdcl != nil {
		externdcl = externdcl[externs:]
	}
	dumpglobls()
	externdcl = tmp

	if zerosize > 0 {
		zero := mappkg.Lookup("zero")
		ggloblsym(zero.Linksym(), int32(zerosize), obj.DUPOK|obj.RODATA)
	}

	addGCLocals()

	if exportlistLen != len(exportlist) {
		Fatalf("exportlist changed after compile functions loop")
	}
	if ptabsLen != len(ptabs) {
		Fatalf("ptabs changed after compile functions loop")
	}
	if itabsLen != len(itabs) {
		Fatalf("itabs changed after compile functions loop")
	}
}

func dumpLinkerObj(bout *bio.Writer) {
	printObjHeader(bout)

	if len(pragcgobuf) != 0 {
		// write empty export section; must be before cgo section
		fmt.Fprintf(bout, "\n$$\n\n$$\n\n")
		fmt.Fprintf(bout, "\n$$  // cgo\n")
		if err := json.NewEncoder(bout).Encode(pragcgobuf); err != nil {
			Fatalf("serializing pragcgobuf: %v", err)
		}
		fmt.Fprintf(bout, "\n$$\n\n")
	}

	fmt.Fprintf(bout, "\n!\n")

	obj.WriteObjFile(Ctxt, bout)
}

func addptabs() {
	if !Ctxt.Flag_dynlink || localpkg.Name != "main" {
		return
	}
	for _, exportn := range exportlist {
		s := exportn.Sym
		n := asNode(s.Def)
		if n == nil {
			continue
		}
		if n.Op != ONAME {
			continue
		}
		if !types.IsExported(s.Name) {
			continue
		}
		if s.Pkg.Name != "main" {
			continue
		}
		if n.Type.Etype == TFUNC && n.Class() == PFUNC {
			// function
			ptabs = append(ptabs, ptabEntry{s: s, t: asNode(s.Def).Type})
		} else {
			// variable
			ptabs = append(ptabs, ptabEntry{s: s, t: types.NewPtr(asNode(s.Def).Type)})
		}
	}
}

func dumpGlobal(n *Node) {
	if n.Type == nil {
		Fatalf("external %v nil type\n", n)
	}
	if n.Class() == PFUNC {
		return
	}
	if n.Sym.Pkg != localpkg {
		return
	}
	dowidth(n.Type)
	ggloblnod(n)
}

func dumpGlobalConst(n *Node) {
	// only export typed constants
	t := n.Type
	if t == nil {
		return
	}
	if n.Sym.Pkg != localpkg {
		return
	}
	// only export integer constants for now
	switch t.Etype {
	case TINT8:
	case TINT16:
	case TINT32:
	case TINT64:
	case TINT:
	case TUINT8:
	case TUINT16:
	case TUINT32:
	case TUINT64:
	case TUINT:
	case TUINTPTR:
		// ok
	case TIDEAL:
		if !Isconst(n, CTINT) {
			return
		}
		x := n.Val().U.(*Mpint)
		if x.Cmp(minintval[TINT]) < 0 || x.Cmp(maxintval[TINT]) > 0 {
			return
		}
		// Ideal integers we export as int (if they fit).
		t = types.Types[TINT]
	default:
		return
	}
	Ctxt.DwarfIntConst(myimportpath, n.Sym.Name, typesymname(t), n.Int64Val())
}

func dumpglobls() {
	// add globals
	for _, n := range externdcl {
		switch n.Op {
		case ONAME:
			dumpGlobal(n)
		case OLITERAL:
			dumpGlobalConst(n)
		}
	}

	sort.Slice(funcsyms, func(i, j int) bool {
		return funcsyms[i].LinksymName() < funcsyms[j].LinksymName()
	})
	for _, s := range funcsyms {
		sf := s.Pkg.Lookup(funcsymname(s)).Linksym()
		dsymptr(sf, 0, s.Linksym(), 0)
		ggloblsym(sf, int32(Widthptr), obj.DUPOK|obj.RODATA)
	}

	// Do not reprocess funcsyms on next dumpglobls call.
	funcsyms = nil
}

// addGCLocals adds gcargs, gclocals, gcregs, and stack object symbols to Ctxt.Data.
//
// This is done during the sequential phase after compilation, since
// global symbols can't be declared during parallel compilation.
func addGCLocals() {
	for _, s := range Ctxt.Text {
		fn := s.Func()
		if fn == nil {
			continue
		}
		for _, gcsym := range []*obj.LSym{fn.GCArgs, fn.GCLocals, fn.GCRegs} {
			if gcsym != nil && !gcsym.OnList() {
				ggloblsym(gcsym, int32(len(gcsym.P)), obj.RODATA|obj.DUPOK)
			}
		}
		if x := fn.StackObjects; x != nil {
			attr := int16(obj.RODATA)
			ggloblsym(x, int32(len(x.P)), attr)
			x.Set(obj.AttrStatic, true)
		}
		if x := fn.OpenCodedDeferInfo; x != nil {
			ggloblsym(x, int32(len(x.P)), obj.RODATA|obj.DUPOK)
		}
	}
}

func duintxx(s *obj.LSym, off int, v uint64, wid int) int {
	if off&(wid-1) != 0 {
		Fatalf("duintxxLSym: misaligned: v=%d wid=%d off=%d", v, wid, off)
	}
	s.WriteInt(Ctxt, int64(off), wid, int64(v))
	return off + wid
}

func duint8(s *obj.LSym, off int, v uint8) int {
	return duintxx(s, off, uint64(v), 1)
}

func duint16(s *obj.LSym, off int, v uint16) int {
	return duintxx(s, off, uint64(v), 2)
}

func duint32(s *obj.LSym, off int, v uint32) int {
	return duintxx(s, off, uint64(v), 4)
}

func duintptr(s *obj.LSym, off int, v uint64) int {
	return duintxx(s, off, v, Widthptr)
}

func dbvec(s *obj.LSym, off int, bv bvec) int {
	// Runtime reads the bitmaps as byte arrays. Oblige.
	for j := 0; int32(j) < bv.n; j += 8 {
		word := bv.b[j/32]
		off = duint8(s, off, uint8(word>>(uint(j)%32)))
	}
	return off
}

const (
	stringSymPrefix  = "go.string."
	stringSymPattern = ".gostring.%d.%x"
)

// stringsym returns a symbol containing the string s.
// The symbol contains the string data, not a string header.
func stringsym(pos src.XPos, s string) (data *obj.LSym) {
	var symname string
	if len(s) > 100 {
		// Huge strings are hashed to avoid long names in object files.
		// Indulge in some paranoia by writing the length of s, too,
		// as protection against length extension attacks.
		// Same pattern is known to fileStringSym below.
		h := sha256.New()
		io.WriteString(h, s)
		symname = fmt.Sprintf(stringSymPattern, len(s), h.Sum(nil))
	} else {
		// Small strings get named directly by their contents.
		symname = strconv.Quote(s)
	}

	symdata := Ctxt.Lookup(stringSymPrefix + symname)
	if !symdata.OnList() {
		off := dstringdata(symdata, 0, s, pos, "string")
		ggloblsym(symdata, int32(off), obj.DUPOK|obj.RODATA|obj.LOCAL)
		symdata.Set(obj.AttrContentAddressable, true)
	}

	return symdata
}

// fileStringSym returns a symbol for the contents and the size of file.
// If readonly is true, the symbol shares storage with any literal string
// or other file with the same content and is placed in a read-only section.
// If readonly is false, the symbol is a read-write copy separate from any other,
// for use as the backing store of a []byte.
// The content hash of file is copied into hash. (If hash is nil, nothing is copied.)
// The returned symbol contains the data itself, not a string header.
func fileStringSym(pos src.XPos, file string, readonly bool, hash []byte) (*obj.LSym, int64, error) {
	f, err := os.Open(file)
	if err != nil {
		return nil, 0, err
	}
	defer f.Close()
	info, err := f.Stat()
	if err != nil {
		return nil, 0, err
	}
	if !info.Mode().IsRegular() {
		return nil, 0, fmt.Errorf("not a regular file")
	}
	size := info.Size()
	if size <= 1*1024 {
		data, err := ioutil.ReadAll(f)
		if err != nil {
			return nil, 0, err
		}
		if int64(len(data)) != size {
			return nil, 0, fmt.Errorf("file changed between reads")
		}
		var sym *obj.LSym
		if readonly {
			sym = stringsym(pos, string(data))
		} else {
			sym = slicedata(pos, string(data)).Sym.Linksym()
		}
		if len(hash) > 0 {
			sum := sha256.Sum256(data)
			copy(hash, sum[:])
		}
		return sym, size, nil
	}
	if size > 2e9 {
		// ggloblsym takes an int32,
		// and probably the rest of the toolchain
		// can't handle such big symbols either.
		// See golang.org/issue/9862.
		return nil, 0, fmt.Errorf("file too large")
	}

	// File is too big to read and keep in memory.
	// Compute hash if needed for read-only content hashing or if the caller wants it.
	var sum []byte
	if readonly || len(hash) > 0 {
		h := sha256.New()
		n, err := io.Copy(h, f)
		if err != nil {
			return nil, 0, err
		}
		if n != size {
			return nil, 0, fmt.Errorf("file changed between reads")
		}
		sum = h.Sum(nil)
		copy(hash, sum)
	}

	var symdata *obj.LSym
	if readonly {
		symname := fmt.Sprintf(stringSymPattern, size, sum)
		symdata = Ctxt.Lookup(stringSymPrefix + symname)
		if !symdata.OnList() {
			info := symdata.NewFileInfo()
			info.Name = file
			info.Size = size
			ggloblsym(symdata, int32(size), obj.DUPOK|obj.RODATA|obj.LOCAL)
			// Note: AttrContentAddressable cannot be set here,
			// because the content-addressable-handling code
			// does not know about file symbols.
		}
	} else {
		// Emit a zero-length data symbol
		// and then fix up length and content to use file.
		symdata = slicedata(pos, "").Sym.Linksym()
		symdata.Size = size
		symdata.Type = objabi.SNOPTRDATA
		info := symdata.NewFileInfo()
		info.Name = file
		info.Size = size
	}

	return symdata, size, nil
}

var slicedataGen int

func slicedata(pos src.XPos, s string) *Node {
	slicedataGen++
	symname := fmt.Sprintf(".gobytes.%d", slicedataGen)
	sym := localpkg.Lookup(symname)
	symnode := newname(sym)
	sym.Def = asTypesNode(symnode)

	lsym := sym.Linksym()
	off := dstringdata(lsym, 0, s, pos, "slice")
	ggloblsym(lsym, int32(off), obj.NOPTR|obj.LOCAL)

	return symnode
}

func slicebytes(nam *Node, s string) {
	if nam.Op != ONAME {
		Fatalf("slicebytes %v", nam)
	}
	slicesym(nam, slicedata(nam.Pos, s), int64(len(s)))
}

func dstringdata(s *obj.LSym, off int, t string, pos src.XPos, what string) int {
	// Objects that are too large will cause the data section to overflow right away,
	// causing a cryptic error message by the linker. Check for oversize objects here
	// and provide a useful error message instead.
	if int64(len(t)) > 2e9 {
		yyerrorl(pos, "%v with length %v is too big", what, len(t))
		return 0
	}

	s.WriteString(Ctxt, int64(off), len(t), t)
	return off + len(t)
}

func dsymptr(s *obj.LSym, off int, x *obj.LSym, xoff int) int {
	off = int(Rnd(int64(off), int64(Widthptr)))
	s.WriteAddr(Ctxt, int64(off), Widthptr, x, int64(xoff))
	off += Widthptr
	return off
}

func dsymptrOff(s *obj.LSym, off int, x *obj.LSym) int {
	s.WriteOff(Ctxt, int64(off), x, 0)
	off += 4
	return off
}

func dsymptrWeakOff(s *obj.LSym, off int, x *obj.LSym) int {
	s.WriteWeakOff(Ctxt, int64(off), x, 0)
	off += 4
	return off
}

// slicesym writes a static slice symbol {&arr, lencap, lencap} to n.
// arr must be an ONAME. slicesym does not modify n.
func slicesym(n, arr *Node, lencap int64) {
	s := n.Sym.Linksym()
	base := n.Xoffset
	if arr.Op != ONAME {
		Fatalf("slicesym non-name arr %v", arr)
	}
	s.WriteAddr(Ctxt, base, Widthptr, arr.Sym.Linksym(), arr.Xoffset)
	s.WriteInt(Ctxt, base+sliceLenOffset, Widthptr, lencap)
	s.WriteInt(Ctxt, base+sliceCapOffset, Widthptr, lencap)
}

// addrsym writes the static address of a to n. a must be an ONAME.
// Neither n nor a is modified.
func addrsym(n, a *Node) {
	if n.Op != ONAME {
		Fatalf("addrsym n op %v", n.Op)
	}
	if n.Sym == nil {
		Fatalf("addrsym nil n sym")
	}
	if a.Op != ONAME {
		Fatalf("addrsym a op %v", a.Op)
	}
	s := n.Sym.Linksym()
	s.WriteAddr(Ctxt, n.Xoffset, Widthptr, a.Sym.Linksym(), a.Xoffset)
}

// pfuncsym writes the static address of f to n. f must be a global function.
// Neither n nor f is modified.
func pfuncsym(n, f *Node) {
	if n.Op != ONAME {
		Fatalf("pfuncsym n op %v", n.Op)
	}
	if n.Sym == nil {
		Fatalf("pfuncsym nil n sym")
	}
	if f.Class() != PFUNC {
		Fatalf("pfuncsym class not PFUNC %d", f.Class())
	}
	s := n.Sym.Linksym()
	s.WriteAddr(Ctxt, n.Xoffset, Widthptr, funcsym(f.Sym).Linksym(), f.Xoffset)
}

// litsym writes the static literal c to n.
// Neither n nor c is modified.
func litsym(n, c *Node, wid int) {
	if n.Op != ONAME {
		Fatalf("litsym n op %v", n.Op)
	}
	if c.Op != OLITERAL {
		Fatalf("litsym c op %v", c.Op)
	}
	if n.Sym == nil {
		Fatalf("litsym nil n sym")
	}
	s := n.Sym.Linksym()
	switch u := c.Val().U.(type) {
	case bool:
		i := int64(obj.Bool2int(u))
		s.WriteInt(Ctxt, n.Xoffset, wid, i)

	case *Mpint:
		s.WriteInt(Ctxt, n.Xoffset, wid, u.Int64())

	case *Mpflt:
		f := u.Float64()
		switch n.Type.Etype {
		case TFLOAT32:
			s.WriteFloat32(Ctxt, n.Xoffset, float32(f))
		case TFLOAT64:
			s.WriteFloat64(Ctxt, n.Xoffset, f)
		}

	case *Mpcplx:
		r := u.Real.Float64()
		i := u.Imag.Float64()
		switch n.Type.Etype {
		case TCOMPLEX64:
			s.WriteFloat32(Ctxt, n.Xoffset, float32(r))
			s.WriteFloat32(Ctxt, n.Xoffset+4, float32(i))
		case TCOMPLEX128:
			s.WriteFloat64(Ctxt, n.Xoffset, r)
			s.WriteFloat64(Ctxt, n.Xoffset+8, i)
		}

	case string:
		symdata := stringsym(n.Pos, u)
		s.WriteAddr(Ctxt, n.Xoffset, Widthptr, symdata, 0)
		s.WriteInt(Ctxt, n.Xoffset+int64(Widthptr), Widthptr, int64(len(u)))

	default:
		Fatalf("litsym unhandled OLITERAL %v", c)
	}
}