1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
/* nettle, low-level cryptographics library
*
* Copyright (C) 2013 Red Hat
* Copyright (C) 2008 Free Software Foundation, Inc.
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* This is a known-answer test for the DRBG-CTR-AES.
*/
#include <config.h>
#include "errors.h"
#include <drbg-aes.h>
#include <string.h>
#include <stdio.h>
struct self_test_st {
const uint8_t entropy[DRBG_AES_SEED_SIZE];
const char *pstring;
const uint8_t res[4][16];
};
struct priv_st {
struct drbg_aes_ctx *ctx;
};
/* Run a Know-Answer-Test using a dedicated test context. */
int drbg_aes_self_test(void)
{
static const struct self_test_st tv[] = {
{
.entropy = {0xb9, 0xca, 0x7f, 0xd6, 0xa0, 0xf5, 0xd3, 0x42,
0x19, 0x6d, 0x84, 0x91, 0x76, 0x1c, 0x3b, 0xbe,
0x48, 0xb2, 0x82, 0x98, 0x68, 0xc2, 0x80, 0x00,
0x19, 0x6d, 0x84, 0x91, 0x76, 0x1c, 0x3b, 0xbe,
0x48, 0xb2, 0x82, 0x98, 0x68, 0xc2, 0x80, 0x00,
0x00, 0x00, 0x28, 0x18, 0x00, 0x00, 0x25, 0x00},
.pstring = "test test test",
.res = {
{0xa4, 0xae, 0xb4, 0x51, 0xd0, 0x0d, 0x97, 0xcc, 0x46,
0xbb, 0xc0, 0xec, 0x5c, 0xa1, 0xf0, 0x34},
{0x68, 0xc4, 0x04, 0x63, 0x3d, 0x9e, 0x2c, 0x05, 0x18,
0xcf, 0xde, 0x2a, 0x4c, 0x49, 0xc8, 0x2b},
{0x60, 0x5a, 0xd6, 0x71, 0x5e, 0xb3, 0x86, 0x22, 0xd5,
0x21, 0x7f, 0xd7, 0x1d, 0xa3, 0xff, 0xa6},
{0xe0, 0xf8, 0x77, 0x2c, 0xcb, 0xa4, 0x52, 0xa5, 0x35,
0xf5, 0x21, 0xb9, 0x20, 0x4e, 0xff, 0x3e},
}
},
{
.entropy = {
0xb9, 0xca, 0x7f, 0xd6, 0xa0, 0xf5, 0xd3, 0x42,
0x19, 0x6d, 0x84, 0x91, 0x76, 0x1c, 0x3b, 0xbe,
0x48, 0xb2, 0x82, 0x98, 0x68, 0xc2, 0x80, 0x00,
0x19, 0x6d, 0x84, 0x91, 0x76, 0x1c, 0x3b, 0xbe,
0x48, 0xb2, 0x82, 0x98, 0x68, 0xc2, 0x80, 0x00,
0x00, 0x00, 0x28, 0x18, 0x00, 0x00, 0x25, 0x00},
.pstring = "tost tost test",
.res = {
{0x47, 0x2d, 0x1e, 0xa9, 0xe9, 0xed, 0x02, 0xba, 0x0b,
0x8f, 0xc7, 0x59, 0x84, 0xe0, 0x7d, 0x6e},
{0x4c, 0x63, 0xfd, 0xc9, 0x17, 0x1e, 0x09, 0xca, 0x62,
0x72, 0x45, 0x4f, 0xeb, 0x5b, 0xd0, 0x02},
{0x3e, 0x29, 0x1c, 0xde, 0xd9, 0xdd, 0x65, 0x4f, 0xfe,
0xcd, 0x17, 0xa3, 0xa0, 0x23, 0x3b, 0xd5},
{0x2b, 0x45, 0xd2, 0x4a, 0xf9, 0xd4, 0x91, 0xa4, 0x2e,
0xaf, 0xe6, 0xb5, 0x40, 0xb4, 0xf5, 0xd7},
}
},
{
.entropy = {
0x42, 0x9c, 0x08, 0x3d, 0x82, 0xf4, 0x8a, 0x40,
0x66, 0xb5, 0x49, 0x27, 0xab, 0x42, 0xc7, 0xc3,
0x0e, 0xb7, 0x61, 0x3c, 0xfe, 0xb0, 0xbe, 0x73,
0xf7, 0x6e, 0x6d, 0x6f, 0x1d, 0xa3, 0x14, 0xfa,
0xbb, 0x4b, 0xc1, 0x0e, 0xc5, 0xfb, 0xcd, 0x46,
0xbe, 0x28, 0x61, 0xe7, 0x03, 0x2b, 0x37, 0x7d},
.pstring = "one two",
.res = {
{0x6c, 0x29, 0x75, 0xdc, 0xd3, 0xaf, 0xfa, 0xf0, 0xe9,
0xa8, 0xa4, 0xd8, 0x60, 0x62, 0xc9, 0xaa},
{0x2b, 0xac, 0x71, 0x36, 0x42, 0xbf, 0x2a, 0xff, 0xa7,
0xc7, 0xf6, 0x08, 0xa4, 0x3b, 0xe6, 0x00},
{0x1d, 0x2c, 0x18, 0xbc, 0xc4, 0xbe, 0x64, 0x4b, 0x9a,
0x6c, 0x45, 0xcb, 0x6b, 0xf2, 0xed, 0xc3},
{0xe3, 0x41, 0x58, 0x24, 0x57, 0xa0, 0x60, 0xad, 0xb6,
0x45, 0x8d, 0x8f, 0x32, 0x81, 0x77, 0xa9},
}
},
};
unsigned i, j;
struct drbg_aes_ctx test_ctx;
struct drbg_aes_ctx test_ctx2;
struct priv_st priv;
int ret, saved;
uint8_t *tmp;
unsigned char result[16];
memset(&priv, 0, sizeof(priv));
priv.ctx = &test_ctx;
/* Test the error handling of drbg_aes_init */
ret =
drbg_aes_init(&test_ctx, DRBG_AES_SEED_SIZE, tv[0].entropy,
DRBG_AES_SEED_SIZE*2, (void*)tv);
if (ret != 0) {
gnutls_assert();
return 0;
}
tmp = gnutls_malloc(MAX_DRBG_AES_GENERATE_SIZE+1);
if (tmp == NULL) {
gnutls_assert();
return 0;
}
for (i = 0; i < sizeof(tv) / sizeof(tv[0]); i++) {
/* Setup the key. */
ret =
drbg_aes_init(&test_ctx, DRBG_AES_SEED_SIZE, tv[i].entropy,
strlen(tv[i].pstring), (void *)tv[i].pstring);
if (ret == 0)
goto fail;
if (drbg_aes_is_seeded(&test_ctx) == 0)
goto fail;
/* Get and compare the first three results. */
for (j = 0; j < 3; j++) {
/* Compute the next value. */
if (drbg_aes_random(&test_ctx, 16, result) == 0)
goto fail;
/* Compare it to the known value. */
if (memcmp(result, tv[i].res[j], 16) != 0) {
goto fail;
}
}
ret =
drbg_aes_reseed(&test_ctx, DRBG_AES_SEED_SIZE,
tv[i].entropy, 0, NULL);
if (ret == 0)
goto fail;
if (drbg_aes_random(&test_ctx, 16, result) == 0)
goto fail;
if (memcmp(result, tv[i].res[3], 16) != 0) {
goto fail;
}
/* test the error handling of drbg_aes_random() */
saved = test_ctx.reseed_counter;
test_ctx.reseed_counter = DRBG_AES_RESEED_TIME+1;
if (drbg_aes_random(&test_ctx, 16, result) != 0) {
gnutls_assert();
goto fail;
}
test_ctx.reseed_counter = saved;
ret = drbg_aes_random(&test_ctx, MAX_DRBG_AES_GENERATE_SIZE+1, tmp);
if (ret == 0) {
gnutls_assert();
goto fail;
}
/* test the low-level function */
ret = drbg_aes_generate(&test_ctx, MAX_DRBG_AES_GENERATE_SIZE+1, tmp, 0, NULL);
if (ret != 0) {
gnutls_assert();
goto fail;
}
/* Test of the reseed function for error handling */
ret =
drbg_aes_reseed(&test_ctx, DRBG_AES_SEED_SIZE*2,
(uint8_t*)tv, 0, NULL);
if (ret != 0)
goto fail;
ret =
drbg_aes_reseed(&test_ctx, DRBG_AES_SEED_SIZE,
tv[i].entropy, DRBG_AES_SEED_SIZE*2, (uint8_t*)tv);
if (ret != 0)
goto fail;
/* check whether reseed detection works */
if (i==0) {
ret =
drbg_aes_reseed(&test_ctx, DRBG_AES_SEED_SIZE,
tv[i].entropy, 0, NULL);
if (ret == 0)
goto fail;
saved = test_ctx.reseed_counter;
test_ctx.reseed_counter = DRBG_AES_RESEED_TIME-4;
for (j=0;j<5;j++) {
if (drbg_aes_random(&test_ctx, 1, result) == 0) {
gnutls_assert();
goto fail;
}
}
/* that should fail */
if (drbg_aes_random(&test_ctx, 1, result) != 0) {
gnutls_assert();
goto fail;
}
test_ctx.reseed_counter = saved;
}
/* test deinit, which is zeroize_key() */
memcpy(&test_ctx2, &test_ctx, sizeof(test_ctx));
zeroize_key(&test_ctx, sizeof(test_ctx));
if (memcmp(&test_ctx, &test_ctx2, sizeof(test_ctx)) == 0) {
gnutls_assert();
goto fail;
}
}
free(tmp);
return 1;
fail:
free(tmp);
return 0;
}
|