1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
/*
* Copyright (C) 2013-2017 Red Hat
*
* This file is part of GnuTLS.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <drbg-aes.h>
#include <fips.h>
#include "gnutls_int.h"
#include "errors.h"
#include <nettle/sha2.h>
#include <atfork.h>
#include <rnd-common.h>
/* The block size is chosen arbitrarily */
#define ENTROPY_BLOCK_SIZE SHA256_DIGEST_SIZE
/* This provides a random generator for gnutls. It uses
* two instances of the DRBG-AES-CTR generator, one for
* nonce level and another for the other levels of randomness.
*/
struct fips_ctx {
struct drbg_aes_ctx nonce_context;
struct drbg_aes_ctx normal_context;
unsigned int forkid;
uint8_t entropy_hash[SHA256_DIGEST_SIZE];
};
static int _rngfips_ctx_reinit(struct fips_ctx *fctx);
static int _rngfips_ctx_init(struct fips_ctx *fctx);
static int drbg_reseed(struct fips_ctx *fctx, struct drbg_aes_ctx *ctx);
static int get_entropy(struct fips_ctx *fctx, uint8_t *buffer, size_t length);
static int get_random(struct drbg_aes_ctx *ctx, struct fips_ctx *fctx,
void *buffer, size_t length)
{
int ret;
if ( _gnutls_detect_fork(fctx->forkid) != 0) {
ret = _rngfips_ctx_reinit(fctx);
if (ret < 0)
return gnutls_assert_val(ret);
}
if (ctx->reseed_counter > DRBG_AES_RESEED_TIME) {
ret = drbg_reseed(fctx, ctx);
if (ret < 0)
return gnutls_assert_val(ret);
}
ret = drbg_aes_random(ctx, length, buffer);
if (ret == 0)
return gnutls_assert_val(GNUTLS_E_RANDOM_FAILED);
return 0;
}
static int get_entropy(struct fips_ctx *fctx, uint8_t *buffer, size_t length)
{
int ret;
uint8_t block[ENTROPY_BLOCK_SIZE];
uint8_t hash[SHA256_DIGEST_SIZE];
struct sha256_ctx ctx;
size_t total = 0;
/* For FIPS 140-2 4.9.2 continuous random number generator
* test, iteratively fetch fixed sized block from the system
* RNG and compare consecutive blocks.
*
* Note that we store the hash of the entropy block rather
* than the block itself for backward secrecy.
*/
while (total < length) {
ret = _rnd_get_system_entropy(block, ENTROPY_BLOCK_SIZE);
if (ret < 0)
return gnutls_assert_val(ret);
sha256_init(&ctx);
sha256_update(&ctx, sizeof(block), block);
sha256_digest(&ctx, sizeof(hash), hash);
if (memcmp(hash, fctx->entropy_hash, sizeof(hash)) == 0) {
_gnutls_switch_lib_state(LIB_STATE_ERROR);
return gnutls_assert_val(GNUTLS_E_RANDOM_FAILED);
}
memcpy(fctx->entropy_hash, hash, sizeof(hash));
memcpy(buffer, block, MIN(length - total, sizeof(block)));
total += sizeof(block);
buffer += sizeof(block);
}
zeroize_key(block, sizeof(block));
return 0;
}
#define PSTRING "gnutls-rng"
#define PSTRING_SIZE (sizeof(PSTRING)-1)
static int drbg_init(struct fips_ctx *fctx, struct drbg_aes_ctx *ctx)
{
uint8_t buffer[DRBG_AES_SEED_SIZE];
int ret;
ret = get_entropy(fctx, buffer, sizeof(buffer));
if (ret < 0)
return gnutls_assert_val(ret);
ret = drbg_aes_init(ctx, sizeof(buffer), buffer,
PSTRING_SIZE, (void*)PSTRING);
zeroize_key(buffer, sizeof(buffer));
if (ret == 0)
return gnutls_assert_val(GNUTLS_E_RANDOM_FAILED);
return GNUTLS_E_SUCCESS;
}
/* Reseed a generator. */
static int drbg_reseed(struct fips_ctx *fctx, struct drbg_aes_ctx *ctx)
{
uint8_t buffer[DRBG_AES_SEED_SIZE];
int ret;
ret = get_entropy(fctx, buffer, sizeof(buffer));
if (ret < 0)
return gnutls_assert_val(ret);
ret = drbg_aes_reseed(ctx, sizeof(buffer), buffer, 0, NULL);
zeroize_key(buffer, sizeof(buffer));
if (ret == 0)
return gnutls_assert_val(GNUTLS_E_RANDOM_FAILED);
return GNUTLS_E_SUCCESS;
}
static int _rngfips_ctx_init(struct fips_ctx *fctx)
{
uint8_t block[ENTROPY_BLOCK_SIZE];
struct sha256_ctx ctx;
int ret;
/* For FIPS 140-2 4.9.2 continuous random number generator
* test, get the initial entropy from the system RNG and keep
* it for comparison.
*
* Note that we store the hash of the entropy block rather
* than the block itself for backward secrecy.
*/
ret = _rnd_get_system_entropy(block, sizeof(block));
if (ret < 0)
return gnutls_assert_val(ret);
sha256_init(&ctx);
sha256_update(&ctx, sizeof(block), block);
zeroize_key(block, sizeof(block));
sha256_digest(&ctx, sizeof(fctx->entropy_hash), fctx->entropy_hash);
/* normal */
ret = drbg_init(fctx, &fctx->normal_context);
if (ret < 0)
return gnutls_assert_val(ret);
/* nonce */
ret = drbg_init(fctx, &fctx->nonce_context);
if (ret < 0)
return gnutls_assert_val(ret);
fctx->forkid = _gnutls_get_forkid();
return 0;
}
static int _rngfips_ctx_reinit(struct fips_ctx *fctx)
{
int ret;
/* normal */
ret = drbg_reseed(fctx, &fctx->normal_context);
if (ret < 0)
return gnutls_assert_val(ret);
/* nonce */
ret = drbg_reseed(fctx, &fctx->nonce_context);
if (ret < 0)
return gnutls_assert_val(ret);
fctx->forkid = _gnutls_get_forkid();
return 0;
}
/* Initialize this random subsystem. */
static int _rngfips_init(void **_ctx)
{
/* Basic initialization is required to
do a few checks on the implementation. */
struct fips_ctx *ctx;
int ret;
ctx = gnutls_calloc(1, sizeof(*ctx));
if (ctx == NULL)
return gnutls_assert_val(GNUTLS_E_MEMORY_ERROR);
ret = _rngfips_ctx_init(ctx);
if (ret < 0) {
gnutls_free(ctx);
return gnutls_assert_val(ret);
}
*_ctx = ctx;
return 0;
}
static int _rngfips_rnd(void *_ctx, int level, void *buffer, size_t length)
{
struct fips_ctx *ctx = _ctx;
int ret;
switch (level) {
case GNUTLS_RND_RANDOM:
case GNUTLS_RND_KEY:
/* Unlike the chacha generator in rnd.c we do not need
* to explicitly protect against backtracking in GNUTLS_RND_KEY
* level. This protection is part of the DRBG generator. */
ret = get_random(&ctx->normal_context, ctx, buffer, length);
break;
default:
ret = get_random(&ctx->nonce_context, ctx, buffer, length);
break;
}
return ret;
}
static void _rngfips_deinit(void *_ctx)
{
struct fips_ctx *ctx = _ctx;
zeroize_key(ctx, sizeof(*ctx));
free(ctx);
}
static void _rngfips_refresh(void *_ctx)
{
/* this is predictable RNG. Don't refresh */
return;
}
static int selftest_kat(void)
{
int ret;
ret = drbg_aes_self_test();
if (ret == 0) {
_gnutls_debug_log("DRBG-AES self test failed\n");
return gnutls_assert_val(GNUTLS_E_RANDOM_FAILED);
} else
_gnutls_debug_log("DRBG-AES self test succeeded\n");
return 0;
}
gnutls_crypto_rnd_st _gnutls_fips_rnd_ops = {
.init = _rngfips_init,
.deinit = _rngfips_deinit,
.rnd = _rngfips_rnd,
.rnd_refresh = _rngfips_refresh,
.self_test = selftest_kat,
};
|